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Comparative studies of many-body corrections to an interacting Bose-Einstein condensate
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We compare many-body theories describing fluctuation corrections to the mean-field theory in a weakly
interacting Bose-condensed gas. Using a generalized random-phase approximation, we include both density
fluctuations and fluctuations in the particle-particle scattering channel in a consistent manner. We also separately
examine effects of the fluctuations within the framework of the random-phase approximation. Effects of
fluctuations in the particle-particle scattering channel are also separately examined by using the many-body
T -matrix approximation. We assess these approximations with respect to the transition temperature Tc, the order
of phase transition, as well as the so-called Nepomnyashchii-Nepomnyashchii identity, which states the vanishing
off-diagonal self-energy in the low-energy and low-momentum limit. Since the construction of a consistent theory
for interacting bosons which satisfies various required conditions is a long-standing problem in cold atom physics,
our results would be useful for this important challenge.
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I. INTRODUCTION

Since the realization of the Bose-Einstein condensation
(BEC) in ultracold atomic gases, various interesting phenom-
ena observed in this system have been theoretically explained.
Even now, however, the theory of a weakly interacting Bose gas
still has room for improvement. Indeed, while the mean-field
Bardeen-Cooper-Schrieffer (BCS) theory is applicable to the
entire temperature region below the transition temperature
Tc, the applicability of mean-field theories for a condensed
Bose gas is restricted to the region far below Tc, because
they unphysically give the first-order phase transition [1,2].
In addition, the Hartree-Fock-Bogoliubov (HFB) theory does
not satisfy the Hugenholtz-Pines theorem [3], leading to
gapped excitations below Tc. This unphysical result is absent
in the Bogoliubov approximation [4] and the HFB-Popov
approximation [2,5–8] (i.e., Shohno model [9]). However, they
do not satisfy the identity proved by Nepomnyashchii and
Nepomnyashchii [10,11], stating the vanishing off-diagonal
self-energy in the low-energy and low-momentum limit in the
BEC phase.

Another problem associated with these mean-field theories
is that they cannot correctly describe interaction corrections
to Tc, although more sophisticated approaches predict the
deviation of Tc from an ideal Bose gas result (≡T 0

c ). In a
trapped gas, Tc is lowered, because the density profile spreads
out by a repulsive interaction, leading to the decrease in the
central particle density [12–15]. In the uniform system, the
enhancement of Tc has been predicted in the region of small
gas parameter [16–34]. In particular, Monte Carlo simulations
give (Tc − T 0

c )/T 0
c = c1an1/3 with c1 � 1.3 [20,22,28]. In the

strongly correlated case (which corresponds to liquid 4He),
however, it has been pointed out that Tc is suppressed by mass
enhancement [34,35].

Toward the construction of a consistent theory of a weakly
interacting Bose gas, we investigate many-body effects on this
system. In this regard, we recall that, within the framework
of the many-body T -matrix approximation, Shi and Griffin
showed the vanishing effective interaction in the low-energy
and static limit at Tc [2], which is never obtained in the

mean-field theories mentioned above. Using this, they obtained
the expected second-order phase transition, although their
many-body T -matrix theory with the static approximation still
gives the same value of Tc as that in an ideal Bose gas.

Stimulated by this many-body approach [2], in this paper,
we extend it to include fluctuation corrections beyond the static
approximation. We include fluctuations in both the particle-
particle scattering channel and density channel within the
framework of the generalized random-phase approximation
(GRPA). To examine effects of fluctuations in each channel,
we also consider the case with the former fluctuations by using
the many-body T -matrix approximation (MBTA). Effects of
the latter fluctuations are also separately examined within the
framework of the random-phase approximations (RPA). In
order to achieve them, we develop the 4 × 4 matrix formalism,
which includes all the possible polarization functions in four-
point vertex functions. By using this formalism, we develop
the GRPA and extend the MBTA as well as the RPA.

Treating these many-body theories without employing the
static approximation, we evaluate Tc, as well as the order
of phase transition. The critical temperature shift has been
evaluated at most in the static limit ( [26] and the references
therein). The order of the phase transition has been discussed
also in the static limit based on the many-body theory above
Tc [33]. We assess these problems using our formalism below
Tc. We also examine if they satisfy the Nepomnyashchii-
Nepomnyashchii identity, stating the vanishing off-diagonal
self-energy in the low-energy and low-momentum limit.

