
PHYSICAL REVIEW A 88, 053807 (2013)

Single-photon frequency conversion in nonlinear crystals

Susanne Blum,1 G. A. Olivares-Renterı́a,2,3 Carlo Ottaviani,2,4 Christoph Becher,5 and Giovanna Morigi1,2

1Fachrichtung 7.1: Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
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Frequency conversion of single photons in a nonlinear crystal is theoretically discussed. Losses and noise are
included within a Heisenberg-Langevin formalism for the propagating photon field. We calculate the first- and
second-order correlation functions of the frequency-converted light when the input is a train of single-photon
pulses. This model allows one to identify the requirements on the nonlinear device so that it can be integrated in
a quantum network.
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I. INTRODUCTION

The ability to process information at the single-photon
level has become a crucial prerequisite for quantum commu-
nications [1,2]. Implementations of networks based on single
photons face the challenge of bridging the frequency at which
the nodes optimally operate with the telecom band frequency
at which transmission losses in optical fibers are minimized. A
possible solution is to frequency convert single-photon wave
packets into and back from the telecom band wavelengths
using multiwave mixing in nonlinear devices [3–6]. Several
experiments have demonstrated frequency conversion of light,
e.g., nonclassical states of light [7] and weak coherent
states, both in up-conversion (infrared to visible) [8–10] and
down-conversion (visible to infrared) [5,11–13]. Very recently
quantum frequency conversion of single-photon states was
demonstrated both in up-conversion [3,14–16] and down-
conversion [17–19]. For single photons it has been proven that
some of their classical (coherence) and nonclassical (photon
statistics) properties are conserved in the frequency conversion
process [18,19]. All of the experiments mentioned so far used
three-wave mixing in nonlinear [χ (2)] crystals [20]. Moreover,
frequency conversion can also be efficiently achieved making
use of four-wave mixing (FWM) in χ (3) materials (e.g., Bragg
scattering in nonlinear fibers or FWM in atomic gases) as
demonstrated for weak coherent fields [21,22] and heralded
single photons [23,24]. We mention that the use of atomic
ensembles as nonlinear media for single-photon frequency
conversion is also being discussed [25,26], and has been
experimentally demonstrated [24]. This latter approach offers
a smaller bandwidth compared with nonlinear crystals, but
also a better perspective for achieving coherent control [27].

Since these devices shall be integrated in a quantum
network, it is important to determine their efficiency at the
single-photon level. Hence this requires one to evaluate the
efficiency making use of a model describing propagation of
quantum electromagnetic radiation in a medium, which we
here assume to be a χ (2) crystal. This model shall include losses
and detrimental scattering processes, which can generate
photons in the considered frequency width and/or modify the
spectral and coherence properties of the frequency-converted

photon at the crystal’s output, and are thus a source of noise.
Studies on frequency conversion between three modes have
appeared, for instance, in Refs. [4,28]: These works describe
three-wave mixing in the absence of noise and losses and do not
take into account propagation inside the medium. In Ref. [29]
the theoretical model has been extended to a multimode case
in which the pump field is pulsed but noise and losses are not
taken into account.

Noise and losses in the conversion process are critical in
determining the efficiency of the operation at the single-photon
level [12,13,18]. Typical noise sources are optical parametric
fluorescence (OPF) [12] and Raman scattering [13,18], which
can be both induced by the intense laser field required for the
conversion process. To take into account realistic conditions
for the frequency conversion process, in this article we discuss
a theoretical model for single-photon frequency conversion in a
nonlinear crystal including noise and losses in the propagation
dynamics. We consider a continuous pump laser and first
extend the model in Refs. [4,28] in order to include propagation
of the photon field, using the quantum theory developed in
Refs. [30–34]. We identify the conditions for which a periodic
exchange of single-photon excitations between the input and
the target frequency band occurs. Noise and losses are then
introduced within a Heisenberg-Langevin equation for the
photon field propagating inside the dielectrics.

This article is organized as follows. In Sec. II the theoretical
model is derived. In Sec. III noise and losses are introduced
using the Heisenberg-Langevin equation. In Sec. IV we apply
the model to determine the first- and second-order correlation
functions of the frequency transformed light when the input is
a train of single photons in the optical regime. The conclusions
and outlooks are presented in Sec. V.

