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André Xuereb,1,2,* Claudiu Genes,3,4 and Aurélien Dantan5
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We investigate the optomechanical properties of a periodic array of identical scatterers placed inside an optical
cavity and extend our previous results [Xuereb, Genes, and Dantan, Phys. Rev. Lett. 109, 223601 (2012)]. We
show that operating at the points where the array is transmissive results in linear optomechanical coupling
strengths between the cavity field and collective motional modes of the array that may be several orders of
magnitude larger than is possible with an equivalent reflective ensemble. We describe and interpret these effects
in detail and investigate the nature of the scaling laws of the coupling strengths for the different transmissive
points in various regimes.
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The ability to measure and control the motion of massive
mechanical oscillators has progressed dramatically in recent
years [1,2], and several important milestones have been
reached in the field of optomechanics towards bringing this
capability into the quantum regime, including the cooling to
the motional quantum ground state [3–5], the detection of
quantized mechanical motion [6,7], and the observation of
ponderomotive squeezing of light [8,9] or of radiation-pressure
shot noise on a mechanical oscillator [10].

One challenge faced by the current generation of optome-
chanical experiments is that the interaction strength between
a single photon and a single massive mechanical element is
typically very weak. This can be ameliorated by confining
light in wavelength-scale structures [11] or, generically,
counteracted by the use of strong light fields in an optical
resonator to amplify the interaction strength [12], albeit at the
expense of trading off the intrinsically nonlinear nature of the
radiation-pressure interaction (see, however, recent proposals
in Refs. [13,14]). A growing number of theoretical proposals
have contemplated the opposite, a “strong coupling” regime,
where a single photon can affect the motion of the oscillator
significantly, thus giving access to the full quantum nature of
the optomechanical interaction [15–23].

On the other hand, collective effects in optomechanical sys-
tems involving multiple mechanical and electromagnetic field
modes have been discussed in a number of theoretical works, in
connection with, e.g., optomechanical entanglement [24–34],
enhanced displacement sensitivity [35–37], optomechanical
nonlinearities [20,21,38–40], quantum information processing
[41–44], many-body physics [45–49], as well as in a number of
recent experiments [50–56]. Collective optomechanical effects
are also at the heart of cavity optomechanics with cold atomic
ensembles [57].

*Corresponding author: andre.xuereb@um.edu.mt

Motivated by the exploration of such collective optome-
chanical effects, we recently [58] showed that the collective
motion of a periodic array of identical scatterers, when
placed inside a cavity field, can couple very strongly to
the optical field in the configuration where the array is
transmissive, in contrast to the usual reflective optomechanics
approach. The aim of the present work is to present a
detailed exploration of this system in order to highlight the
regimes in which these generic collective effects are seen
and to compare the various possible transmissive operating
points.

This paper is organized as follows. In the next section we
summarize and discuss the tools used to model a periodic array
of N identical elements and show that such an array can be
modeled as a single effective element within the framework
of the transfer matrix theory for one-dimensional scatterers.
Section II discusses the optomechanical properties of such a
generic N -element stack, when placed inside an optical cavity,
in two distinct and opposite regimes: (i) a maximally reflective
stack (Sec. II B) and (ii) a transmissive stack (Sec. II C). In
the second regime we show that the equations of motion for
the system at hand are effectively described by an optical
field interacting with a single collective mechanical mode,
whose profile strongly depends on the transmissive operating
point chosen. The next section discusses this regime in further
detail and explores the scaling of the optomechanical coupling
strength in the transmissive regime with the various system
parameters and the various operating points; we show that
the increase in the optomechanical coupling strength with the
number of scatterers combines with an effect whereby the
linewidth of the cavity resonance is narrowed due to
the presence of the stack to provide an enhancement of the
optomechanical cooperativity by several orders of magnitude
over that of a single element system. A detailed comparison
of the different transmissive points of the system is also
given. Finally, Sec. IV briefly examines the case of absorbing
elements.
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FIG. 1. (Color online) Schematic diagram illustrating the basis of
the model: N scatterers interacting with four running waves; B and
C represent incident fields, A and D outgoing fields. The four field
amplitudes are connected by means of transfer matrices.

I. MODELING AN N-ELEMENT STACK

Throughout this paper we shall restrict ourselves to a
one-dimensional system and use the transfer matrix formalism
to model a periodic N -element array, as illustrated in Fig. 1.
As is well known [59,60], this formalism can treat elements
(“scatterers”) that interact linearly with the electromagnetic
field, no matter the strength of this interaction or whether the
scatterer is lossless or not. Within this formalism, each scatterer
is parametrized by its polarizability ζ , which is real for lossless
scatterers but complex in the presence of absorption. ζ is
related to the amplitude reflectivity r of the element through
the expression

r = iζ

1 − iζ
. (1)

Therefore for a lossless scatterer we have

|r|2 = ζ 2

1 + ζ 2
, (2)

which allows us to link our results to, e.g., those in Ref. [61]
through their Eq. (8). The flexibility afforded by the transfer
matrix formalism allows us to treat ensembles of atoms in
an optical lattice on the same footing as periodic arrays of
macroscopic scattering elements (e.g., arrays of thin dielectric
membranes) in the limit of a one-dimensional scattering
theory. The formal relation between these physical systems
and the transfer matrix formalism, through the parameter ζ ,
was illustrated in the Supplemental Information for Ref. [58].

A. Transfer matrix for N-element stack

We start by discussing the optical properties of a periodic
array of N equally spaced elements, assumed to be identical
to one another and nonabsorbing for the time being. Each
element is assumed to have a small thickness compared to the
wavelength of the light in question, as explained in further
detail in the Supplemental Information for Ref. [58]. At this
point we make no distinction between arrays of membranes
and arrays of atoms in an optical lattice; the following
formalism holds identically for either case.

