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We demonstrate the existence of one- and two-dimensional (1D and 2D, respectively) bright solitons in
the Bose-Einstein condensate with repulsive dipole-dipole interactions induced by a combination of dc and ac
polarizing fields, oriented perpendicular to the plane in which the BEC is trapped, assuming that the strength of
the fields grows in the radial (r) direction faster than r3. Stable tightly confined 1D and 2D fundamental solitons,
twisted solitons in 1D, and solitary vortices in 2D are found in a numerical form. The fundamental solitons
remain robust under the action of an expulsive potential, which is induced by the interaction of the dipoles with
the polarizing field. The confinement and scaling properties of the soliton families are explained analytically. The
Thomas-Fermi approximation is elaborated for fundamental solitons. The mobility of the fundamental solitons
is limited to the central area. Stable 1D even and odd solitons are also found in the setting with a double-well
modulation function, along with a regime of Josephson oscillations.
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I. INTRODUCTION AND THE SETTING

The transition of ultracold dipolar atomic gases into
the Bose-Einstein condensate (BEC) has been demonstrated
in chromium [1,2], dysprosium [3], and erbium [4]. Also
promising for experiments in this direction is the use of CO [5],
ND3 [6], and OH [7,8] molecular gases. Unlike the usual
contact nonlinearity, which represents effects of collisions
between atoms, dipole-dipole interactions (DDIs) give rise
to long-range anisotropic forces. The DDIs account for a
number of remarkable phenomena in ultracold Bose gases
[9–11], such as various pattern-formation scenarios [12–16],
fractional domain walls [17], d-wave collapse [18,19], specific
possibilities for precision measurements [20–22], stabilization
of the dipolar BEC by optical lattices [23,24], the Einstein–de
Haas effect [25], etc. Dipolar BECs can be also used as matter-
wave simulators [26] to emulate, in particular, the creation
of multidimensional solitons via the nonlocal nonlinearity—a
subject which has also drawn much attention in optics, where
nonlocal interactions of other types (with different interaction
kernels) occur too [27–29]. In fact, the dipolar condensates
not only emulate the situation known in optics but also
make it possible to predict the existence of solitons with
novel properties. Recently, one- and two-dimensional (1D
and 2D, respectively) fundamental and vortical solitons in
dipolar BEC have been predicted in various continuous and
discrete settings [24,30–40]. A similar mechanism can create
1D solitons in the Tonks-Girardeau gas with attractive DDIs
between particles [41].

The formation of bright solitons, which was previously
demonstrated in BEC experimentally [42] and studied in detail
theoretically [43,44], requires the presence of self-attraction.
However, in models with local interactions it has been recently
demonstrated that bright solitons may be supported by the
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repulsive cubic nonlinearity in the D-dimensional geometry,
provided that the nonlinearity strength is modulated in space,
growing from the center to periphery at any rate faster than
rD , where r is the radial coordinate [45–48]. A similar result
was obtained for the local self-repulsive quintic nonlinearity,
in which case the nonlinearity strength must grow faster than
r2D [49]. A generalization for bright solitons in the 1D optical
model with a self-defocusing nonlocal thermal nonlinearity,
whose strength grows at |x| → ∞ due to the corresponding
modulation of the density of absorbing dopants, was recently
elaborated in Ref. [50].

The use of the spatially profiled repulsive nonlinearities
for the creation of multidimensional solitons is more than an
exploration of an exotic possibility. Indeed, 2D and 3D solitons
supported by usual self-attractive cubic terms are subject to
the instability against the critical or supercritical collapse,
which makes their stabilization a great challenge [51]. In
the case of the self-repulsion, the collapse is ruled out—in
fact, the fundamental 2D solitons and simplest vortices are
automatically stable in that case, if they exist [45–48].

