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Probing the critical exponent of the superfluid fraction in a strongly interacting Fermi gas
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We theoretically investigate the critical behavior of a second-sound mode in a harmonically trapped ultracold
atomic Fermi gas with resonant interactions. Near the superfluid phase transition with critical temperature Tc,
the frequency or the sound velocity of the second-sound mode crucially depends on the critical exponent β

of the superfluid fraction. In an isotropic harmonic trap, we predict that the mode frequency diverges like
(1 − T/Tc)β−1/2 when β < 1/2. In a highly elongated trap, the speed of the second sound reduces by a factor
of 1/

√
2β + 1 from that in a homogeneous three-dimensional superfluid. Our prediction could readily be tested

by measurements of second-sound wave propagation in a setup, such as that exploited by Sidorenkov et al.
[Nature (London) 498, 78 (2013)] for resonantly interacting lithium-6 atoms, once the experimental precision is
improved.
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I. INTRODUCTION

Superfluidity, a remarkable state of matter in which par-
ticle flows with zero resistance, is a ubiquitous quantum
phenomenon occurring in diverse systems, ranging from
liquid helium, high-temperature superconductors, to neutron
stars [1,2]. Whereas, at zero temperature, all the particles
in the system participate in the superfluid motion, at finite
temperatures because of thermal excitations, only a portion
of particles—named the superfluid fraction—behaves in such
a way. The remaining particles comprise a normal fluid
component that behaves like an ordinary fluid [3,4]. To
characterize superfluidity, it is, therefore, crucial to understand
the superfluid fraction, which, unfortunately, is notoriously
difficult to calculate microscopically for strongly interact-
ing quantum systems, especially near the superfluid phase
transition. In this respect, the recently realized ultracold
atomic Fermi gases with controllable interatomic interactions
and external harmonic trapping potentials [5,6], known as a
new type of strongly interacting superfluid, provide unique
opportunities for exploring superfluidity and for understanding
the superfluid fraction in the strongly interacting regime.
In this paper, we propose that the critical behavior of the
superfluid fraction of a resonantly interacting atomic Fermi
gas at unitarity (where atoms occupying unlike spin states
interact with an infinitely large scattering length) could be
well characterized through the measurement of second-sound
propagation.

Second sound as well as first sound are the coupled
oscillations of the superfluid and normal fluid components
at finite temperatures [3,4]. In contrast to first sound, which
is an in-phase oscillation of the two components (i.e., density
oscillation), second sound is an out-of-phase oscillation (i.e.,
temperature or entropy wave) and depends very sensitively
on the superfluid fraction. Therefore, it presents, arguably,
the most dramatic manifestation of superfluidity. Indeed, in
superfluid helium, the accurate determination of the superfluid
fraction, slightly below the λ point, is provided by the
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measurement of second sound [7]. Very recently, for a
resonantly interacting Fermi gas of lithium-6 atoms confined
in highly elongated harmonic traps, the superfluid fraction was
qualitatively extracted from the measurement of the second-
sound velocity along the weakly confined axial direction as
reported by Sidorenkov et al. [8]. This milestone experiment
already imposes a grand challenge since the theoretical
predictions for the temperature dependence of the superfluid
fraction in the unitary limit are rather incomplete [9–12]. Our
proposal, together with future second-sound measurements
with better precision in such ultracold atomic systems, allows
an accurate determination of the critical behavior of the
superfluid fraction just below the superfluid phase transition.

Our main results are briefly summarized as follows. We
consider both isotropic and highly elongated harmonic traps.
The latter situation is exactly the setup exploited in the current
experiment [8]. For isotropic traps, we find that, slightly below
the superfluid transition temperature Tc, the mode frequency
of the second sound diverges as (1 − T/Tc)β−1/2 if the critical
exponent of the superfluid fraction is β < 1/2. Whereas, for
highly elongated traps, the speed of the second sound along the
weakly confined direction reduces by a factor of 1/

√
2β + 1

from that in a three-dimensional free space. In both cases, the
sensitive dependence of the second-sound mode on the critical
exponent leads to an accurate calibration of β.