The optical properties of the array will be determined
entirely by the number of elements, the distance d between
pairs of elements in the array, and the polarizability ζ of each
element. A real ζ captures the fact that there is no absorption
in the elements; this requirement will be lifted later on. As
a first step, we recall the matrix relating the electromagnetic
fields interacting with a single element [59],

Mm(ζ ) ≡
[

1 + iζ iζ

−iζ 1 − iζ

]
. (3)

To describe our array we also need the effect of free-space
propagation of a monochromatic beam of wavelength λ =
2π/k over a distance d,

Mp(d) ≡
[

eikd 0
0 e−ikd

]
. (4)

Crucially, both Mm(ζ ) and Mp(d) have a unit determinant.
These matrices relate forward- and backward-propagating
electromagnetic waves on either side of the element:(

A

B

)
= M

(
C

D

)
, (5)

with A and C being the (complex) amplitudes of the backward-
propagating waves, and similarly B and D the amplitudes
of the forward-propagating waves. Figure 1 illustrates the
situation we wish to describe. The transfer matrix of the array
can be written as a product of the form

Mm(ζ )Mp(d)Mm(ζ ) · · · Mm(ζ ) , (6)

where Mm(ζ ) appears N times (i.e., once for each element).
We now define a matrix M such that

Mp(d/2)Mm(ζ )Mp(d) · · · Mm(ζ )Mp(d/2)

= [Mp(d/2)Mm(ζ )Mp(d/2)]N ≡ MN . (7)

Evaluating the product explicitly, M can be written as

M ≡
[

(1 + iζ )eikd iζ

−iζ (1 − iζ )e−ikd

]
. (8)

Once again, it is apparent that M has a unit determinant. This
property is crucial, for it allows us to write [62], for the case
of real ζ ,

MN =
[

(1 + iχ )ei(kd+μ) iχ

−iχ (1 − iχ )e−i(kd+μ)

]
, (9)

where χ ≡ ζUN−1(a), with Un(x) being the nth Chebyshev
polynomial of the second kind, a = cos(kd) − ζ sin(kd), and

eiμ = 1 − iζUN−1(a)

(1 − iζ )UN−1(a) − eikdUN−2(a)
. (10)

The matrix MN has an extra “padding” of d/2 on either side.
We remove this padding to obtain, finally, the transfer matrix
describing the N -element array:

MN ≡ Mp[μ/(2k)]Mm(χ )Mp[μ/(2k)] . (11)

What is remarkable about MN is that the N (lossless) elements
behave as a single collective “superelement” of polarizability
χ , supplemented with a “padding” equivalent to a phase shift
of μ/2 on either side of the array. This fact not only aids
interpretation of the optical properties of the stack, but also
simplifies the algebra involved considerably.

Generically, the transfer matrix of any optical system can
be related to the (amplitude) transmissivity and reflectivity of
that same system. For concreteness, let us suppose that the
system at hand can be described by a transfer matrix of the
form [

m11 m12

m21 m22

]
, (12)
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FIG. 2. (Color online) Optical properties of a stack of N = 6
nonabsorbing elements. The intensity reflectivity of the stack (blue
curve) varies strongly, from 0% to about 99%, as the distance between
the elements is scanned; this curve is periodic with a period of λ/2.
By way of comparison, we show the corresponding reflectivity for
a single element as the dotted green line. We mark three important
values of d in this figure: d = d1 and d = d5, where the reflectivity
is zero, and d = d0, where the reflectivity attains its largest value.

where the four entries are determined by the optical properties
of the system at hand. The complex transmissivity of the
system can then be written down as

T = 1

m22
. (13)

Correspondingly, its reflectivity is

R = m12

m22
. (14)

These quantities are used throughout this paper to char-
acterize the optical properties of our system. A plot of the
intensity reflectivity of a lossless six-element ensemble as the
spacing between pairs of elements is varied is shown in Fig. 2.
Note that despite each element having a reflectivity of 20%,
the reflectivity of the entire ensemble ranges from 0% (e.g., at
d = d1) to about 99% (at d = d0). Moreover, an ensemble of
N elements possesses N − 1 points dl (l = 1, . . . ,N − 1) at
which the transmission is zero; in the figure we label only the
outermost two of these points, d1 and d5. Unlike a standard
distributed Bragg reflector, rather than choosing the ratio of the
refractive indices between the two dielectrics making up the
structure (one of the dielectrics being vacuum in our case), we
control the optical path length of the vacuum layers through
d. In our structure, therefore, the thickness of the elements is
completely decoupled from the value of d.

II. OPTOMECHANICS OF A PERIODIC
ARRAY OF SCATTERERS

Our next task is to place the array just described inside a
near-resonant optical cavity. The interaction of the array with
the cavity field will shift the resonances of the main cavity.
As is usual in optomechanics, we assume that each element
in the array is harmonically trapped and are interested in one
particular figure of merit: the coupling strength, defined as
the frequency shift incurred by the cavity resonance when the
array undergoes a displacement equal to the size of the relevant
zero-point fluctuations. As a yardstick we shall use the quantity

g ≡ 2ωcxzpt

L
, (15)

FIG. 3. (Color online) A schematic drawing of the generic system
we are considering. A periodic array of N elements, each of which
is independently harmonically bound, is positioned at, or very close
to, the center of a Fabry-Pérot resonator. Throughout this paper, we
shall consider only the case for which L � Nd .

which is the optomechanical coupling strength for a perfectly
reflective mirror near the center of a cavity of length L

and resonant frequency ωc [63]. The size of the zero-point
fluctuations of each element is denoted by xzpt = √

h̄/(mωm),
where m is the effective mass of the element and ωm its
oscillation frequency.

A. Element stack inside a cavity

Figure 3 illustrates schematically the periodic element array
placed inside a Fabry-Pérot cavity of length L, assumed
much longer than the array (L � Nd). The transfer matrix
describing this system is then

Mcav ≡ Mm(Z)Mp(L/2 + x)MNMp(L/2 − x)Mm(Z) .