In contrast to the earlier study of the MBTA [2], the critical
temperature in our calculation is shifted, because we extend
this formalism beyond the static approximation. In this earlier
study [2], the infrared divergence in the polarization function
was omitted by hand to obtain the nonvanishing off-diagonal
self-energy. In this study, we do not apply this ad hoc omission.

In Sec. II, we explain the many-body theories used in this
paper. We show our numerical results for Tc in Sec. III. The
condensate fraction below Tc is discussed in Sec. IV. In Sec. V,
we assess the many-body theories on the viewpoint of the
Nepomnyashchii-Nepomnyashchii identity. In this paper, we
set h̄ = kB = 1, and the system volume V is taken to unity.
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II. FORMULATION

We consider a weakly interacting Bose gas, described by
the Hamiltonian,

H =
∑

p

(εp − μ)a†
pap + U

2

∑
p,p′,q

a
†
p+qa

†
p′−qap′ap. (1)

Here, a†
p is the creation operator of a Bose atom with the kinetic

energy εp − μ = p2/(2m) − μ, measured from the chemical
potential μ (where m is an atomic mass). U is a repulsive
interaction, which is related to the s-wave scattering length a

as

4πa

m
= U

1 + U
∑pc

p
1

2εp

, (2)

where pc is a cutoff.
As usual, the order parameter (which is also referred to as

the condensation fraction n0) is introduced by the Bogoliubov
prescription [4]. That is, ap=0 and a

†
p=0 are replaced by

√
n0.

Physical properties in the BEC phase is conveniently described

by the (2 × 2)-matrix single-particle thermal Green’s function,

G(p) = 1

iωnσ3 − εp + μ − �(p)
. (3)

Here, we have simply written p = (p,iωn), where ωn is the
boson Matsubara frequency. σj (j = 1,2,3) are the Pauli
matrices, acting on the space spanned by (ap,a

†
−p). The

(2 × 2)-matrix self-energy satisfies �22(p) = �11(−p) and
�21(p) = �12(−p) [2]. The diagonal component of Eq. (3)
is related to the noncondensate density n′ = n − n0 as (where
n is the total particle density)

n′ = −T
∑

p

G11(p)eiωnδ. (4)

To explain the GRPA, MBTA, and RPA, it is convenient
to introduce the (4 × 4)-matrix four-point vertex �(q), dia-
grammatically given in Fig. 1(a). The explicit expression is

�(q) = U

1 − U	(q)
, (5)

where

	(q) = −T
∑

p

⎛
⎜⎜⎜⎝

K1111(p,q) K1112(p,q) K1211(p,q) K1212(p,q)

K1121(p,q) K1122(p,q) K1221(p,q) K1222(p,q)

K2111(p,q) K2112(p,q) K2211(p,q) K2212(p,q)

K2121(p,q) K2122(p,q) K2221(p,q) K2222(p,q)

⎞
⎟⎟⎟⎠ (6)

is the (4 × 4)-matrix generalized polarization function dia-
grammatically described in Fig. 1(b). Here, Kijkl(p,q) =
gij (p + q)gkl(−p) is the two-particle Green’s function. gij (p)
is a matrix element of the one-particle Green’s function in the

(a) Γ(q) = U + U

Π(q)

Γ(q)

(b) Π =

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠ g(p)

=

⎛
⎝

g11 g12

g21 g22

⎞
⎠

(c)
Ueff

=
U

+
UeffU χR

(d) χR =
1

2
×

f0|Π(q)|f0

+

Π(q)|f0f0|Π(q)

Γ(q)

FIG. 1. (a) Bethe-Salpeter equation of the four-point vertex func-
tion �(q) in the generalized random-phase approximation (GRPA).
The double solid line shows the (2 × 2)-matrix Green’s function g(p).
The wavy line describes the repulsive interaction U . (b) Generalized
polarization function 	(q). Each solid line denotes a matrix element
of the Green’s function g(p) in Eq. (7). (c) Effective interaction
Ueff (q) involving density fluctuations. (d) Regular part χR of the
density-density correlation function [36].