II. TWO-FLUID HYDRODYNAMICS

First and second sounds are well described by the equations
of two-fluid hydrodynamics first derived by Landau [4]. As dis-
cussed in the previous papers [9,13,14], in the dissipationless
regime, the solutions of these hydrodynamic equations with
frequency ω at temperature T can be derived by minimizing a
variational action, which, in the terms of displacement fields
us(r) and un(r), is given by,

S = 1

2

∫
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Here, ρs(r) and ρn(r) are the superfluid and normal fluid
densities for a gas with total mass density ρ(r) ≡ mn =
ρs + ρn. P (r) is the local pressure of the gas, and s̄(r) = s/ρ is
the entropy per unit mass. δρ(r) = −∇ · [ρs0us + ρn0un] and
δs̄(r) = −un · ∇s̄0 + (s̄0/ρ0)∇ · [ρs0(us − un)] are the density
and entropy fluctuations, respectively. The displacement fields
are related to the superfluid and normal velocity fields by
dus/dt = vs and dun/dt = vn. The effect of the external
harmonic trapping potential VT (r) = mω2

T r2
⊥/2 + mω2

zz
2/2

enters Eq. (1) through the position-dependent equilibrium
thermodynamic functions, which we have indicated by the
subscript “0”. For a resonantly interacting Fermi gas, all
these thermodynamic functions—except for the superfluid
density—are known to certain precision, owing to the recent
experimental analysis of the homogeneous equation of state
performed by the Massachusetts Institute of Technology (MIT)
team [15] by using the universality relations satisfied by
the unitary Fermi gas [16,17] and the parallel theoretical
progress [18,19]. Throughout the paper, we calculate the
trapped density profile and thermodynamic functions based
on the smoothed experimental MIT data [15] and the local
density approximation (LDA), which amount to setting a local
chemical potential μ(r) = μ − VT (r), where μ is the chemical
potential at the trap center.

In the absence of the coupling term between density and
entropy fluctuations [i.e., ρ0(∂T /∂ρ)s̄ = 0], Eq. (1) admits
two decoupled solutions: a pure in-phase mode with the
ansatz us(r) = un(r) = u(1)(r) and a pure out-of-phase mode
with ρs0u(2)

s (r) + ρn0u(2)
n (r) = 0, which may be referred to

as the first and second sounds, respectively. These first- and
second-sound modes are the exact variational solutions for
pure density [δT (r) = 0] and pure temperature [δρ(r) = 0]
oscillations. When the coefficient ρ0(∂T /∂ρ)s̄ is nonzero, the
first and second sounds are necessarily coupled. This coupling
can conveniently be characterized by the dimensionless
Landau-Placzek (LP) parameter εLP ≡ γ − 1 [20], where
γ ≡ c̄p/c̄v is the ratio between the equilibrium specific heats
per unit mass at constant pressure [c̄p = T (∂s̄/∂T )P ] and
density [c̄v = T (∂s̄/∂T )ρ]. In superfluid helium, c̄p � c̄v or
εLP � 0, implying ρ0(∂T /∂ρ)s̄ � 0. Thus, the solutions of
the two-fluid hydrodynamic equations for superfluid helium
are described perfectly by decoupled first- and second-sound
modes. For resonantly interacting atomic Fermi gases, the
universality relations give rise to ρ0(∂T /∂ρ)s̄ = 2T/3 �= 0 [9].
Close to the superfluid transition temperature Tc � 0.167TF ,
where TF is the Fermi temperature, we estimate, from the MIT
data, that the LP parameter is about εLP � 0.4. Therefore,
similar to superfluid liquid helium, the solutions of two-fluid
equations for a unitary Fermi gas are well approximated by
weakly coupled first- and second-sound modes. We note that
the smallness of the LP parameter in superfluid helium and the
unitary Fermi gas and, hence, the weak coupling between their
first and their second modes is a general consequence of strong
interactions [20]. Note also that the existence of harmonic
traps will significantly reduce the sound mode coupling as we
will see later. Hereafter, we focus on the second-sound mode
by neglecting its coupling to the first-sound mode. In the past,
the first-sound mode of a unitary Fermi gas had been studied
in greater detail, both at zero temperature [21–24] and at finite
temperatures [25].