(16)

Here x is the displacement of the ensemble with respect to its
position at the center of the cavity and Z is the polarizability of
the cavity mirrors, assumed equal for both. For good, lossless
cavity mirrors (|Z| � 1), the finesse of the cavity may be
simply written F = π |Z|√Z2 + 1 [64]. The transmission of
the system, following Eq. (13), is given by

Tcav = 1

(Mcav)22
, (17)

where the maxima of Tcav give the resonances of this system.
In order to find these resonances analytically, we consider a
simpler system where the cavity mirrors are perfect; we need
only solve the relation(

1
−1

)
∝

[
eiθ 0
0 e−iθ

][
1 + iχ iχ

−iχ 1 − iχ

]

×
[

eiφ 0
0 e−iφ

](
1

−1

)
, (18)

with θ ≡ k(L/2 + x) + μ/2 and φ ≡ k(L/2 − x) + μ/2. We
thus obtain

eikL = e−iμ

1 + iχ
[iχ cos(2kx) ±

√
1 + χ2 sin2(2kx)]. (19)

However, we immediately see that this equation is transcen-
dental in k, and therefore cannot be solved analytically; this
equation is easily solvable for L, however, given a fixed
operating wavelength.

B. Center-of-mass coupling: Reflective optomechanics

It is now a legitimate question to ask, if d (or x) shifts
by a small amount, how much will the resonant frequency
of this cavity shift? This question is easily answered by
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expanding Eq. (19) in small increments about its solution.
Assuming a dominantly linear effect, we replace k → k + δk,
x → x + δx, χ → χ + δχ , and μ → μ + δμ in Eq. (19).
Around resonance, the result simplifies to

Lδk + δμ = [−1 ± cos(2kx)/
√

1 + χ2 sin2(2kx)]

× δχ/(1 + χ2)

∓ [2χ sin (2kx)/
√

1 + χ2 sin2(2kx)]

× (xδk + kδx) . (20)

For the rest of this section we shall consider the center-of-
mass motion of the ensemble and use Eq. (20) to compute
the optomechanical coupling strength. For such a uniform
displacement, ∂μ = ∂χ = 0, and we assume that |L/x| is very
large, such that we can write

Lδk = ∓[2χ sin(2kx)/
√

1 + χ2 sin2(2kx)]kδx . (21)

The right-hand side of this equation is maximized when
sin(2kx) = ∓1, whereby

Lδk = 2k(−χ/
√

1 + χ2)δx . (22)

This is, in absolute value, a monotonically increasing func-
tion of |χ | and is therefore maximized when χ attains its largest
value, χ0 ≡ ζ UN−1(

√
1 + ζ 2) = −i sin[N cos−1(

√
1 + ζ 2)].

The ensemble attains this reflectivity for when kd = kd0 ≡
− tan−1(ζ ) (see Fig. 2). The resulting coupling strength can
then be shown to be

gcom = g
√
R/N , (23)

where R = χ2
0 /(1 + χ2

0 ). The factor of 1/
√

N that is intro-
duced into this expression has a natural explanation: The
motional mass of N elements is Nm, and therefore the scale
of the zero-point fluctuations is xzpt/

√
N . We can draw two

immediate conclusions regarding gcom: (i) gcom � g, and (ii)
gcom is optimized for R → 1. A plot of the transmission
spectrum of a cavity with a six-element ensemble inside it
is shown in Fig. 4 as the position of the ensemble is varied.
The gradient of the bright curves at each point gives directly
the linear optomechanical coupling strength at that point.
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FIG. 4. (Color online) Transmission through a cavity with N = 6
immobile elements configured for maximal reflectivity. The dashed
lines denote the bare-cavity resonances, which are shifted due to
the presence of the ensemble. x is normalized by a factor

√
N ,

such that the gradient of the bright curves directly gives the linear
optomechanical coupling at that point (ζ = −0.5, L ≈ 6.3 × 104λ,
d = d1, bare-cavity finesse ≈ 3 × 104, corresponding to cavity-
mirror reflectivities of 99.99%).

The essential aim of this paper is to outline a mechanism
[58] whereby coupling strengths much larger than g can be
obtained, despite keeping ωc and L fixed. To do this, we shall
now explore the coupling strength to the motion of individual
elements rather than to the ensemble as a whole.

C. Coupling to each individual element
in the transmissive regime

Just as the ensemble attains its peak reflectivity for d = d0,
we can see from Fig. 2 that its reflectivity is zero at d = dl ,
where each dl (for real ζ ), for l = 1, . . . ,N − 1 is defined,
modulo λ/2, by

dl ≡ 1

k
{cos−1[cos(lπ/N )/

√
1 + ζ 2] − tan−1(ζ )} . (24)

We now work with one such interelement separation and obtain
the optomechanical coupling strength, i.e., the shift in cavity
resonance frequency due to the motion of each element in
the ensemble. To allow one element, say the j th, to move
independently of the rest of the ensemble, we conceptually
split the ensemble into three sections: the elements to the “left”
of j , the j th element itself, and the elements to the “right” of
j . With this logic, the matrix MN representing the ensemble
can be written, for 1 � j � N ,[

eiμ1/2 0

0 e−iμ1/2

][
1 + iχ1 iχ1

−iχ1 1 − iχ1

]

×
[

ei(μ1/2+ν+kδxj ) 0

0 e−i(μ1/2+ν+kδxj )

]

×
[

1 + iζ iζ

−iζ 1 − iζ

][
ei(μ2/2+ν−kδxj ) 0

0 e−i(μ2/2+ν−kδxj )

]

×
[

1 + iχ2 iχ2

−iχ2 1 − iχ2

][
eiμ2/2 0

0 e−iμ2/2

]
, (25)

where ν = kdl , μ1, and χ1 describe the ensemble formed by
the n1 = j − 1 membranes to the “left” of the j th, and μ2

and χ2 the one formed by the n2 = N − j membranes to its
“right.” The displacement of the j th element is denoted δxj ;
all other membranes are in their equilibrium position. This
small displacement shifts the resonance frequency of the cavity
ω → ω − g