HFB-Popov approximation, given by

g(p) = 1

iωnσ3 − ξp − Un0σ1
, (7)

where ξp = εp + Un0. Using the symmetry properties
g22(p) = g11(−p) and g12(p) = g12(−p), one finds that the
matrix elements of 	 are given by

	(q) =

⎛
⎜⎜⎜⎝

	11(q) 	12(q) 	12(q) 	14(q)

	12(q) 	22(q) 	14(q) 	∗
12(q)

	12(q) 	14(q) 	22(q) 	∗
12(q)

	14(q) 	∗
12(q) 	∗

12(q) 	∗
11(q)

⎞
⎟⎟⎟⎠. (8)

(For the detailed expressions of 	11,12,14,22, see Appendix A.)
Some of �ij (q) are thus also related to each other as

�(q) =

⎛
⎜⎜⎜⎝

�11(q) �12(q) �12(q) �14(q)

�12(q) �22(q) �23(q) �∗
12(q)

�12(q) �23(q) �22(q) �∗
12(q)

�14(q) �∗
12(q) �∗

12(q) �∗
11(q)

⎞
⎟⎟⎟⎠. (9)

We also introduce the effective interaction Ueff(p)
[Fig. 1(c)], describing effects of density fluctuations, given by

Ueff(p) = U

1 − UχR(p)
. (10)
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Here, χR is the regular part of the density-density correlation
function [Fig. 1(d)] [36],

χR(q) = 1
2 〈f0|[	(q) + 	(q)�(q)	(q)]|f0〉, (11)

where 〈f0| = (0,1,1,0) and |f0〉 = (0,1,1,0)T.

A. Generalized random-phase approximation (GRPA)

In the GRPA, the self-energy correction may be conve-
niently written as the sum of the two parts,

�(p) = �0(p) + �′(p). (12)

Here, �0(p) is characterized by condensate Green’s functions
G1/2 = √−n0(1,1)T and G

†
1/2 = √−n0(1,1), and �′(p) has

an internal loop of the diagonal Green’s function g11, dia-
grammatically described as Figs. 2(a) and 2(b), and 2(c)–
2(f), respectively. Each of these components can be further
decomposed into the p-independent part (�I

0,�
I) and the

remaining p-dependent part (�II
0 ,�II) as

�0(p) = �I
0 + �II

0 (p), (13)

�′(p) = �I + �II(p). (14)

The two components in Eq. (13) are given by

�I
0 = −Ueff(0) 1

2G
†
1/2G1/2 − Ueff(0) 1

2γ †(0)T̂ G1/2G1/2

− γ ′(0)Ueff(0) 1
2G

†
1/2G1/2 − G†

1/2T̂ �̃I(0)T̂ G1/2, (15)

�II
0 (p) = −G1/2Ueff(p)G†

1/2 − G†
1/2T̂ �II(p)T̂ G1/2

−G†
1/2�

II(p)T̂ G1/2 − G†
1/2T̂ γ (p)Ueff(p)G†

1/2

−G1/2Ueff(p)γ †(p)T̂ G1/2, (16)

where

G1/2 = √−n0

⎛
⎜⎜⎝

1 0
1 0
0 1
0 1

⎞
⎟⎟⎠ , G†

1/2 = √−n0

(
1 1 0 0
0 0 1 1

)
,

(17)

T̂ =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠. (18)

(a) ΣI
0 =

G1/2

Ueff(0)

G†
1/2

+

T̂G1/2

G1/2

Ueff(0)

γ†(0)

+

G1/2G†
1/2

Ueff(0)

γ (0)

+

T̂G1/2G†
1/2T̂

Γ̃I(0)

(b) ΣII
0 (p) =

G1/2

Ueff(p)

G†
1/2

+

T̂G1/2G†
1/2T̂

ΓII(p) +

T̂G1/2

G†
1/2

ΓII(p) +

G†
1/2

G†
1/2T̂

Ueff(p)
γ(p) +

T̂G1/2G1/2

Ueff(p)
γ†(p)

(c) ΣI
11 =

p

q

p

Ueff
+

p

q

p

Ueff

γ†
2

+

p

q

p

Ueff

γ2

+

p

−q

p

Γ̃I
11 +

p

q

p

Γ̃I
33

(d) ΣI
12 =

q

−pp

Ueff

γ1

+

−q

−pp

Γ̃I
12 +

q

−pp

Γ̃I
34

(e) ΣII
11(p) =

p

p − q

Ueffp

+

p

−p + q

p

ΓII
11 +

p

p − q

p

ΓII
33 +

−p + q

p

p
ΓII

11 +

p − q

p

p
ΓII

23 +

p

p − q

p

Ueff

γ3 +

p

p − q

p
Ueff

γ†
3

(f) ΣII
12(p) =

−p + q

−pp

ΓII
12 +

p − q

−pp

ΓII
34 +

−p + q

−p

p
ΓII

12 +

p − q

−p

p
ΓII

24 +

−p + q

−p
p

Ueff

γ1 +

p − q

p
−p

Ueff
γ†

4

FIG. 2. Self-energy corrections in the generalized random-phase approximation (GRPA). (a) �I
0, (b) �II