II. THEORETICAL MODEL

In this section we start from the equation for the propagation
of the photon field in an ideal χ (2) medium using the theoretical
description developed in Refs. [30–34]. Here, we identify
the conditions under which a periodic exchange of photonic
excitation between the input and target frequency band occurs
during propagation inside the crystal. We then introduce the
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FIG. 1. (Color online) (a) A photon wave packet with center
frequency ωp , typically in the visible, enters the nonlinear χ (2)

medium and is ideally converted into a photon wave packet
with center frequency ωi in the low loss bands of optical fibers.
(b) Sketch of the frequency conversion process. A photon at pump
frequency ωp is converted into two photons at frequency ωs and
ωi , with ωp = ωs + ωi . The process is stimulated by a laser at
frequency ωs .

loss terms by means of quantum reservoirs [31] and solve the
corresponding Heisenberg-Langevin equations of motion for
the photon field. These equations allow us to determine the
correlation functions of a train of photons after interaction
with the crystal as a function of the input state and the noise
during the propagation dynamics.

A. Hamiltonian dynamics

The starting point of our analysis is the Hamiltonian
for nondegenerate three-wave mixing in a lossless dielectric
medium of length L, where the three coupled optical modes
are at frequency ωp, ωi , and ωs . The frequencies are within a
band with center frequency ω(0)

p , ω
(0)
i , and ω(0)

s , respectively,
the corresponding wave vectors read kp, ki, and ks, such that
ωp = ωi + ωs and kp = ki + ks. In the following we restrict to
propagation along the positive direction of the x axis, as shown
in Fig. 1(a), and assume that the wave vectors are all parallel
to x so that we write only their modulus in the equations.
Using second quantization of the electromagnetic field inside
the dielectric medium according to [30], we denote by aj , a

†
j

the annihilation and creation operators of a photon of the mode
at frequency ωj and wave vector kj , with [aj ,a

†
k] = δjk . The

effective Hamiltonian describing three-wave mixing can be
written as H0 = Hemf + Hint, where Hemf = ∑′

p h̄ωpa
†
pap +∑′

i h̄ωia
†
i ai + ∑′

s h̄ωsa
†
s as contains the sum over the modes

which are resonantly coupled (denoted by
∑′) and

Hint = ih̄
∑
s,p,i

′
gs,p,iF(kp − ki − ks)a

†
pasai + H.c. (1)

describes their mutual interactions, with F(k) =
sin(kL/2)/(kL/2) (apart from a k-dependent phase which can

be absorbed in the operators) [29,32]. Here, the sums over
the modes are about the corresponding relevant frequency
bandwidth and gs,p,i is the coupling parameter, which has the
dimensions of a frequency and depends on the wave numbers
of the modes j = s,p,i [29,32,35].

From Eq. (1) one can see that frequency conversion of
a single-photon wave packet between the frequency region
centered at frequency ω(0)

p and wave vector k(0)
p , into the

frequency ω
(0)
i and wave vector k

(0)
i is ideally realized by

a nonlinear process in which an additional photon at the
difference frequency ωs = ωp − ωi and wave vector ks =
kp − ki is emitted.

The process is sketched in Fig. 1(b). It can be enhanced by
means of a laser at driving frequency ω(0)

s which stimulates
the photon emission process. Within this formalism, this
is described by assuming that the mode at frequency ω(0)

s

is in a coherent state at amplitude αs = |αs |ei�s . A useful
representation is found by means of the unitary transformation
D(αs) = exp[αs(t)a

†
s − αs(t)∗as] [36], with αs(t) = αse

−iω
(0)
s t ,

so that the initial state of the mode is in this representation
the vacuum and the new Hamiltonian governing the unitary
dynamics reads