(l)
j δxj , defining g

(l)
j as the optomechanical coupling

strength for the j th element when d = dl . In the transmissive
regime, to lowest order in kδxj in each entry, the matrix product
above can be written, with the above choice for ν,[

eiμ + α δxj β δxj

β∗ δxj e−iμ + α∗ δxj

]
, (26)

where α and β are increments of first order in the relevant
displacement. [Note that the (off-)diagonal terms are complex
conjugates of each other; this is different to the case where
absorption is nonzero.] When this matrix is substituted into
the equation for the resonance condition, the terms involving
Re{e−iμα} and Re{β} drop out entirely for a symmetric system,
such that it suffices to consider only the imaginary part of the
increment. Let us reiterate that this happens only because the
off-diagonal terms are complex conjugates of each other; were
absorption to be nonzero, this would no longer be the case.
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Equation (20) now simplifies to

∂k

∂δxj

= − Im{β + e−iμα}
L + 2d

∂χ

∂ν

, (27)

with

α = 2ikζ [eiμ1 (1 + iχ1)χ2 − eiμ2χ1(1 + iχ2)] (28)

and

β = 2kζ [χ1χ2 − (1 + iχ1)(1 − iχ2)ei(μ1−μ2)] , (29)

which we can rewrite by expressing χ1,2 and μ1,2 in terms of
Chebyshev polynomials, as

α = 2ikζ 2

[
(1 + ζ 2)U 2

n1−1(a)Un2−1(a)

(1 − iζ )Un1−1(a) − eiνUn1−2(a)

− (1 + ζ 2)U 2
n2−1(a)Un1−1(a)

(1 − iζ )Un2−1(a) − eiνUn2−2(a)

]
(30)

and

β = 2kζ

{
ζ 2Un1−1(a)Un2−1(a) − [

1 + ζ 2U 2
n1−1(a)

]
× (1 − iζ )Un2−1(a) − eiνUn2−2(a)

(1 − iζ )Un1−1(a) − eiνUn1−2(a)

}
. (31)

When d = dl , one can show that these two expressions
simplify considerably to yield

Im{β + e−iμα} ∝ sin

(
2lπ

j − 1
2

N

)
. (32)

This means that the individual membrane linear optomechan-
ical couplings for the lth transmissive point have a sinusoidal
dependence with respect to their position in the array:

g
(l)
j ∝ sin

(
2lπ

j − 1
2

N

)
. (33)

We illustrate the “profiles” of the g
(l)
j for N = 6 in Fig. 5. As

we shall show below, the coupling of the collective motion of
the membranes to the cavity field close to the lth transmission
point is governed by the constant

g(l)
sin ≡

√√√√ N∑
j=1

(
g

(l)
j

)2
. (34)

Plots of the type of Fig. 6, similarly to Fig. 4 but shown
here for the five sinusoidal modes that can be excited in an
ensemble with N = 6, can be used to numerically extract g(l)

sin
by measuring the gradient of the bright curves. Such data agree
very well with the analytic results derived below.

D. Collective motional-mode treatment:
Heisenberg-Langevin formalism

In the preceding section we derived coupling constants g
(l)
j

that relate the motion of the j th element to the resonance
frequency of the cavity at the lth transmission point. A
particular feature of multielement arrays is that the cavity
field couples to a collective motion of the elements, with g

(l)
j

playing the role of choosing the “profile” of the mode that
is coupled to the cavity field, in the spirit of Fig. 5. To see
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FIG. 5. (Color online) Individual coupling strengths for the case
of six elements (l = 1, . . . ,5, top to bottom); the dashed curves are
drawn as guides to the eye.

this, let us describe the motion of the j th mechanical element
(1 � j � N ) through the annihilation operator b̂

(l)
j , which

obeys the Heisenberg-Langevin equation of motion [65,66]:

d
dt

b̂
(l)
j = −(iωm + �)b̂(l)

j + F̂
(l)
j +

√
2�ξ̂

(l)
j , (35)

where ξ̂
(l)
j is the relevant Langevin noise term whose properties

we leave unspecified. For simplicity, we assume that all the
oscillators have identical oscillation frequency ωm, decay
rate �, and temperature T , such that in thermal equilibrium
they all have the same average occupation. F̂

(l)
j = g

(l)
j F̂ (l) is
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FIG. 6. (Color online) Transmission through a cavity with N = 6
immobile elements close to the five transmission points; from top
to bottom, the figures depict l = 1 to l = 5. This figure should be
compared to Fig. 4. x is normalized by a factor

√
N/2. (Parameters

as in Fig. 4.)

a force term due to the action of the cavity, whose exact form
is not relevant here. To describe the collective motion, we use
the vector (g̃(l)

j ≡ g
(l)
j /g(l)

sin)j , which is naturally normalized

such that
∑N

j=1 (g̃(l)
j )2 = 1, and define b̂(l) ≡ ∑N

j=1 g̃
(l)
j b̂

(l)
j

and ξ̂ (l) ≡ ∑N
j=1 g̃

(l)
j ξ̂

(l)
j . Thus

d
dt

b̂(l) = −(iωm + �)b̂(l) + g(l)
sinF̂

(l) +
√

2�ξ̂ (l) . (36)

Under the assumption that the noise terms ξ̂
(l)
j are of a

similar nature to one another and are independent (i.e., any

cross-correlator between ξ̂
(l)
i and ξ̂

(l)
j is zero for i 	= j ), then

ξ̂ (l) obeys the same correlation functions as each individual
noise term, because of the normalization of (g̃(l)

j )j , whereupon

b̂(l) behaves as a single collective oscillator with decay rate
�. Let us remark at this point that our description in terms
of this collective mode is one where we merely rotate to a
different basis for this N -dimensional space, and therefore
the correct normalization, necessary for the rotation to be a
unitary operation, is indeed

∑N
j=1 (g̃(l)

j )2 = 1. Therefore the
dynamics of the cavity-mechanical system can be described
entirely through an optomechanical Hamiltonian connecting
a single-cavity mode to a single collective mechanical mode
with coupling strength g(l)

sin, mechanical frequency ωm, decay
rate �, and noise operator ξ̂ (l).