0 , (c) �I
11, (d) �I

12, (e) �II
11(p), and

(f) �II
12(p).
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(a) ΓI =
1

2
×

Ueff
γ γ† + Γ − U

(b) ΓII =
Ueff

γ γ† + Γ − U

(c) γ =

Π|f0

Γ γ† =

f0|Π

Γ

FIG. 3. Four-point vertices (a) �I and (b) �II. (c) Three-point
vertices γ and γ †.

In Eqs. (15) and (16), the four-point vertices �I(p) and �II(p)
diagrammatically given by Figs. 3(a) and 3(b) have the forms

�I(p) = 1
2γ (p)Ueff(p)γ †(p) + �(p) − U, (19)

�II(p) = γ (p)Ueff(p)γ †(p) + �(p) − U. (20)

�̃I(p) in Eq. (15) is also a four-point vertex, given by

�̃I(p) =

⎛
⎜⎜⎜⎜⎝

�I
23(p) �I

13(p) �I
24(p) �I

14(p)

�I
43(p) �I

33(p) �I
44(p) �I

34(p)

�I
21(p) �I

11(p) �I
22(p) �I

12(p)

�I
41(p) �I

31(p) �I
42(p) �I

32(p)

⎞
⎟⎟⎟⎟⎠. (21)

γ = �(q)	(q)|f0〉 and γ † = 〈f0|	(q)�(q) in Eqs. (15), (16),
(19), and (20) are three-point vertices diagrammatically shown
in Fig. 3(c). γ ′(p) in Eq. (15) is also a three-point vertex, having
the form

γ ′(p) =
(

γ2(p) γ1(p)

γ4(p) γ3(p)

)
. (22)

The self-energy corrections �I and �II in Eq. (14) are
respectively given by

�I = (U11σ0 + U12σ1)n′
0, (23)

�II(p) =
(

�II
11(p) �II

12(p)

�II
12(−p) �II

11(−p)

)
, (24)

where n′
0 = −T

∑
p g11(p)eiωnδ , and

U11 = Ueff(0)[1 + γ2(0) + γ
†
2 (0)] + �̃I

11(0) + �̃I
33(0),

(25)
U12 = Ueff(0)γ1(0) + �̃I

12(0) + �̃I
34(0).

Expressions for �II
ij (p) in Eq. (24) are(

�II
11(p)

�II
12(p)

)
= −T

∑
q

(
A(q) B(q)

C(q) D(q)

)(
G11(+p − q)

G11(−p + q)

)
,

(26)

where

A(q) = Ueff(q)[1 + γ3(q) + γ
†
3 (q)] + �II

33(p) + �II
23(p), (27)

B(q) = 2�II
11(q), (28)

(a)
pp

Σ11(p) =

pp

Γ11(p) +

p

p

Γ11(p)

+

p

−p + q

p

Γ11(q)
+

−p + q

p

p

Γ11(q)

(b)
−pp

Σ12(p) =

p −p

Γ11(0)

FIG. 4. Self-energy in the many-body T -matrix approximation
(MBTA). (a) Diagonal component �11. (b) Off-diagonal component
�12. The dashed lines describe

√
n0.

C(q) = Ueff(q)γ †
4 (q) + �II

34(q) + �II
24(q), (29)

D(q) = Ueff(q)γ1(q) + 2�II
12(q). (30)

B. Many-body T -matrix approximation (MBTA)

The MBTA self-energy �(p) involves particle-particle
scattering processes [2]. Summing up the diagrams in Fig. 4,
we have

�11(p) = 2n0�11(p) − 2T
∑

q

�11(q)g11(−p + q), (31)

�12(p) = n0�11(0). (32)

In the normal state, because of 	14 = 	12 = n0 = 0, one
obtains the vanishing off-diagonal self-energy, and

�11(p) = −2T
∑

q

U

1 − U	11(q)
g11(−p + q), (33)

which is just the same expression as the self-energy in the
ordinary many-body T -matrix approximation above Tc.