H ′ = DHD† − ih̄D∂tD
† = Hemf + Hint + HF , (2)

with

HF = ih̄
∑
p,i

′
�∗

p,ie
−iωs t a

†
i ap + H.c., (3)

and where �pi = �0,pie
i�sF(kp − ki − ks) and �0,pi =

gspi |αs |. The Hamiltonian in Eq. (2) explicitly shows that
this process exhibits quantum noise fluctuations due to
spontaneous parametric processes described by Hint. This
contribution can be made very small with respect to the
stimulated emission process by choosing amplitudes αs with
a mean number of photons |αs |2 � 1. In this limit, stimulated
emission processes will be prevailing over spontaneous down-
conversion processes, which can be neglected for sufficiently
small interaction times. This will be assumed in the following,
where we will approximate the Hamiltonian H ′ with

H ′ ∼= Hemf + HF . (4)

B. Propagation equations for the photon field

Within the validity of this description the time evolution
of the modes p and i is given by the Heisenberg equations
governed by Eq. (4), whose form can be found, for instance,
in Ref. [29]. In this article we assume that the signal
is a continuous-wave laser and eliminate the explicit time

dependence by performing the transformation aj → aj e
−iω

(0)
j t ,

with j = i,p, which corresponds to moving to a rotating frame.
The Heisenberg equations, in the absence of noise, take the
form,

ȧp = −iδpap −
∑

i

′
�p,iai, (5)

ȧi = −iδiai +
∑

p

′
�∗

p,iap, (6)
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with δj = ωj − ω
(0)
j . The case of perfect frequency conversion

is found when the dependence of the coupling rate gs,p,i

on the frequency of the photon can be discarded, which is
verified when the input photons possess a frequency width
much smaller than the crystal’s acceptance bandwidth, while
the dispersion relation for the modes p and i is essentially
linear, such that ωp � v

p
g kp and ωi � vi

gki with kj the wave

vector and v
j
g the group velocity. In this limit we denote by

ψj (x,t) the field operator of a photon with a spectrum in the
bandwidth around ω

(0)
j (j = i,p) and 0 < x < L,

ψj (x,t) = 1√
L

∑
j

ei(kj −k
(0)
j )xaj , (7)

whose dynamics are governed by the equations of motion,(
∂

∂t
+ vp

g

∂

∂x

)
ψp(x,t) = −�ψi(x,t), (8)

(
∂

∂t
+ vi

g

∂

∂x

)
ψi(x,t) = +�∗ψp(x,t), (9)

and which are valid for 0 < x < L. These equations are found
by taking the time derivative of Eq. (7) and using Eqs. (6)
and (5), after setting � ≡ �0e

i�s and under the assumption
that the medium is sufficiently long. Periodic exchange of
excitations between the p and i modes is realized when
v

p
g ≈ vi

g , which is the case for the experimental conditions in
Refs. [13,18]. In this limit the solutions of Eqs. (8) and (9) read

ψp(x,t) = cos(�0τx)ψp(0,t − τx)

− ei�s sin(�0τx)ψi(0,t − τx), (10)

ψi(x,t) = cos(�0τx)ψi(0,t − τx)

+ e−i�s sin(�0τx)ψp(0,t − τx), (11)

where τx = x/vg . The equations are written as a function of
the field at x = 0 and are valid for times t � τx . They describe
periodic conversion of a p photon into a i photon and vice
versa. The period is fixed by the frequency �0, and thus can
be controlled by the intensity of the driving laser. Therefore,
by setting the laser intensity �0 = (2n + 1)πvg/(2L) (with
n ∈ N), one has perfect conversion at the crystal end x = L.

Equations (8) and (9) are valid under a series of conditions.
In the first place, we have neglected noise effects, which will
be treated in the next section. We also neglected dispersion
during the propagation inside the nonlinear crystal. This relies
on the fulfillment of the inequality,

1

2

∂2ωp,i

∂k2

∣∣∣∣
k=kp,i

�2
kTint � 1, (12)

with Tint the interaction time, Tint ∼ L/vg , and �k is the
typical dispersion around the wave vector mean value. We
also assumed that the group velocities of idler and pump are
equal, which practically implies that∣∣vp

g − vi
g

∣∣�kTint � 1. (13)

When the bandwidth of the input photon is sufficiently
small, then �k is determined by the interaction, �k ≈ �0/vg .
Using �0L/vg = (2n + 1)π/2, the two inequalities to fulfill

become

(2n + 1)
π2

8

1

vgL

∂2ωp,i

∂k2

∣∣∣∣
k=kp,i

� 1, (14)