In the next section we investigate some properties of this
coupling strength g(l)

sin and draw general conclusions regarding
the optomechanical coupling of a transmissive ensemble.

III. TRANSMISSIVE OPTOMECHANICS

Thus far we have derived an expression for the coupling
strength of a cavity field to a periodic array of elements
whose compound reflectivity is zero at the cavity frequency.
In this section we shall derive analytical expressions for
the resulting collective optomechanical coupling for the two
outermost transmission points l = 1,N − 1. We shall then
proceed to discuss one further important consequence of this
collective coupling: a linewidth-narrowing effect where the
effective linewidth of the cavity resonance decreases over its
“bare” value as the number of elements, or their reflectivity, is
increased. We will then proceed with an investigation of these
effects for the other transmission points.

A. Enhanced optomechanical coupling

As discussed above, the coupling of the collective motion of
the membranes to the cavity field close to the lth transmission
point is governed by the constant g(l)

sin. Setting l = 1 (essentially
the same results will be obtained for l = N − 1), one can show
that when ζ < 0,

g
(1)
j = −2ωcx0

ζ csc
(

π
N

)[√
sin2

(
π
N

) + ζ 2 − ζ
]

L − 2Ndζ csc2
(

π
N

)√
sin2

(
π
N

) + ζ 2

× sin

(
2π

j − 1
2

N

)
, (37)

which for N = 2 yields

g(1)
sin = −g

√
2 ζ (

√
1 + ζ 2 − ζ )

1 − 4 d
L
ζ
√

1 + ζ 2
, (38)

and for N > 2

g(1)
sin = −g

√
N

2

ζ csc
(

π
N

)[√
sin2

(
π
N

) + ζ 2 − ζ
]

1 − 2N d
L
ζ csc2

(
π
N

)√
sin2

(
π
N

) + ζ 2
. (39)
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These two expressions do not agree upon setting N = 2 in the
latter; this anomaly is due to the relation√√√√ N∑

j=1

sin2

(
2π

j − 1
2

N

)
=

{√
2 for N = 2√
N
2 for N > 2

. (40)

The first thing we note is the fact that gsin is no longer bounded
above by g. Indeed, for large N and |ζ | but small d/L, the
expression (39) for g(1)

sin simplifies considerably to yield

g(1)
sin = g

√
2

π
ζ 2N3/2

1 + 2
π2

d
L
ζ 2N3

≈
√

2

π
g ζ 2N3/2 . (41)

We shall provide numerical examples later to show that g(1)
sin can

be orders of magnitude larger than g. To explore the scaling
of g(1)

sin/g with N , we begin by considering a very long cavity
(L ≫ d) and approximate the denominator of Eq. (39) by 1,
obtaining

g(1)
sin =

√
N/2g|ζ |[

√
1 + (Nζ/π )2 − (Nζ/π )] , (42)

for large N . One can now distinguish between two cases: (i)
(N |ζ |/π ) 
 1: g(1)

sin/g = |ζ |√N/2, yielding the
√

N scaling
observed in, e.g., atom-cavity optomechanics experiments
[67–70] that involve large ensembles of very low reflectivity
scatterers. The coupling strength is also multiplied by a factor
of |ζ |, which amplifies the interaction when |ζ | > 1; both
these features represent a markedly different behavior from
the reflective regime. (ii) (N |ζ |/π ) � 1, which gives the N3/2

and ζ 2 scaling shown in Eq. (41). This scaling with N3/2 is
a consequence of the modification of the field mode profile
inside the cavity. Indeed, as N increases the fraction of the
energy density per photon inside the array increases strongly;
an increased optomechanical coupling strength is consistent
with this increase of energy density [71]. The former case,
on the other hand, corresponds to an essentially unperturbed
cavity field mode, where there is no such concentration of
energy density, and a weaker scaling with N is therefore
observed.

Similarly, in the behavior of g(1)
sin/g as a function ζ for N = 2

and in the same “long cavity” limit, one can distinguish be-
tween two regimes [cf. Eq. (38), setting the denominator to 1].
For |ζ | 
 1, g(1)

sin/g grows linearly with |ζ | as a consequence
of the increased reflectivity of each element. For |ζ | � 1,
however, the cavity field mode is modified substantially and is
strongly concentrated in the region between the two elements.
This concentration grows quickly as a function of |ζ | and gives
rise to a quadratic scaling of g(1)

sin/g with |ζ |.
The denominator in the full form of Eq. (41) can be

interpreted as an effective renormalization of the cavity length
from L to

L
(1)
eff ≡ L − 2Ndζ csc2

(
π

N

)√
sin2

(
π

N

)
+ ζ 2 ; (43)

in the same regime as for Eq. (41), L
(1)
eff ≈ L + 2

π2 dζ 2N3.
We shall discuss the regime in which the effective length is
significantly larger than L, where an interesting linewidth-
narrowing effect occurs, in greater detail in Sec. III B below.
We have already seen that for N , |ζ |, and d/L small enough
that L

(1)
eff ≈ L the coupling strength scales as ζ 2N3/2. On the

other hand, when the parameters are such that L
(1)
eff � L, g(1)

sin
does not depend on ζ and decreases as N−3/2. We say that, in
transitioning between the two scaling laws, gsin saturates (i.e.,
reaches a maximum value at some finite value for N ) before it
starts decreasing.

Optimizing g(1)
sin over N for arbitrary L/d, in this manner,

we obtain g
(1)
opt = 1

2g
√

L/d|ζ |. This expression is valid for |ζ |
that is not too large, since the optimal number of elements
must be > 2. This favorable scaling with both N and |ζ |
is a significant improvement over the state of the art. Close
inspection reveals that g

(1)
opt is proportional to 1

/√
Ld and

therefore can be improved either by making the main cavity
smaller (i.e., decreasing L) or, independently, by positioning
the elements closer together (decreasing d to a smaller value
while maintaining the condition of zero reflectivity).