III. SECOND SOUND NEAR SUPERFLUID TRANSITION

Inserting the ansatz u(2)
n (r) = −(ρs0/ρn0)u(2)

s (r) for the
second sound into Eq. (1), taking the variation with respect to
u(2)

s (r), and making use of standard thermodynamic relations,
we obtain the following equation for the superfluid displace-
ment field [14]:

ω2u(2)
s = −s̄0∇

[
1
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As δρ(r) = 0 for the second sound, we may also rewrite
the above equation into a closed form for the tempera-
ture fluctuation δT (r) = (∂T /∂ρ)s̄ δρ(r) + (∂T /∂s̄)ρδs̄(r) =
ρ−1

0 (∂T /∂s̄)ρ∇ · [s0ρs0u(2)
s /ρn0], where δs̄(r) is the entropy

fluctuation described below Eq. (1). This gives rise to

ω2δT (r) = − 1

ρ0

(
∂T

∂s̄

)
ρ

∇ ·
[
s̄2

0ρ0ρs0

ρn0
∇ δT (r)

]
. (3)

In homogeneous space, where δT (r) ∝ eik·r, we recover the
well-known result for the second-sound velocity: c2

2,hom =
T (s̄2

0ρs0)/(c̄vρn0).
In the presence of harmonic traps, it seems to be cum-

bersome to directly solve Eq. (3). Fortunately, near the
superfluid transition, this equation could be greatly simplified
as the temperature oscillation has to be restricted in a small
superfluid area around the trap center, and therefore, we may
safely neglect the position dependence of all thermodynamic
functions—except for the superfluid density. Furthermore,
close to transition, it is reasonable to assume the following
critical behavior for the superfluid fraction:

ρs0

ρn0
(T ) � η

(
1 − T

Tc

)2β

, (4)

where the constant η and the critical exponent β are to be
determined for a unitary Fermi gas. From the Leggett model
of pairing at unitarity, it is known that the mean-field BCS
wave function gives rise to η = 2 and β = 1/2 [26]. However,
a superfluid with a two-component order parameter (and a
bosonic fluctuation spectrum) generally undergoes a second-
order phase transition with a superfluid density that varies as
ρs ∝ (Tc − T )2/3 close to the transition, independent of the
interaction strength [27]. Indeed, in superfluid liquid helium,
the second-sound measurement suggests that η � 3.2 and β �
1/3 [7]. In the following, we will consider these two typical sets
of critical behavior for the superfluid fraction and compare the
resulting prediction with the recent experimental measurement
[8]. The actual values η and β are independent of each other
and may be notably different from the two typical sets that we
have chosen. With these considerations, we find that, within
the LDA,

ω2δT = −ηkBTF f 2
s

mf
′
s

∇ ·
{(

1 − T

Tc

)2β

×
[

1 − T VT (r)/kB

(Tc − T )(TF fμ − Tf
′
μ)

]2β

∇ δT

⎫⎬
⎭ , (5)
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FIG. 1. (Color online) Temperature dependence of the parameter
D near the superfluid transition temperature Tc � 0.167TF for a
strongly interacting unitary Fermi gas. We consider two types of crit-
ical behavior for the superfluid fraction η(1 − T/Tc)2β : (1) superfluid
helium for which η � 3.2 and β � 1/3 as shown by the black solid
line, and (2) mean-field theory in which η = 2 and β = 1/2 as shown
by the red dashed line. The inset shows the second-sound velocity of a
homogeneous unitary Fermi gas c2,hom =

√
T (s̄2

0ρs0)/(c̄vρn0) in units
of the Fermi velocity vF = h̄kF /m, calculated using the assumed
superfluid fraction Eq. (4). The blue solid circles are the theoretical
predictions obtained by using the measured superfluid density, which
was found to be close to that of superfluid helium [8].

where we have expressed the entropy and chemical potential
of a uniform unitary Fermi gas in terms of dimensionless func-
tions of the reduced temperature T/TF : s = nkBfs(T/TF )
and μ = kBTF fμ(T/TF ); TF = h̄2(3π2n)2/3/(2mkB) is the
Fermi temperature at the trap center with density n, and
f

′
s,μ ≡ dfs,μ/d(T/TF ).

