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Polariton-plasmon coupling and Purcell-Dicke ultraradiance in a slab geometry
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The enhanced cooperative decay rate and the enhanced cooperative Lamb shift from a slab of two-level atoms
placed in between two noble-metal slabs are analyzed within the context of the interacting polariton of the
resonant medium and the metallic plasmon eigenmodes.
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I. INTRODUCTION

Research on super-radiance investigates the enhancement
in the decay rate of a collection of atoms coherently radiating.
For an ensemble of N two-level atoms occupying a region of
space whose dimension is much smaller than the wavelength of
the atomic transition, in a seminal paper [1], Dicke predicted
that the atomic ensemble’s decay rate increases by a factor
of N as compared to that of the isolated atom decay rate.
This paper was extended to arbitrary sample size for different
geometries (see Ref. [2] for a recent review). The expressions
for this cooperative decay rate (CDR) and of the associated
cooperative Lamb shift (CLS) for an ensemble of atoms
in a slab’s geometry was obtained in Ref. [3] and was
experimentally verified in Ref. [4].

The extensive theoretical and experimental work on cavity
electrodynamics (see Ref. [5] for a review) exploring the
enhancement of the radiation rate from an atom in a cavity
was developed based on the seminal work of Purcell [6] who
was the first to investigate the enhancement of the radiative
decay rate of a quantum system when in the close vicinity of
a metallic conductor.

More recently, Friedberg and the author showed that
the above-described physical effects can combine to further
enhance the CDR of two-level atoms in spherical and one-
dimensional geometries [7–9] when the metal plasmonic
resonance frequency is equal to the atomic medium resonance
frequency.

In this paper, I will further examine the Purcell-Dicke
ultraradiance (this term is used to indicate that, in this case, we
have a larger decay rate than that in traditional superradiance)
from a slab of two-level atoms if these were placed between
two noble-metal conductors within the context of the resonant
polariton-plasmon modes coupling between the two-level
medium bare mode with that of the metal bare mode.

The novelties in this paper as compared to our work in
Refs. [7–9] are as follows: (i) Qualitatively, I show the reason
for the existence of a limit on the Purcell enhancement factor
or, equivalently, the reason for the existence of an upper
limit on the ultraradiance cooperative decay rate and the
reason for having the cooperative Lamb shift continuing to
increase its value even after the CDR reached its limit; and (ii)
quantitatively, I compute this CDR limit and the dependence
of the enhanced CLS on the number density of the atomic
medium in the region of saturation of the CDR value.
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In Sec. II, I compute the transfer matrix for the present
configuration. In Sec. III, I compute the transmission am-
plitude through this system as a function of the incident
frequency for different thicknesses of the two-level atom
slab and observe that, essentially, two modes determine the
transmission spectrum. In Sec. IV, I review the Mittag-Leffler
expansion, which is the mathematical tool that relates the
spectral maxima with the eigenmodes of the system. In Sec. V,
I compute the eigenmodes of the combined metal-two-level-
atom system. These give the positions of the transmission
amplitude spectral maxima and their corresponding widths.
In Sec. VI, I relate the maximum of the Purcell enhancement
factor to the ratio of the damping coefficient in the Drude
model of the metal to the CDR of the atoms in the absence
of the metals. I also establish the result that the Purcell effect
enhances the CLS as well. I conclude in Sec. VII.

II. THE TRANSFER MATRIX FOR THE SYSTEM

The system being considered here consists of the following
structures:

Vacuum: z � 0.

Metal: 0 � z � l/2.

Two-level atoms: l/2 � z � l/2 + βl.

Metal: l/2 + βl � z � l + βl.

Vacuum: z � l + βl.