Alternatively, one may optimize the parameters such that
the second term in the denominator of Eq. (41) dominates,
i.e., where L

(1)
eff � L. The coupling strength then takes the

approximate form

π√
2

g
L

d
N−3/2 −−−→

N=2

π
2 gsm , (44)

where we have taken the optimal (N = 2) case and defined
gsm ≡ ωcxzpt/d as the optomechanical coupling strength for
a (small) cavity of length d with a single moving mirror. In
this regime, therefore, the system acts as a small cavity of
length d and is sensitive to relative motion between the two
elements but not to the length of the main cavity. Figure 7
illustrates, primarily, the enhancement of optomechanical
coupling strength that can be obtained by operating in the
transmissive regime as compared to coupling to the center-
of-mass motion. Several important observations can be made
from this figure. The largest value for g(1)

sin increases with |ζ |;
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FIG. 7. (Color online) Collective coupling strength g(1)
sin (blue

circles, closed red squares, orange triangles) for a cavity of length L ≈
6.3 × 104λ and several choices of scatterer reflectivity, compared
to the center-of-mass coupling strength gcom (open red squares)
and g (green line). For the red, orange, and blue data points we
choose a per-element intensity reflectivity of 20%, 50%, and 99.4%,
respectively. For the center-of-mass data we illustrate the N−1/2

scaling law that applies for large N , whereas for the first sinusoidal
mode we draw a curve through the data points as a guide to the eye.
Throughout this plot we take d = d1, except for the data denoted by
the open blue circles, for which d = d1 + 20λ.
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FIG. 8. (Color online) (a) Optimal number of elements N
(1)
opt as a

function of the single-element reflectivity. For reflectivities close to
100%, this number decreases rather quickly to �10. (b) The coupling
of the first sinusoidal mode, normalized to g, optimized as N = N

(1)
opt

(solid blue curve), compared to the case for N = 2 (dashed-dotted
red) and gcom (dotted orange). For these plots we used L ≈ 6.3 × 104λ

and d = d1.

in the figure we show data points for ζ = −0.5 (20% intensity
reflectivity; red data marked with squares), ζ = −1.0 (50%;
orange, triangles), and ζ = −12.9 (99.4%; blue, circles),
the first two of which represent a typical reflectivity for
SiN membranes used for optomechanical experiments [72],
and the last membranes with increased reflectivity due to
the use of subwavelength patterning [73,74]. Secondly, the
value of N for which the coupling strength is optimized
is highly dependent on the value of d; the reflectivity of
the array depends on d mod (λ/2), so that one is free to
increase the element spacing by integer multiples of half a
wavelength without affecting its transmission properties (in the
limit of a wavelength-independent reflectivity). However, the
coupling strength is sensitive to this increase: the larger d/L

is, the earlier the saturation point is reached, beyond which
increasing N lowers the coupling strength. The figure also
illustrates two scaling laws that we derived above. The center-
of-mass coupling decreases, for N � 3, as N−1/2, whereas the
sinusoidal coupling strength g(1)

sin scales approximately as N3/2

for N large enough, but also small enough to avoid the effects
of saturation. These two scaling laws are illustrated by the
red dotted curves, drawn as guides to the eye. By contrast,
the other curves and all the data points are generated using the
full analytical formulas, which are in excellent agreement with
numeric calculations.

In Fig. 8 we study (a) the optimal number of elements
required for l = 1, N

(1)
opt, and (b) the resulting coupling as a

function of the polarizability of each element in the array.
For weakly reflective elements, as illustrated in Fig. 8(a), the
coupling only saturates for very large values of N , whereas as

the reflectivity of the elements increases the optimal number
of elements decreases, at first steadily and then quite sharply,
until it reaches a point where the coupling strength decreases
for N > 2. This curve is sensitive to the ratio d/L; smaller
values of this ratio result in larger values for N

(1)
opt. In panel

(b) we illustrate the optimized sinusoidal coupling strength
(solid blue curve), as well as the coupling strength for N = 2
(dashed-dotted red) and the center-of-mass coupling (dotted
orange). Two immediate observations can be made that are
quite general. First, g(1)

sin may exceed gcom by several orders of
magnitude. Second, in the case of weakly reflective elements,
it is necessary to use rather large values for N to achieve this
orders-of-magnitude improvement in coupling strength.

B. Linewidth narrowing

The saturation phenomenon described above reveals an-
other interesting effect as the number of elements is increased
beyond N

(1)
opt: the presence of the array inside the cavity acts to

narrow the cavity linewidth. The physical basis behind this is
rather transparent and relies on two observations. First, the fact
that the array is transparent at the cavity resonance frequency
means that the finesse of the cavity, which is related to the
number of round-trips a photon makes inside the cavity on
average, is unchanged by its presence. The second observation
is that, as we have already noted, Eq. (41) reveals that the cavity
is effectively lengthened to a length L

(1)
eff . Since the bare-cavity

linewidth is κc ∝ 1/(FL), it follows that the linewidth of the
cavity is reduced to κ

(1)
eff ∝ 1/(FL

(1)
eff ). By choosing the right

parameters, one can optimize for this linewidth-narrowing
effect, Fig. 9(b), to narrow the optical resonance substantially.
As several mechanisms in optomechanics, e.g., cooling in the
linearized regime, are improved in the so-called “resolved
sideband” regime, where ωm � κc, the collective mechanism
we describe can result in the condition κc > ωm � κ

(1)
eff

being satisfied, thereby improving the performance of these
mechanisms in the system.

One other figure of merit that is relevant to several
mechanisms is the cooperativity C = g2/(κ�), i.e., the ratio
of the square of the optomechanical coupling strength to
the product of the optical and mechanical decay rates, κ

and �, respectively. For a multielement system composed
of independent oscillators and operating in the transmissive
regime, � is independent of N , but g(1)

sin ∼ N3/2 and κc ∼ N3 in
the appropriate regime; this is illustrated in Figs. 9(a) and 9(b).
The result is a competition between these two factors, yielding
a constant cooperativity as N is increased. In Fig. 9(c) we plot
the normalized cooperativity, i.e., the cooperativity for the
N -element ensemble divided by that for a single element; the
enhancement obtained with the parameters used is of almost
107. Even when absorption is included, an enhancement of
several orders of magnitude is still possible [58].