The subject of the present work is to predict the creation of
stable bright solitons in nearly 2D or 1D dipolar condensates,
which are trapped, respectively (by means of an appropriate
optical potential), in a thin layer close to z = 0 (or in a “cigar”
around axis x), with the local strength of the repulsive DDI
growing fast enough at r ≡

√
x2 + y2 → ∞ (or at |x| → ∞).

This situation can be implemented in the case when the atoms
or molecules do not carry permanent electric or magnetic
dipole moments but rather ones induced by external electric
or magnetic fields [52–56]. To the best of our knowledge,
the formation of solitons or other nonlinear modes in the gas
of dipoles induced by inhomogeneous external fields was not
investigated previously in any setting.

We consider a combination of dc and ac external fields
directed along the z direction:

G(r) = F (r) [fdc + fac cos (ωt)] ez. (1)
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FIG. 1. (Color online) (a) The setting for the condensate trapped in the (x,y) plane. The polarizing field, with the strength increasing along
the radial coordinate, r = √

x2 + y2, is directed parallel to the z axis, inducing the local dipole moments oriented in the same direction. The
dashed curves designate lens-shaped charged grids (electrodes), which may create the necessary electrostatic field, such as the one given by
Eq. (9). In the latter case, the shape of the electrodes is determined by Eq. (10), and the full distribution of the electrostatic field E(2D), as given
by Eq. (9), is displayed in panel (b), in the plane of y = 0 (the scale is arbitrary).

Then, the the local dipolar moment g = g(t)ez of the atom or
molecule is determined by the intrinsic equation of motion,
considered here in the classical approximation [57]:

g̈ + ω2
0g + γ ġ = F (r)[λ(0)fdc + λ(ω)fac cos (ωt)], (2)

where ω0 is the intrinsic eigenfrequency and γ is the damping
coefficient, λ(0) and λ(ω) being effective static and dynamical
susceptibilities. We also consider a model combining perma-
nent and induced moments; see Eq. (21) below.

In the off-resonance situation, when the ac frequency, ω, is
not too close to ω0, the small dissipative term in Eq. (2) may
be neglected, which gives rise to an obvious solution,

goff(r,t) = F (r)

[
λ(0)

ω2
0

fdc + λ(ω)

ω2
0 − ω2

fac cos (ωt)

]
. (3)

On the other hand, the ac drive close to the resonance yields

gres(r,t) = λ(ω0)

γω0
F (r) sin (ω0t) . (4)

These results lead to the following time-averaged DDI
strengths:

〈goff(r1,t)goff(r2,t)〉

= F (r1)F (r2)

[
λ2(0)

ω4
0

f 2
dc + λ2(ω)

2
(
ω2

0 − ω2
)2 f 2

ac

]
, (5)

〈gres(r1,t)gres(r2,t)〉 = F (r1)F (r2)
λ2(ω0)

2γ 2ω2
0

. (6)

In addition to the DDIs, in the off-resonance situation
the field-induced dipole moments give rise to the effective
averaged potential of the dipole-field interaction:

V (r) = −〈goff ·G〉 = −F 2(r)

[
λ(0)

ω2
0

f 2
dc + λ(ω)

2
(
ω2

0 − ω2
)f 2

ac

]

≡ −χF 2(r), (7)

where χ is the effective average polarizability. In contrast, in
the resonant situation the substitution of expression (4) yields
V (r) = 0. With the spatially growing modulation function
F (r), potential (7) is expulsive (χ > 0), at ω2 < �2, with �2

defined by equation

�2

ω2
0

= 1 + λ(�)

2λ(0)

f 2
ac

f 2
dc

, (8)

and trapping (χ < 0) at ω2 > �2. Obviously, the expulsive po-
tential (EP) hampers the possibility of inducing self-trapping of
localized modes, while the trapping one makes it rather trivial.
Below, we chiefly focus on the setting with the self-trapping
determined by the DDIs in the “pure” form, when EP (7)
vanishes. This may correspond to ω = �, or to the resonance,
ω = ω0; see above. Nevertheless, it will also be demonstrated
that the spatially modulated DDI may support the self-trapping
even in the presence of EP (7), provided that its strength is weak
enough.