It is readily seen that the superfluid area is restricted to r⊥ �
R⊥s and z � Rzs , where mω2

T R2
⊥s/2 = mω2

zR
2
zs/2 = (Tc/T −

1)kB(TF fμ − Tf
′
μ). By introducing the scaled coordinates

r̃⊥ = r⊥/R⊥s and z̃ = z/R⊥s , we may rewrite Eq. (5) into
the following dimensionless form:

ω̃2δT + ∇̃ · [(1 − r̃2
⊥ − z̃2/λ2)2β∇̃ δT ] = 0, (6)

where λ ≡ ωT /ωz is the aspect ratio of the harmonic trap and
a reduced mode frequency ω̃ is defined by

ω ≡ ω̃
√
D(1 − T/Tc)β−1/2ωT , (7)

with D = η(T TF f 2
s )/[2Tcf

′
s (TF fμ − Tf

′
μ)]. In Fig. 1, we

show the temperature dependence of the parameter D near
the superfluid transition, calculated using the MIT data for
the equation of state of a unitary Fermi gas [15]. It is
typically at about 0.2. From Eq. (7), one may immediately
realize that, for any nonzero discrete mode frequency, it would
become divergent when temperature approaches the superfluid
transition temperature if the critical exponent β < 1/2.

A. Isotropic traps

For an isotropic harmonic trap, we may recast Eq. (6) into
a one-dimensional (1D) differential equation, for example, in
the sector of zero angular momentum l = 0 (i.e., breathing

FIG. 2. (Color online) Reduced second-sound mode frequency
as a function of the critical exponent β for an isotropically trapped
unitary Fermi gas. We only consider the l = 0 sector. In the cases
that β is an integer or half-integer, the reduced frequency is known
analytically. In particular, the reduced mode frequency at β = 1/2 is
given by ω̃n,l=0 = 2

√
n(n + 3/2).

modes), [
R(x)

d2

dx2
+ P (x)

d

dx
+ Q(x)

]
δT (x) = 0, (8)

where x ≡ r̃2 � 1 and the coefficients R(x) = x(1 −
x)2β+1, P (x) = [3/2 − (3/2 + 2β)x](1 − x)2β , and Q(x) =
ω̃2(1 − x)/4. It can be solved numerically by using a mul-
tiseries expansion method [28]. The numerical results are
reported in Fig. 2. The reduced mode frequencies decrease
quickly with increasing the critical exponent β. When β is
an integer or half-integer, our numerical results could be
examined analytically as the solutions for the temperature fluc-
tuation are simply polynomials and, therefore, the mode fre-
quencies are known precisely. Indeed, for β = 1/2 (i.e., mean-
field superfluid fraction), Eq. (6) has exactly the same struc-
ture as the hydrodynamic equation that describes collective
oscillations of a zero-temperature Bose condensate [29,30]. It
admits analytical solutions for harmonic traps with arbitrary
aspect ratios. In the case of isotropic traps, the reduced mode
frequency is given by ω̃nl = 2

√
n2 + nl + 3n/2 + l/2 [29].

Now, we are able to calculate the mode frequency by using
Eq. (7). The two lowest mode frequencies are shown in Fig. 3
for the superfluid-helium-like superfluid fraction (black solid
lines) or mean-field-like superfluid fraction (red dashed lines).
In the former case, the divergence of the mode frequency near
the superfluid transition is evident as we may anticipate.

For isotropic traps, it is worth noting that the equations
of two-fluid hydrodynamics can be solved fully by using
a variational approach [14]. We have performed such a
calculation with a mean-field superfluid fraction. The results
for the lowest second-sound mode frequency are reported in
Fig. 3 with blue solid circles. The good agreement between the
full variational calculation and the prediction of the simplified
second-sound Eq. (6) gives a reasonable justification for all the
assumptions that we have made to derive Eq. (6), including
neglecting the coupling between first- and second-sound
modes and the ignorance of the position dependence of the
thermodynamic functions used in Eq. (3).
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FIG. 3. (Color online) Temperature dependence of the two (low-
est breathing) second-sound mode frequencies of an isotropically
trapped unitary Fermi gas near the superfluid transition temperature.
For a critical exponent β < 1/2, the mode frequency diverges at
the transition. The blue solid circles are the full variational results
of the two-fluid hydrodynamic equations for the lowest breathing
second-sound mode.