C. Other transmission points

Let us now turn to the other transmissive points, indexed
by 1 � l � N − 1. Analytical expressions for the coupling
strength at transmission points other than l = 1,N − 1 could
not be derived easily. Within the numerical precision of our
simulations, however, we found excellent agreement with the
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FIG. 9. (Color online) (a) Coupling strength g(1)
sin , normalized to

g, as a function of the number of elements. Four sets of data are
shown. The red diamonds (blue circles) correspond to a single-
element reflectivity of 20% (99.4%). Closed (open) symbols represent
an interelement spacing of d = d1 (d = d1 + 20λ). We note that
the interelement separation has a much stronger effect for highly
reflective elements (L ≈ 6.3 × 104λ, bare-cavity finesse ≈3 × 104).
(b) A similar plot showing the effective cavity linewidth, normalized
to the bare-cavity linewidth, obtained in each of the cases displayed
in the upper plot. (c) Putting these two together, we can calculate
the cooperativity, normalized to the single-element cooperativity, and
demonstrate an enhancement by several orders of magnitude for the
chosen parameters.

expressions (N > 2)

g(l)
sin = −NN,lg

ζ csc
(

lπ
N

)[√
sin2

(
lπ
N

) + ζ 2 − ζ
]

1 − 2N d
L
ζ csc2

(
lπ
N

)√
sin2

(
lπ
N

) + ζ 2
, (45)

where

NN,l =
{√

N
2 for N 	= 2l√
N for N = 2l

, (46)

thereby yielding an effective length

L
(l)
eff ≡ L − 2Ndζ csc2

(
lπ

N

)√
sin2

(
lπ

N

)
+ ζ 2 . (47)
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FIG. 10. (Color online) Coupling strength g(l)
sin, normalized to g, as

a function of ζ , for N = 6. Three curves are shown: d = d1 (solid red),
d = d2 (dashed green), and d = d3 (dotted orange) (L ≈ 6.3 × 104λ,
bare-cavity finesse ≈3 × 104).

The effective linewidth of the system can then be written as

κ
(l)
eff = c

2L
(l)
eff

1

|Z|√Z2 + 1
. (48)

We can use these expressions, confirmed fully by numerical
simulations, to analyze the behavior of the coupling strength
and cooperativity at the different transmission points.

Figure 10 illustrates how the coupling strength of each
mode increases as the single-element reflectivity is increased.
We note that two of the three depicted curves are degenerate,
in the sense that the curve for l = 4 (not shown) coincides
with that for l = 3, and that for l = 5 (not shown) with l = 2.
Similar observations hold for different N , where (N − 1)/2
(if N is even) or N/2 − 1 (if N is odd) curves are twofold
degenerate. The order of the respective curves is determined by
the parameter d/L. This shows that the scaling of the coupling
strength with ζ is essentially the same for all the transmission
points.

Let us now examine the scaling with the number of
elements for a fixed single-element polarizability. The col-
lective coupling strengths, the effective linewidths, and the
resulting normalized cooperativities are shown for various
transmission points d = D + dl in Fig. 11 (D = 0λ) and
Fig. 12 (D = 20λ). When linewidth-narrowing effects are
weak, as in Fig. 11, the coupling strength of the inner trans-
mission points (1 < l < N − 1) is smaller and saturates more
slowly than that of the outer ones (l = 1,N − 1) as N increases
[see Fig. 11(a)]. This is due to the fact that the effective
cavity length is smaller for these modes, as confirmed by
Fig. 11(b). When linewidth-narrowing effects are more pro-
nounced (Fig. 12) this situation can be reversed: the coupling
can be stronger for the inner transmission points than for the
outer ones. The normalized cooperativity, however, remains
largest for the outer transmission points in most such cases.

One notable feature in these curves is a local maximum,
occurring when N = 2l. A close inspection reveals that these
modes are precisely the (only) ones where the direction of
motion of the elements alternates, as shown explicitly in the
profile for N = 6 and l = 3 in Fig. 5. Mathematically, the
feature that gives rise to this anomalous coupling strength
is analogous to that pointed out in Eq. (40) for l = 1. Our
investigation therefore reveals that the excitation of such
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FIG. 11. (Color online) (a) Coupling strength g(l)
sin, normalized to

g; (b) effective linewidth, normalized to the bare-cavity linewidth;
and (c) cooperativity, normalized to the single-element cooperativity,
all plotted as functions of N , for ζ = −12.9. Four curves are shown in
each panel: d = d1 (solid red), d = d3 (dashed green), d = d5 (dotted
orange), and d = d7 (long-dashed blue). The red curve in each part is
to be compared to the corresponding solid blue data points in Fig. 9.
See also Fig. 12 (L ≈ 6.3 × 104λ, bare-cavity finesse ≈ 3 × 104).

modes produces a stronger effect on the cavity field than
modes with similar N but otherwise identical parameters.
A larger spacing between pairs of elements also affects the
effective linewidth of the cavity [see Figs. 11(b) and 12(b)];
the larger the factor d/L, the stronger the linewidth-narrowing
effect is. Finally, Figs. 11(c) and 12(c) put these two factors
together to show the single-photon cooperativity, normalized
to that of a single element inside the same cavity, for the same
group of transmission points. We note, in particular, that the
abnormally large coupling strengths when N = 2l are reflected
in the larger cooperativities obtained at these points.