The many-body T -matrix theory developed by Shi and
Griffin [2] approximates the four-point vertex to �11 =
U/[1 − U	11(0)], where the static approximation is also
taken. In this approximation, 	11(0) always diverges below Tc,
leading to the vanishing off-diagonal self-energy (�12(p) =
0). To avoid this, Ref. [2] eliminates this singularity by hand,
assuming that such infrared divergence should be absent when
one appropriately includes higher-order corrections.

In contrast to this earlier work [2], we fully take into
account the energy and momentum dependence of the particle-
particle scattering vertex function �11 in Eq. (9). As shown in
Appendix B, the infrared divergence in this �11 is canceled
out, so that the off-diagonal self-energy does not vanish even
below Tc.
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(a)
pp

Σ11(p) =

pp

Ueff(0) +

pp

Ueff(p)

+

pp

Ueff(0)

q

+

pp
Ueff(q)

p − q

(b)
−pp

Σ12(p) =

p

Ueff(p)

−p

FIG. 5. Self-energy in the random-phase approximation (RPA).
(a) Diagonal component �11. (b) Off-diagonal component �12.

C. Random-phase approximation (RPA)

The RPA self-energy is diagrammatically given in Fig. 5.
Summing them up, one has

�11(p) = (n0 + n′
0)Ueff(0) + n0Ueff(p)

− T
∑

q

Ueff(q)g11(p − q), (34)

�12(p) = n0Ueff(p). (35)

At Tc, the regular part of the density-density correlation
function (11) is reduced to

χR(p) = 	22(p)

1 − U	22(p)
, (36)

which is consistent with the ordinary RPA in the normal state.
When we retain the lowest-order bubble diagram in Fig. 1(d),
the polarization function in Eq. (10) is further simplified as
χR(q) = 	22(q). In this paper, we also deal with this simpler
version [which we call the simplified RPA (s-RPA)].

III. PHASE-TRANSITION TEMPERATURE Tc

All the approximations (MBTA, RPA, s-RPA, and GRPA)
give the enhancement of Tc by the repulsive interaction U

(Fig. 6), which is consistent with the previous work [16–34].
Measuring the shift of Tc from the ideal Bose gas result (T 0

c )
as

Tc − T 0
c

T 0
c

= c1an1/3, (37)

one finds c1 = 6.7 (GRPA), 3.9 (MBTA), 2.1 (s-RPA), and 1.1
(RPA). Among them, the RPA result is closest to the Monte
Carlo result c1 � 1.3 [20,22,28].

To understand the difference among the four results in
Fig. 6, it is worth noting that, when the self-energy �11 takes
a constant value, one never obtains any many-body correction
to Tc. In addition, the self-energy in the low-energy and low-
momentum regime is a key to understanding the many-body
correction to Tc, because single-particle excitations in this

0.0 0.2 0.4 0.6 0.8 1.01.00

1.01

1.02

1.03

1.04

an1/3 ×10−2

Tc

T 0
c

1.00
0.0

MBTA
s-RPA
RPA
GRPA

c1 =1.1

c1 =2.1

c1 =3.9

c1 =6.7

FIG. 6. (Color online) BEC phase-transition temperatures Tc in a
weakly interacting Bose gas, calculated in the many-body T -matrix
approximation (MBTA), the random-phase approximation (RPA),
the simplified RPA (s-RPA), and the generalized RPA (GRPA).
The interaction is measured in terms of the scattering length a. In
numerical calculations, we set pc = 5p0 (where p0 = √

2mT 0
c ).

regime are crucial for the BEC phase transition. Indeed, the
increase in Re[�11(p,iωn = 0)] from the value at p = ωn = 0
is most remarkable in the GRPA, being consistent with the
largest value of c1 [Fig. 7(a)].

As pointed out in Refs. [2,37], �11(0,0) vanishes at Tc

[Fig. 7(b)]. While such a vanishing interaction is also obtained
in the s-RPA, the RPA gives a finite value, Ueff (0,0) = U/2 > 0.
Apart from this difference, the effective interactions in the
three approximations are almost p independent when ωn 	= 0.