(2n + 1)π

2

∣∣vp
g − vi

g

∣∣
vg

� 1. (15)

The derivation of Eqs. (8) and (9) also relies on the assumption
that the length of the medium L is much larger than the
photon coherence length, L�k � 1. This leads to the choice
of numbers n � 1, thus setting a lower bound to the above
inequalities. Another approximation we made was to neglect
spontaneous down-conversion processes, corresponding to the
absorption of a pump photon followed by the spontaneous
emission of a signal and an idler photon. These processes
are also detrimental for frequency down-conversion purposes,
since the idler photon has a larger line width due to correlations
with the signal photon. They can be neglected provided that
the number of spontaneous emission events during propagation
of a single photon are negligible, which is verified when the
corresponding rate γ fulfills the inequality γL/vg � 1.

Before concluding this section, we provide the com-
mutation relations of the field operators. At equal
times, [ψj (x,t),ψ†

� (x ′,t)] = δj�δ̃(x − x ′), where δ̃(x) ≈
sin(�kjx/2)/(πx) is a smoothed version of a Dirac-delta
function due to the band-limited Fourier transform: Its width
scales with 1/�kj , and �kj is the half width of the distribution
of modes with wave numbers about the mode at k

(0)
j . We shall

assume that this smearing effect is not pronounced (which is
correct for n � 1) so that we can treat δ̃(x) as a Dirac-delta
function [32]. The commutation relation at different times
takes a simple form when the dispersion relation is linear,
and reads [ψj (x,t),ψ†

� (x ′,t ′)] = δj�δ̃(x − x ′ − vg(t − t ′)).

III. HEISENBERG-LANGEVIN EQUATIONS

Noise and losses are introduced in the propagation equa-
tions by means of loss and Langevin terms, which are derived
after assuming that the photon fields couple with quantum
reservoirs [31]. These processes are taken to be Markovian for
simplicity, such that the propagation equations in the presence
of noise reads(

∂

∂t
+ vp

g

∂

∂x

)
ψp(x,t)

= −�ψi(x,t) − κpψp(x,t) + Lp(x,t), (16)
(

∂

∂t
+ vi

g

∂

∂x

)
ψi(x,t) = �∗ψp(x,t) − κiψi(x,t) + Li(x,t).

(17)

Here, κj=i,p is the difference between the total loss and
gain rates, and can thus be either positive or negative, while
Lj=i,p(x,t) are sums of Langevin operators for different kinds
of noise which are uncorrelated from one another [36] and will
be specified below. The solutions of Eqs. (16) and (17) read

ψp(x,t) = f1p(τx)ψp(0,t − τx) − f2(τx)ψi(0,t − τx)

+
∫ τx

0
[f1p(τ1)Lp(x1,t − τ1)

− f2(τ1)Li(x1,t − τ1)]dτ1, (18)
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ψi(x,t) = f1i(τx)ψi(0,t − τx) + f ∗
2 (τx)ψp(0,t − τx)

+
∫ τx

0
[f1i(τ1)Li(x1,t − τ1)

+ f ∗
2 (τ1)Lp(x,t − τ1)]dτ1, (19)

where x1 = x1(τ1) > 0,

x1(τ1) = x − vgτ1,

with τ1 � τx and τx = x/vg � t . The time-dependent coeffi-
cients take the form,

f1p(y) = e−κsy

(
cos (θy) − κD

θ
sin (θy)

)
,

f1i(y) = e−κsy

(
cos (θy) + κD

θ
sin (θy)