B. Highly elongated traps

Experimentally, a resonantly interacting atomic Fermi gas is
trapped in highly elongated harmonic trapping potentials. The
second sound is excited and is propagated one dimensionally
along the long trap direction [8]. For such a configuration,
we may assume that the temperature fluctuation has the form
δT (r̃⊥,z̃) = δT (r̃⊥)eik̃z̃, where k̃ ≡ kR⊥s is the reduced wave
vector. The fluctuation field δT (r̃⊥) then satisfies

[ω̃2 − k̃2(1 − r̃2
⊥)2β]δT + ∇̃ · [(1 − r̃2

⊥)2β∇̃ δT ] = 0. (9)

For any reduced wave vector k̃, similar to the case of
isotropic traps, the above equation in the sector of l = 0 can
be rewritten in the 1D differential form Eq. (8) by setting
x = r̃2

⊥ but with new coefficients P (x) = [1 − (1 + 2β)x](1 −
x)2β and Q(x) = [ω̃2 − (1 − x)2β](1 − x)/4. It can be solved
numerically following Ref. [28]. Figure 4 shows the results
for β = 1/3 and β = 1/2. In the latter case, our result in
Fig. 4(b) agrees exactly with the earlier prediction on first-
sound propagation of a zero-temperature Bose condensate in
highly elongated harmonic traps [31–33] as it should be.

In Fig. 4, we observe multibranches in the spectrum, each
of which corresponds to a discrete radial excitation [31,33].
The lowest branch is of particular interest as it resembles the
phonon mode in free space and is the easiest mode to excite
experimentally. The associated second-sound velocity is given
by c2,1D = ∂ω/∂k = (∂ω̃/∂k̃)c2,hom. Thus, the velocity of the
second sound propagated in quasi-1D geometry is reduced by
a factor of c̃ = ∂ω̃/∂k̃ with respect to the bulk value c2,hom. The
similar quenching of first-sound velocity due to confinement
was pointed out earlier for a unitary Fermi gas [32] or a
Bose condensate [31]. The value of c̃ may be calculated
by integrating out the transverse coordinate r̃⊥ in Eq. (9):
c̃2 = ∫

dr⊥(1 − r̃2
⊥)2βδT (r̃⊥)/

∫
dr⊥δT (r̃⊥). In the limit of

long wavelength (k̃ → 0) where the temperature fluctuation
δT (r̃⊥) is radially independent, we find that c̃ = 1/

√
2β + 1

in agreement with our numerical result shown in Fig. 4(c).

FIG. 4. (Color online) Reduced second-sound mode frequency
for a unitary Fermi gas confined in highly elongated harmonic traps
for the critical exponents (a) β = 1/3 and (b) β = 1/2. We assume
that the second sound can propagate freely along the long trap axis.
In (c), we show the reduced second-sound velocity c̃ = ∂ω̃/∂k̃ for
the lowest phonon modes.

In Fig. 5, we report the 1D second-sound velocity
c2,hom/

√
2β + 1 by using the assumed superfluid-helium- or

mean-field-like superfluid fraction Eq. (4). For comparison,
we also show the experimental data extracted from Fig. 3(a) of
Ref. [8]. Close to the superfluid transition (i.e., T > 0.95Tc),
our prediction of the 1D second-sound velocity with the
superfluid-helium-like superfluid fraction agrees reasonably
well with the measurement. By noting that the superfluid

FIG. 5. (Color online) Second-sound velocity for a unitary Fermi
gas confined in highly elongated harmonic traps for the critical
exponent β = 1/3 (black solid line) and β = 1/2 (red dashed line).
The blue solid circles are the experimental results extracted from
Fig. 3(a) of Ref. [8] by assuming that the peak density at the trap center
is unchanged close to superfluid transition. For comparison, with the
gray line, we also show the bulk second-sound velocity for β = 1/3.
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fraction of a unitary Fermi gas resembles that of superfluid
helium [8], this agreement somehow is an indication of
the quenched second-sound velocity. However, a quantitative
experimental determination of the critical exponent β requires
a much better precision of data.

IV. CONCLUSIONS

In conclusion, we have investigated, theoretically, how the
second sound of a harmonically trapped unitary Fermi gas is
affected by the critical exponent β of a superfluid fraction near
the superfluid phase transition when temperature T approaches
the critical temperature Tc. In an isotropic trap, the sound
frequency goes like (1 − T/Tc)β−1/2 and, therefore, clearly

exhibits a divergence when β < 1/2. In an experimentally
exploited highly elongated trap, the second-sound velocity
along the long trap axis reduces by a factor of 1/

√
2β + 1

with respect to its bulk value. Our prediction could be used to
directly measure the critical exponent β in future experiments
if the experimental accuracy improves.
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