0.00 0.02 0.04 0.06 0.08 0.100.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

|p|/p0

Re[ΔΣ11]

Un

MBTA
s-RPA
RPA
GRPA

ωn = 0

×10−2

0.00
0.0

|p|/p0

ωn/T
0
c

Re[Γ11]

U

Ueff/U

0 0.01 0.02 0

30

60

0

0.4

0.8

1.2

(a)

(b)

FIG. 7. (Color online) (a) Re[
�11(p,0)], where 
�11(p,0) ≡
�11(p,0) − �11(0,0). (b) Particle-particle scattering vertex Re[�11]
and the effective interaction Ueff in the random-phase approximation
(RPA) and simplified RPA (s-RPA). Ueff in the s-RPA is almost the
same as �11 in this panel. We take T = Tc, an1/3 = 10−4, and pc =
10p0.
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From the comparison of Figs. 7(b) with 7(a), one finds that
the momentum dependence of �11 (which is crucial for many-
body corrections to Tc) is dominated by the p dependence of
the effective interaction in the low-energy and low-momentum
region.

IV. CONDENSATE FRACTION

While the MBTA, RPA, as well as s-RPA give almost
the same result as the HFB-Popov approximation (Shohno
model) [5–7,9], the GRPA result exhibits somehow marked
deviation from the mean-field result when T >∼ 0.5T 0

c (Fig. 8).
As shown in the inset, although the MBTA and s-RPA realize
the expected second-order phase transition, the remaining two
approximations still give the first-order phase transition, as in
the HFB-Popov approximation [1,2]. In the RPA, however, the
first-order behavior is less marked than the mean-field result.
The order of phase transition in these results agrees with the
recent work in [33], which approaches Tc from the normal
state.

Except for the GRPA, the off-diagonal self-energy �12 is
proportional to the effective interaction. [See Eqs. (32) and
(35).] In particular, at p = ωn = 0, when one simply writes
the effective interactions as Veff [which equals �11(0) in the
MBTA, and Ueff(0) in the RPA and s-RPA], �12(0) in these
three approximations formally has the same form as

�12(0) = n0Veff . (38)

In the mean-field theory, the first-order behavior at Tc is
known to become more marked for a stronger repulsive
interaction U0 = 4πa/m. In this sense, the suppression of
the effective interaction in the low-energy and low-momentum
region shown in Figs. 7(b) and 9(a) is favorable to the expected
second-order phase transition. Indeed, both the MBTA and
s-RPA (that exhibit the vanishing effective interaction at
p = ωn = 0) give the second-order phase transition as shown
in Fig. 8. In contrast, the effective interaction at p → 0 remains
finite in the RPA (which gives the first-order phase transition).

For the static part of the off-diagonal self-energy �12(p =
0) in the GRPA, we find that �12(0) ∝ n0.45

0 near Tc [Fig. 9(b)],
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FIG. 8. (Color online) Calculated condensate fraction n0 below
Tc. The inset shows n0 magnified near Tc. We set an1/3 = 10−2 and
pc = 5p0. The Hartree-Fock-Bogoliubov (HFB)-Popov approxima-
tion uses the interaction strength U0 = 4πa/m, instead of U .
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FIG. 9. (Color online) (a) Effective interaction Veff (0), as a
function of the temperature scaled by Tc in each approximation.
(b) Off-diagonal self-energy �12(p = 0), as a function of the conden-
sation fraction n0/n in the generalized random-phase approximation
(GRPA). We take an1/3 = 10−2 and pc = 5p0.

which indicates that �12(0) in the GRPA approaches zero
near Tc more slowly than the cases of the HFB-Popov
approximation and the RPA [that give �12(0) ∝ n0]. As a
result, the first-order phase transition is more marked in the
former approximation than the latter two theories, as shown in
Fig. 8.

V. NEPOMNYASHCHII-NEPOMNYASHCHII IDENTITY

Nepomnyashchii and Nepomnyashchii proved that the off-
diagonal self-energy in the low-energy and low-momentum
limit exactly vanishes below Tc [10,11]. This Nepomnyashchii-
Nepomnyashchii (NN) identity is, however, not satisfied in the
mean-field theory, where �12 = n0U > 0. In the three many-
body theories (MBTA, RPA, and s-RPA) giving Eq. (38), the
condition for the NN identity requires the vanishing Veff in
the BEC phase, because the condensate fraction n0 is finite
below Tc.