)
,

f2(y) = �

θ
e−κsy sin (θy) ,

with θ = (|�|2 − κ2
D)1/2, κD = (κp − κi)/2, and κs =

(κi + κp)/2.
Let us now discuss the noise sources which are accounted

for in the following. These are typically (i) generic losses,
where the p or i photon can simply be absorbed by the
medium, (ii) higher nonlinear optical processes, such as
optical parametric fluorescence (OPF), where an s photon can
generate an i photon and a photon at another wavelength, and
(iii) Raman scattering, in which s photons are converted into
i photons by exchanging phonons with the bulk. While it is
plausible that the first two types of noise can be described by
means of Markovian processes, Raman scattering is instead
known to be non-Markovian. This leads to integro-differential
Heisenberg-Langevin equations, whose solution requires the
knowledge of the corresponding noise spectrum [31]. The
following treatment is restricted to Markovian noise for
convenience. This provides a solution for estimating the
quantities of interest as a function of the noise threshold (it
can be extended to include a full description of Raman noise,
following the lines of Ref. [31]). For these assumptions, the
rates,

κj =
∑
rj

(
κ (+)

rj
− κ (−)

rj

)
,

are the sum of the individual loss (+) and gain (−) rates, where
the label rj refers to the specific process. The corresponding
Langevin forces are Lj (x,t) = ∑

rj
Lrj

(x,t), have mean value
〈Lrj

(x,t)〉 = 0, and the two-point correlations read〈
L
†
r ′
j
(x ′,t ′)Lrj

(x,t)
〉 = κ (−)

rj
δrj ,r

′
j
δ(t − t ′)δ(x − x ′), (20)

〈
Lr ′

j
(x ′,t ′)L†

rj
(x,t)

〉 = κ (+)
rj

δrj ,r
′
j
δ(t − t ′)δ(x − x ′), (21)

where the average is taken over the state of the reservoirs,
which is assumed to be unaffected by the coupling with
the electromagnetic field within the dielectric medium, as
is consistent with the Markov approximation. A microscopic
theory for the coupling between the system and the quantum
reservoirs allows one to establish a relation between the rates
κrj

and the physical parameters determining the process [36].

IV. COHERENCE PROPERTIES OF THE FREQUENCY
CONVERTED PHOTON

The formalism just derived allows one to analytically
determine the state of the outcoming photon, therefore to
theoretically predict the results of homodyne tomography [38].
The level of noise, however, must be calibrated with the noise
measured in the experiment. For this purpose we evaluate
the first- and second-order correlation functions of a train of
single photons which is injected into the χ (2) medium in the
presence of typical noise sources [12,13,18]. We first define the
input state: When reflection at the boundary of the dielectric
medium can be neglected and the photon spectral properties
are within the transmission band of the medium, the field
at x = 0 is proportional to the external incident photon, and
the photon at the output of the dielectrics is proportional
to the propagated solution until x = L [33,34]. The first-
and second-order correlation functions are thus evaluated at
x = L within the dielectric medium, and their values are
plotted using parameters which are compatible with existing
experiments [12,13,18].

A. Input state

Let the input field be a train of single-photon Gaussian
pulses with width in k space �k (hence with coherence length
�x = 1/�k), which propagates from left to right outside the
dielectrics (at x < 0). We fix the repetition rate r = 1/Trep

so that the photons are spatially well separated, vgTrep�k =
vgT /�x � 1. The (non-normalized) input state for t < 0 reads
|�in〉t = ⊗N

j=1�
†
j (t)|vac〉x<0, where |vac〉x<0 is the vacuum

state for the electromagnetic field in the volume at x < 0 and

�
†
j (t) =

∫ 0

−∞
dx

eik
(0)
p (x−jx0−ct)

(
√

π�x)1/2
e
− (x−jx0−ct)2

2�2
x ψ†

p(x), (22)

with x0 = −cTrep < 0 and ψp(x) is the photon field at x < 0
for frequencies within the p band. In this limit operators corre-
sponding to different photon wave packets fulfill the commuta-
tion relation [�j (t),�†

k(t)] = exp[−(j − k)2c2T 2
rep/�

2
k] ≈ δjk

for t � 0. We further assume that the photon spectral properties
are within the transmission band and that the transmission
coefficient is uniform, so that the field inside the dielectric
medium can be assumed to be proportional to the input photon
(note that these assumptions can be lifted, but then one shall
resort to a description in k rather than x representation, as in
Ref. [33]). The input field is the photon field at the boundary
x = 0−, assuming unit transmission.

B. First- and second-order correlation functions
of the frequency-converted field

We now provide some quantities of the frequency converted
field at the other end of the crystal, x = L. Here we analyze the
mean photon number of the field i, the first- and second-order
correlation functions.