Using Eqs. (3.5) and (3.15) of Ref. [10], the total transfer
matrix for this system is given by

M = M(1) · M(2) · M(3) · M(4) · M(5) · M(6) · M(7), (1)

where

M(1) = MB(k,km) = 1
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FIG. 1. (Color online) The magnitude of the transmission amplitude is plotted as a function of ω. (a) β = 1.680, (b) β = 1.690,
(c) β = 1.696, (d) β = 1.700, and (e) β = 1.710. ω0 = 0.22ωp, C = 10−6 × ωp, γ2 = 2.33 C/4, and ω0 l/c = π/2.
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The matrix element M22 uniquely determines the transmission
coefficient (the ratio of the outgoing field on the right to the
incoming field on the left).

Using the Pauli matrices’ algebra, M can be decomposed
into the Pauli matrices’ basis as follows:

M = �I + [ ϒ cosh(2λ1) + i 
 sinh(2λ1) ]τ 3

+ [
 cosh(2λ1) − iϒ sinh(2λ1)]τ 2, (9a)

where

� = cos(um) cos(uT L) − sin(um) cosh(2λ2) sin(uT L), (9b)

ϒ = i[ sin(um) cos(uT L) + cos(um) cosh(2λ2) sin(uT L) ],

(9c)


 = sinh(2λ2) sin(uT L), (9d)
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The permittivity of the noble metal (silver) is taken to be
modeled by the Drude approximation as deduced from the
Johnson-Christy data [11],

εm(ω) = ε∞ − ω2
p

ω2 + i�ω
, (10)

where

εAg
∞ = 3.7, h̄ωAg

p = 9 eV, h̄�Ag = 17.28 meV.

The permittivity of the two-level atom medium was obtained
in Ref. [3] through a full quantum-mechanical treatment and is
given for the homogeneously broadened system (all Doppler
effects have been neglected in this paper) by

ε(ω) = 1 − C

(ω − ω0 + ωL) + iγT

, (11)

where C = 4πn℘2/h̄, n is the atomic number density, ℘

is defined such that, for a J = 0 → J = 1 transition, the
isolated atom decay rate is given by γ1 = 4

3
℘2k3

0
h̄

, ωL = C
3

is the Lorentz shift, ω0 is the isolated single atom resonant
frequency, including all isolated atom QED corrections, and
γ2 = ( 2.33

4 + i 0.22
3 )C, which represents the effects of the short-

range resonant collisions between the atoms in the binary
approximation.

III. THE TRANSMISSION AMPLITUDE
SPECTRAL DISTRIBUTION

To explore the characteristic features of this system, let us
consider the example of an ensemble of two-level atoms with
isolated atom resonance frequency given by h̄ω0 = 0.22 ×
h̄ωp = 1.98 eV. I choose l to satisfy the relation ω0l/c = π/2
and take h̄C = 9 × 10−6 eV. In Fig. 1, I plot |t | (i.e., the
transmission amplitude; |t |2 is the transmission coefficient)
for different values of β. One notes that:
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FIG. 2. (Color online) (a) The shift from ω0 of the real part and
(b) the imaginary part of the bare complex plasmonic eigenvalue for
the two metallic slabs are plotted as a function of β. (All energies are
in eV.) ω0 = 0.22ωp and ω0l/c = π/2.
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FIG. 3. (Color online) (a) The shift from ω0 of the real part and (b)
the imaginary part of the bare complex polaronic eigenvalue for the
slab of two-level atoms (with no metallic slabs present) are plotted as
a function of β. (All energies are in eV.) ω0 = 0.22ωp, C = 10−6 ×
ωp,γ2 = 2.33 C/4, and ω0 l/c = π/2.

(1) Each of the transmission amplitude curves has two
peaks,

(2) for β < 1.696, the narrower peak is to the left of ω0,
whereas, it is to the right for β > 1.696, and

(3) the narrow peak increases its width as β → 1.696,
whereas, the wider peak decreases its width, until both peaks
have the same width at β ∼= 1.696.

My goal in the rest of this paper is to explore the underlying
physics for the features observed in Fig. 1. I will find that all of
the above features can directly be deduced from the values of
the eigenvalues of this coupled system. These eigenvalues are
those of the coupled plasmon-polariton modes of the combined
metal-two-level-atom system.