Among the three theories, the s-RPA only satisfies this
requirement, as shown in Fig. 9(a). In the MBTA, although
Veff vanishes at Tc, it becomes finite below Tc, leading to
the breakdown of this identity. Veff is already finite at Tc in
the RPA, so that this approximation also contradicts with this
identity. The GRPA also does not satisfy the NN identity, as
shown in Fig. 9(b).
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TABLE I. Aspects of four many-body approximations discussed
in this paper.


Tc/T 0
c = c1an1/3 Phase transition NN identity

GRPA c1 = 6.7 1st order ×
MBTA c1 = 3.9 2nd order ×
s-RPA c1 = 2.1 2nd order �
RPA c1 = 1.1 1st order ×

While the MBTA does not satisfy the NN identity, it gives
the expected second-order phase transition. In this sense,
the NN identity is not necessary for the second-order phase
transition to be obtained. However, as expected from the result
for the s-RPA, the vanishing off-diagonal self-energy at p = 0
itself seems favorable to the second-order phase transition.

VI. SUMMARY

To summarize, we have presented comparative studies on
four kinds of many-body theories for a weakly interacting
condensed Bose gas. We have treated the generalized random-
phase approximation (GRPA) and the many-body T -matrix
approximation (MBTA) involving multiscattering processes in
the particle-particle scattering channel, as well as the two kinds
of random-phase approximations [with (RPA) and without (s-
RPA) vertex corrections to each bubble diagram] describing
density fluctuations. To treat them, we developed the 4 × 4
matrix formalism, which includes all the possible polarization
functions in four-point vertex functions.

For these approximate theories, we have examined
the phase-transition temperature Tc, the order of phase
transition (the first-order or the second-order transition),
and the Nepomnyashchii-Nepomnyashchii identity, stating
the vanishing off-diagonal self-energy in the low-energy
and low-momentum limit. Our results are summarized in
Table I, which indicates that each theory still has room for
improvement. For example, while the simplified random-phase
approximation satisfies both the second-order phase transition
and the Nepomnyashchii-Nepomnyashchii identity, the
calculated Tc is found to be somehow overestimated when
the result is compared with the Monte Carlo result. Since the
construction of a reliable and consistent many-body theory is
a crucial issue in the field of the interacting Bose gases, our
results would be helpful in considering how to improve these
theories for this purpose.

Other than the above, the following issues can be raised. An
interesting challenge is the extension of the present formalism
to satisfy both the conservation law and the gapless excitation.
The difficulty constructing the number-conserving and gapless
approximation [8,38–40] is known as the Hohenberg-Martin
dilemma [41]. Since we determined the chemical potential
based on the Hugenholtz-Pines relation [3], the excitation is
gapless. However, the number conservation does not hold,
since we used the Green’s function (7) for the polarization
functions, where the anomalous average is absent in the self-
energy.

Another challenging extension is to develop the two-
particle irreducible (2PI) effective action approach with
including many-body corrections. In association with the
issue mentioned above, the conservation law is important
for dynamics. The Hartree-Fock-Bogoliubov approximation
[42] and others [43–45] are theories satisfying the number
conservation. Among approaches for dynamics [46–53], the
2PI effective action approach provides a systematic method to
derive the equations of motion of condensates and excitations
with satisfying the conservation law. In fact, this formalism is
a �-derivable approximation [41,54].

Applying this work to low-dimensional Bose gases is
also interesting. For the system dimensionality d = 2, the
Bose-Einstein condensation does not occur in the thermody-
namic limit at nonzero temperatures, because of the Mermin-
Wagner-Hohenberg theorem [55,56]. A phase transition in the
thermodynamic limit in this dimensionality is the Kosterlitz-
Thouless transition [57]. An interesting prospect is to discuss
the quasicondensate in low dimensionality using the modified
Popov approximation [58,59] with including many-body
effects beyond the static limit.
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APPENDIX A: POLARIZATION FUNCTIONS

We summarize the polarization functions used in this paper
as follows:

	11(q) = −
∑

p

1

2

[
(Ep+q − Ep)

(
1 − ξp+qξp

Ep+qEp

)
+ iωn

(
ξp+q

Ep+q
− ξp

Ep

)]
np+q − np

ω2
n + (Ep+q − Ep)2

−
∑

p

1

2

[
(Ep+q + Ep)