The mean number of photons at x = L and time t

ni(L,t) = 〈ψ†
i (L,t)ψi(L,t)〉, (23)
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is evaluated over the input state (22). For the dynamics given
by Eq. (8) it reads

nideal
i (L,t) = sin2(�0τ )np(0,t − τ ), (24)

where τ = L/vg and np(0,t) = 〈ψ†
p(0,t)ψp(0,t)〉 is the mean

photon number per time in the p band at the input. In the
presence of noise, we use operators (19) in Eq. (23) and obtain
the expression,

ni(L,t) = |f2(τ )|2 np(0,t − τ ) + I (L; t,t), (25)

where the second term reads

I (x; t,t + �t)

=
∫ τx

0
dτ1

∫ τx

0
dτ2δ(�t − (τ2 − τ1))δ(x2 − x1)

×
⎛
⎝f ∗

1i(τ1)f1i(τ2)
∑
ri

κ (−)
ri

+ f2(τ1)f ∗
2 (τ2)

∑
rp

κ (−)
rp

⎞
⎠ ,

(26)

where we have used Eqs. (20) and (21). The contribution of
this latter term becomes relevant in the presence of gain. When
the medium is only lossy this term vanishes and the mean
number of photons decreases with the factor pi = |f2(τ )|2.
This factor gives the probability that a photon is generated
by frequency conversion in the i band, which is maximal for
θτ = arctan(θ/κs) and reduces to θτ = π/2 when κ2 � �. In
this limit pi,m = (�0/θ )2 exp(−πκs/θ ).

The first-order correlation function is given by the
expression,

g(1)(L,t,�t) = Re{〈ψ†
i (L,t)ψi(L,t + �t)〉}, (27)

and is here reported in non-normalized form. In the
ideal case it reads g(1)ideal(L,t,�t) = sin2(�0L/vg)g(1)

p (0,t −
τ,�t), where g(1)

p (0,t,�t) = Re{〈ψ†
p(0,t)ψp(0,t + �t)〉} is

the first-order correlation function of the input field. In the
presence of noise, it takes the form,

g(1)(L,t,�t) = g
(1)
0 (L,t,�t) + Re{I (L; t,t + �t)}, (28)

with

g
(1)
0 (L,t,�t) = pig

(1)
p (0,t − τ,�t). (29)

In particular, when the noise is due to losses, the first-order
correlation function is the same as the one of the input photon
(apart for the factor pi multiplying the whole expression).
Its form can change when I (L; t,t + �t) is different from
zero, as it additionally contains the contribution of the photons
generated by noise processes. For the Markovian noise we
choose here, I (L; t,t + �t) vanishes for |�t | > 0.

The non-normalized second-order correlation function is

g(2)(L,t,�t)

= 〈ψ†
i (L,t)ψ†

i (L,t + �t)ψi(L,t + �t)ψi(L,t)〉, (30)

and takes the form,

g(2)(L,t,�t)

= g
(2)
0 (L,t,�t) + 2piRe{〈ψ†

p(0,t)

×ψp(0,t + �t)〉I (L; t + �t,t)}

+pi(np(0,t − τ ) + np(0,t + �t − τ ))I (L; t,t)

+ I (L; t,t + �t)I (L; t + �t,t) + I (L; t,t)2,

where

g
(2)
0 (L,t,�t) = p2

i g
(2)
p (0,t − τ,�t) (31)

and g(2)
p (0,t,�t) = 〈ψ†

p(0,t)ψ†
p(0,t + �t)ψp(0,t +

�t)ψp(0,t)〉. In Eq. (30) we have assumed that the
noise is stationary. When the medium is only lossy, then the
second-order correlation function is the same as the one of
the input photon, except for the overall factor p2

i , which is
the probability that two photons at the input are frequency
converted into two photons in the i band. Noise such that
I �= 0, like OPF and Raman processes, gives rise to additional
terms. One of the overall effects is to reduce the antibunching,
as clearly visible after setting �t = 0 in Eq. (30). For
�t = Trep > τ in particular, the second term on the right-hand
side of Eq. (30) vanishes and antibunching is reduced
by processes arising from the coincidence measurements
between frequency-converted photons and noise photons, as
well as between noise photons.