It is to be noted that the coupling of the two subsystems
(atoms and metals) is implemented here through imposing
the continuity conditions for the tangential components of the
electric field and the magnetic field at the interfaces. These
boundary conditions are automatically incorporated in the
transfer-matrix formalism.

IV. THE MITTAG-LEFFLER EXPANSION

I start by reviewing the basic mathematical expansion
that would allow one to pursue the above analysis. Now, I
summarize the Mittag-Leffler expansion [12].

Consider an expression of the form

f (u) = 1

(u − ω)q(u)
, (12)

and assume that the function 1/q (u) is meromorphic in the
complex u plane, q(u) has simple zeros at ω̃n, n = 1,2,3, . . . ,

and ω is different from any of these zeros; then the poles of
f (u) are all simple and are located at the zeros of q(u) and
at ω. Now consider a contour at infinity C∞, and the residue
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FIG. 4. (Color online) The shift from ω0 of the real part of the
interacting polariton-plasmon complex eigenvalues are plotted as a
function of β. (All energies are in eV.) ω0 = 0.22ωp, C = 10−6 ×
ωp, γ2 = 2.33 C/4, and ω0 l/c = π/2.
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FIG. 5. (Color online) The imaginary part of the interacting
polariton-plasmon complex eigenvalues are plotted as a function
of β. (All energies are in eV.) ω0 = 0.22ωp, C = 10−6 × ωp, γ2 =
2.33 C/4, and ω0 l/c = π/2.

theorem allows one to write

1

2πi

∮
C∞

1

q(u)(u − ω)
du = 1

q(ω)
+

∞∑
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1
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(13)

The contour integral vanishes if limu→∞ 1
q(u) = 0, and conse-

quently, the ratio 1/q (ω) can be written in the alternative form

1

q(ω)
=

∞∑
n=1

1

q ′(ω̃n)(ω − ω̃n.)
(14)

This expression is known as the Mittag-Leffler expansion,
where the {ω̃n}’s are the complex roots of the complex
expression q(ω) = 0.

The above result leads one to the result that, if a plot of
the function |M22(ω)|−1 has n maxima, this directly implies
that M22(ω) has n roots in the complex plane. Thus, finding
the zeros of M22 = 0, also called the eigenvalues of the
system, takes special importance: The real part of any of these
eigenvalues corresponds to the value of ω at the corresponding
maximum in |t |, and the imaginary part of each of these
eigenvalues approximately gives the width of this maximum
in the |t | vs ω plot.

The reader should take special care not to confuse the
eigenvalues that we will be computing with the poles of
the permittivities. The latter depends only on the materials’
characteristics, whereas, the former are functions of the
materials’ characteristics and the geometry of the system.

V. INTERACTING POLARITON-PLASMON MODES

From Fig. 1, it is clear that the combined interacting
metal-two-level-atom system can be described by two active
modes which are strongly coupled in the range of considered
parameters.
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FIG. 6. The same as in Fig. 4 with all parameters being the same
except that C = 10−5 × ωp . (All energies are in eV.)
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FIG. 7. The same as in Fig. 5 with all parameters being the same
except that C = 10−5 × ωp . (All energies are in eV.)

Consider first each of the bare modes separately, and
characterize them in each of the two following configurations:

(1) isolated two metal slabs (no atoms present) and
(2) isolated ensemble of two-level atoms slab (no metal

present).
In Fig. 2, I plot, for the same parameters as in Fig. 1, both

the shift from ω0 of the real part of the eigenvalue and its
imaginary part as a function of β for the ensemble of atoms
in the absence of the metals. Only the contributions from the
collisional width [2] and from CDR and CLS are present. This
is the bare polariton mode.

In Fig. 3, I plot, for the same parameters as in Fig. 1, both
the shift from ω0 of the real part of the eigenvalue and its
imaginary part as a function of β for the system of the two
metallic slabs in the absence of the atoms. This is the plasmon
mode closest to ω0.