IV. RESILIENCE TO IMPERFECTIONS
AND ABSORPTION

In this section we address questions regarding the resilience
of the mechanism with respect to absorption. The effects
of inhomogeneities in the positioning and reflectivity of the
individual elements on the achievable couplings and cooper-
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FIG. 12. (Color online) Similar to Fig. 11, but the four curves
shown in each panel are for d = 20λ + d1 (solid red), d = 20λ + d3

(dashed green), d = 20λ + d5 (dotted orange), and d = 20λ + d7

(long-dashed blue). The red curve in each part is to be compared to
the corresponding open blue data points in Fig. 9. (Other parameters
as in Fig. 11.)

ativities were numerically investigated in the Supplemental
Information of Ref. [58] in the case of the first transmission
point. We have checked that a similar sensitivity to deviations
from the ideal system is obtained for the other transmission
points. The case for absorption, however, is different, since it
depends strongly on the transmission point considered.

For a nonzero per-element absorption, the largest amount
of absorption appears close to the points where the ensemble
is transparent. This is shown in Fig. 13, where we plot the
reflectivity, transmission, and absorption of an ensemble of
six elements as the spacing between the elements is scanned;
this figure is meant to complement Fig. 2. A general feature is
that the absorption is largest at dN−1 and rather smaller at d1.

A systematic study of the effect of absorption on the cavity
linewidth is shown in Fig. 14. The cavity linewidth, both in
the presence of absorption and in its absence, is calculated
numerically by scanning over, and fitting a Lorentzian to, the
cavity resonance. An approximate expression for the linewidth
in the presence of absorption can be given by taking into
account the optical losses in the ensemble through a small
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FIG. 13. (Color online) Reflectivity (red), transmission (green),
and absorption (orange) for N = 6 elements with an individual
reflectivity of ca. 20% and an absorption of ca. 1.6% per element. The
dashed blue curve is identical to the solid blue curve in Fig. 2. Note
that the absorption around the transmissive points is lowest close to
dN−1 = d5 and highest close to d1.

nonzero Im{ζ }, yielding

κ
(l)
eff,abs = c

2L
(l)
eff

(
1

|Z|√Z2 + 1
+ 2Al

)

= κ
(l)
eff(1 + 2Al|Z|

√
Z2 + 1) , (49)

where the factor Al corresponds to the single-pass absorption
for the ensemble around the working point considered, and κeff

is evaluated with ζ → −|ζ |. For d = d1, Im{ζ } ≪ 1, N � 2,
and l = 1, A1 is given approximately by

2Im{ζ } sin(ν)[ζ cos(ν) + sin(ν)]U ′
N−1[cos(π/N )]

≈ 2N Im{ζ }
1 − cos

(
2π
N

)(√
1 + |ζ |2 sin

{
2

[
arccos

(
cos

(
π
N

)
√

1 + |ζ |2
)

− arctan(|ζ |)
]

− arccot(|ζ |)
}
+1

)
, (50)

where ν = kd1 and U ′
n(x) is the first derivative of the nth

Chebyshev polynomial with respect to its argument. Upon
substituting this expression for A1, κ

(1)
eff,abs agrees with the

corresponding numerically calculated data shown in Fig. 14.
This figure shows explicitly that the effect of absorption
decreases for larger interelement separation and is stronger for
l = N − 1 than for l = 1. Indeed, as hinted at by Fig. 13, the
effect of absorption on the linewidth increases monotonically
with l; for l 	= 1,N − 1, the respective curve lies in the
envelope created by the dashed green and dotted orange curves
in Fig. 14. For large N and |ζ | (but Im{ζ } ≪ 1) we find
A1 ≈ N Im{ζ }.

For l 	= 1 we could not derive analytical expressions for Al ,
but our numerical data is fully consistent with the approximate
expression

2N Im{ζ }
1 − cos

(
2lπ
N

)(√
1 + |ζ |2 sin

{
2

[
arccos

(
cos

(
lπ
N

)
√

1 + |ζ |2
)

− arctan(|ζ |)
]

− arccot(|ζ |)
}
+1

)
. (51)
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FIG. 14. (Color online) Effect of absorption on the linewidth,
shown normalized to the bare-cavity linewidth, in the case of a single-
element reflectivity of 99.4%. We show d = D + d1 (solid red and
dashed green curves) and d = D + dN−1 for each N (dotted orange
curve), where (a) D = 0λ and (b) D = 20λ. The solid red curve
represents nonabsorbing scatterers (Im{ζ } = 0), and the other two
curves Im{ζ } = 10−5. The curves for the two values of d coincide in
the absence of absorption. Larger interelement separations make the
system more tolerant to higher levels of absorption. The linewidth
of the bare cavity is represented by the horizontal dashed black line.
(Bare-cavity finesse ≈3 × 104, other parameters as in Fig. 9.)

To stay within the frame of the 1D model considered here, a
small misalignment in the individual elements can be modeled
similarly to absorption, since both effects represent a loss
channel for the cavity field. Other detrimental effects of
absorption, such as heating, are mitigated by the large coupling
strengths obtained, which allow much smaller photon numbers
to be used [(g(1)

sin)2 ∝ N3 increases faster than the absorbed
power as N increases]. We note also that at large input powers
it might be possible to exploit photothermal forces to further
enhance, or change the nature of, the collective optomechanical
interaction [75–79].

V. CONCLUDING REMARKS

Transmissive optomechanics presents a departure from
traditional optomechanical systems in that the reflectivity
of a compound element is purposely engineered to be as
close to zero as possible. A wealth of interesting effects
exist in this regime, not least (i) the possibility of strongly
increasing the optomechanical cooperativity and obtaining
strong coupling between a single photon and a single phonon,
(ii) the existence of a linewidth-narrowing mechanism that
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renders the resolved-sideband regime of optomechanics more
accessible, (iii) the existence of long-range interactions within
optomechanical arrays [58], and (iv) the possibility to enhance
optomechanical nonlinearities [40]. The system we described
may be composed of any periodic array of linearly interact-
ing polarizable scatterers, e.g, an ensemble of macroscopic
dielectric scatterers, or even atoms in an optical lattice, and
therefore presents a widely configurable and robust basis for
investigating strong and collective effects in optomechanical
or electromechanical setups.
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