In order to illustrate these predictions, we apply them to
experimentally relevant situations. We take photonic wave
packets with temporal width of 1 ns and repetition rate
Trep = 107s−1, consistent with [13,18]. In order to minimize
detrimental effects, one would try to minimize the length of
the crystal. For a crystal length of the order of L ∼ 5.3 cm,
we choose �0 = 2π × 0.6 GHz with �0L/vg = π/2, where
we assumed vg ≈ c/2.2. Figure 2 displays ni(t), Eq. (25), as a
function of the crystal length L. The curves compare the ideal
case, Eq. (24), with the case in which 8% losses are present,
and then when also gain processes (due, for instance, to Raman
scattering or optical parametric fluorescence) are present. For
these gain processes we take values of the signal-to-noise
(SNR) ratios which are 20:1 [18] and 100:1 [37], respectively.
The observed increase of the maximum as a function of the

FIG. 2. Photon rate ni(t), in units of max[nideal
i (t)], versus crystal

length L evaluated from Eq. (25) for the input state in Eq. (22) taking
Gaussian wave packets of temporal width 1 ns and repetition rate
107s−1. The crystal length is given in units of the minimal length L0 =
(π/2)vg/�0, for which perfect conversion is expected. The black
solid line corresponds to the photon rate in the ideal case, Eq. (24);
the gray solid line is found when κi = κp = 0.03�0, corresponding
to 8% losses; the gray (black) dotted line is found for 8% losses and
κgain = 0.06�0, corresponding to SNR 100:1 (respectively: κgain =
0.08�0, such that SNR is 20:1).
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FIG. 3. (a) First- and (b) second-order correlation function. The
first-order correlation functions is evaluated using Eq. (28), rescaled
by the maximum of g

(1)
0 , Eq. (29). The second-order correlation

function is calculated from Eq. (30), rescaled by the maximum of
g

(2)
0 , Eq. (31). The parameters and line styles are the same as in

Fig. 2, where we choose �0 = 2π × 0.6 GHz. The width of the noise
photons is here assumed to be of the order of 50 GHz, which is
consistent with the measurement in [18,37].

propagation length is due to noise photons, which are generated
during the propagation time.

Figures 3(a) and 3(b) display the first- and second-order
correlation function as a function of �t for the input state in
Eq. (22). The different curves correspond to different noise
sources and strength. The first-order correlation function has
been rescaled by the probability pi , and is in general unaffected
by losses. Gain gives rise to a contribution about �t = 0,
which corresponds to a peak with the temporal width of an
incoherently generated photon. Inspection in the behavior of

the second-order correlation function shows how antibunching
degrades due to the effect of gain processes, giving rise to a
background noise and a peak at zero-time delay due to the
generation of incoherent photons.

V. CONCLUDING REMARKS

We have presented a model which describes frequency
conversion of a photon field propagating inside a χ (2)medium,
when the medium is continuously pumped by a laser. We have
identified the conditions for which ideal frequency conversion
is achieved. Noise and losses have been introduced within a
Heisenberg-Langevin equation formalism. For simplicity, we
have assumed the noise to be Markovian. The model derived
here can be applied to calculate all coherence properties
of the generated photon, including for modeling quantum
correlations revealed by Franson interferometry [3,39]. Here,
we have used it to determine the first- and second-order
correlation functions of the frequency-converted field, which
are currently measured in experiments dealing with single-
photon frequency conversion.

This theoretical description can be extended to take into
account specific properties once the spectral features of the
noise of the medium is known, as done, for instance, in [31].
In this case the equations should be conveniently cast in k rep-
resentation. One could also consider minimizing detrimental
effects by using a pulsed drive, in the spirit of the work in
Ref. [29]. Here, the frequency spectrum of the pulses could
be so shaped in order to optimize the frequency-conversion
process for a given type of input photon. These ideas can be
integrated with optimal control techniques [40]: Such an ap-
proach could possibly reduce the interaction time, and thereby
detrimental effects which are unavoidable in bulk materials.
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