(
1 + ξp+qξp

Ep+qEp

)
+ iωn

(
ξp+q

Ep+q
+ ξp

Ep

)]
1 + np+q + np

ω2
n + (Ep+q + Ep)2

, (A1)

	12(q) = −
∑

p

1

2



[
ξp+q

Ep+qEp
(Ep+q − Ep) + iωn

Ep

]
np+q − np

ω2
n + (Ep+q − Ep)2

+
∑

p

1

2



[
ξp+q

Ep+qEp
(Ep+q + Ep) + iωn

Ep

]
1 + np+q + np

ω2
n + (Ep+q + Ep)2

, (A2)
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	14(q) =
∑

p

1

2


2

Ep+qEp

[
(Ep+q − Ep)

np+q − np

ω2
n + (Ep+q − Ep)2

− (Ep+q + Ep)
1 + np+q + np

ω2
n + (Ep+q + Ep)2

]
, (A3)

	22(q) =
∑

p

1

2

[
(Ep+q − Ep)

(
1 + ξp+qξp

Ep+qEp

)
+ iωn

(
ξp+q

Ep+q
+ ξp

Ep

)]
np+q − np

ω2
n + (Ep+q − Ep)2

+
∑

p

1

2

[
(Ep+q + Ep)

(
1 − ξp+qξp

Ep+qEp

)
+ iωn

(
ξp+q

Ep+q
− ξp

Ep

)]
1 + np+q + np

ω2
n + (Ep+q + Ep)2

, (A4)

where ξp ≡ εp + 
, 
 ≡ Un0, Ep ≡ √
εp(εp + 2
), and np

is the Bose distribution function np ≡ 1/(eβEp − 1).

APPENDIX B: VERTEX FUNCTIONS IN STATIC
AND ZERO-MOMENTUM LIMIT

We evaluate the vertex functions �ij in the static and low-
momentum limit. Noting that g11(p) = −g12(p) in this limit
[60], we find

lim
p→0

	11,22,14(p) = − lim
p→0

	12(p). (B1)

For the dimensionality of the system d = 3 at T 	= 0, all
the polarization functions show the infrared divergence as
	ij (p,0) ∝ 1/|p| for small p. Because of these properties,
the vertex functions �ij in the limit p → 0 converge as⎛

⎜⎜⎜⎜⎜⎝

�11(0)

�12(0)

�14(0)

�22(0)

�23(0)

⎞
⎟⎟⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎜⎜⎝

�′(0) + �′
11(0)

�′(0)

�′(0) − �′
11(0)

�′(0) + �′
22(0)

�′(0) − �′
22(0)

⎞
⎟⎟⎟⎟⎟⎠. (B2)

Here,

�′
ii(p) = U

1 − U	′
ii(p)

(i = 1,2), (B3)

�′(p) = U

2 − U	′(p)
, (B4)

where

	′
ii(p) = 	ii(p) − 	14(p) (i = 1,2), (B5)

	′(p) = 	11(p) + 	22(p) + 2	14(p) + 4	12(p). (B6)

Note that 	′
ii(p) and 	′(p) converge because the infrared

divergences of 	ij (p → 0) are canceled out owing to the
relation in Eq. (B1).

In the same manner, the effective interaction Ueff(p) and the
regular part of the density-density correlation function χR(p),
as well as the three-point vertices γ (p) and γ †(p), are also
found to converge in the static and zero-momentum limit as

Ueff(0) = U
2 − U	′(0)

3 − 2U	′(0)
, (B7)

χR(0) = − 1

U

1 − U	′(0)

2 − U	′(0)
, (B8)

γ (0) = �′(0)

U

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠. (B9)

Since all the vertex functions neither vanish nor diverge in the
static and zero-momentum limit, �0 also converges as

�011(0) = Un0
A�11

B�

, �012(0) = Un0
A�12

B�

, (B10)

where

A�11 = 6 + 9U	′(0) − U 2[16	′
11(0) + 5	′(0)]	′(0)

+ 7U 3	′
11(0)	′2(0),

A�12 = 6 − U [12	′
11(0) − 9	′(0)] − U 2[2	′

11(0)

+ 5	′(0)]	′(0) + 3U 3	′
11(0)	′2(0),

B� = [1 − U	′
11(0)][2 − U	′(0)][3 − 2U	′(0)].

Since A�11,�12 and B� remain finite in the limit p → 0, we
find �011(0) 	= 0 and �012(0) 	= 0.
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