In Figs. 4 and 5, respectively, I plot, for the same parameters
as in Figs. 2 and 3, both the shift from ω0 of the real part of the
eigenvalues and the imaginary part of these same eigenvalues
as a function of β for the two plasmon-polariton interacting
systems.

One notes that for β � 1.696:
(1) mode (i) can be identified with the bare plasmon, and
(2) mode (ii) can be identified with the bare polaron,
whereas, the reverse is true for β � 1.696.

VI. PURCELL ENHANCEMENT FACTOR TO THE CDR

If we define βcrit as the value of β at which

Im[ω̃(1) (βcrit)] = Im[ω̃(2) (βcrit)] (15)

(where the superscript refers to the different modes), the
maximum Purcell enhancement to Dicke’s CDR simply
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FIG. 8. (Color online) The shift at βcrit is plotted as a function of
h̄C. ω0 = 0.22ωp, βcrit

∼= 1.696, γ2 = 2.33 C/4, and ω0 l/c = π/2.
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FIG. 9. (Color online) The magnitude of the transmission am-
plitude is plotted as a function of ω. Solid line: C = 10−6 × ωp

and dashed line: C = 10−5 × ωp at β ∼= βcrit. ω0 = 0.22ωp, β =
1.696, γ2 = 2.33 C/4, and ω0 l/c = π/2.

becomes the ratio,

gPurcell ∼= Im[ω̃(2) (βcrit)]

Im[ω̃(2) (β � β)]
. (16)

I now examine the Purcell enhancement factor as the number
density of the two-level atoms increases. In Fig. 6, I plot the
shift in the real part of the eigenvalues from ω0, and in Fig. 7,
I plot the imaginary part of these eigenvalues for the same
parameters as in Figs. 4 and 5 with only a change in the value
of C. In this case, I take h̄C = 9 × 10−5 eV. One notes that
the value of the width of the eigenvalue at βcrit, the numer-
ator of Eq. (16), approximately equals h̄�/2, only changed
imperceptibly (compare Figs. 5 and 7). This means that the
maximum Purcell enhancement factor has decreased since the
denominator of Eq. (16) has increased by a factor of 10.

Comparing Figs. 4 and 6, one notes that the separation in
frequency between the real part of the two eigenfrequencies
at βcrit has noticeably increased from Fig. 4 to Fig. 6. This
shift increases as

√
C when the value of h̄C is in the range of

9 × 10−6 � h̄C � 18 × 10−4 eV. This Purcell enhancement
to the CLS is discussed here. In Fig. 8, I plot this shift at βcrit

as a function of h̄C.
To verify the above theoretical predictions experimentally,

one may consider measuring the transmission amplitude at
βcrit while varying the density of the two-level atoms and/or
the size of the atomic slab.

As an illustration of what one should expect if one was to
vary the atomic density, in Fig. 9, I plot the magnitude of the
transmission amplitude as a function of the frequency for the
two values of C in Figs. 4 and 5 and that in Figs. 6 and 7 for
β = 1.696. One notes that the obtained traces are in complete
agreement with the predictions of the eigenmode analysis
as summarized in Figs. 4–8 for the parameters specified in
the respective captions. Excellent agreements are as well
obtained when values of C, other than in Fig. 9, are considered
(not shown in the figure).

VII. CONCLUSION

In this paper, I give the physical basis for a fuller
understanding of the previously discussed Purcell-Dicke
effect. This effect, which is observable when the plasmonic
frequency is resonant with the atomic medium polariton
frequency, can enhance the cooperative decay rate of the
radiation from the ensemble of atoms that is sandwiched
between the metallic plates.
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Formulating this problem within the polariton-plasmon
interacting modes picture gives us the means to understand, on
both fundamental and quantitative bases, the reasons for hav-

ing a limit on the Purcell enhancement of the cooperative decay
rate and for having a nonlinear enhancement of the cooperative
Lamb shift at βcrit in the region of saturation of the CDR.
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