The electric field subject to the appropriate spatial mod-
ulation may be created by charged grids, forming a lenslike
capacitor, as shown in Fig. 1. Such capacitors can be built using
techniques developed for ion-holding microtraps [58,59]. In
particular, suitable separable solutions of the wave equation
for the ac electric field (ω �= 0) or Laplace equation for the dc
field (ω = 0) are{

E(2D)
z (x,z)

E(1D)
z (r,z)

}

= E0

⎧⎨
⎩

cos
(√

1/x2
0 + ω2/c2

0z
)
I0 (r/x0)

cos
(√

1/x2
0 + ω2/c2

0z
)

cosh (x/x0) ,

⎫⎬
⎭ cos (ωt)

(9)

for the nearly 2D and 1D condensates. Here, E0 is the field
amplitude, x0 is an arbitrary length scale, c0 is the light velocity
in vacuum, and I0 is the modified Bessel function. The shape
of the electrodes creating such dc fields is determined by
respective equipotential surfaces:

sin (z/x0) = ±1

2
U

{
[I0 (r/x0)]−1 , in 2D,

sech (x/x0) , in 1D,
(10)

where U is the voltage applied to the capacitor. Equation (10)
demonstrates that, for a given modulation scale x0 (a natural
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range of values is x0 ∼ 10 μm), the distance between the
electrodes may be made large enough, if this is required by
the design of the experimental setup. On the other hand, it is
relevant to mention that available technologies make it possible
to build capacitors with the separation between the electrodes
of approximately a few micrometers, while the lateral size of
the capacitor may be measures in hundreds of micrometers
[60].

The time-averaged potential of the DDI between two dipole
moments, g1 and g2, placed at positions r1 and r2, is

Vdd(R12)

= Cdd
〈g1(r1) · g2(r2)〉 r2

12 − 3 〈[g1(r1) · r12][g2(r2) · r12]〉
r5

12

,

(11)

where r12 = |r1 − r2|, the time averaging, 〈· · · 〉, is realized
as in Eqs. (5) and (6), and Cdd = 1/ (4πε0) or Cdd = μ0/4π

for the electric and magnetic dipole moments, respectively.
Because the dipole moments in the setting displayed in
Fig. 1 are parallel to the z axis and the condensate is
confined to the (x,y) plane, expression (11) simplifies to Vdd =
Cdd 〈g1(r1)g2(r2)〉 /r3

12. In the mean-field approximation, the
Hamiltonian of this 2D setting is [10]

H = h̄2

2m

∫
dr|∇ψ(r)|2

+ 1

2
Cdd

∫ ∫
drdr′f (r − r′)g(r)|ψ(r)|2g(r ′)|ψ(r′)|2

−χ

∫
drF 2(r)|ψ(r)|2, (12)

where ψ(r) is the single-particle wave function, m is the mass
of the particle, χ is the strength of EP (7) (if it is present), and
the kernel in the integral term is taken as

f (r − r′) = (ε2 + |r − r′|2)−3/2, (13)

where the regularization scale ε is provided by the thickness
of the confined layer in the z direction. The scaled Gross-
Pitaevskii equation (GPE), Eq. (19), is written below so that
x = 1 corresponds to physical distance ∼10 μm. Accordingly,
we set ε = 0.1 in Eq. (13). We do not include local (contact)
interactions here, to focus on the possibility of inducing
the self-trapping solely by means of the spatially modulated
repulsive DDI.

Hamiltonian (12) gives rise to the 2D nonlocal GPE,

i
∂ψ(r)

∂t
= −h̄2∇2

2m
ψ(r)

+Cddg(r)ψ(r)
∫

dr′f (r − r′)g(r′)|ψ(r′)|2

−χF 2(r)ψ(r). (14)

Obviously, Eq. (14) has three dynamical invariants, namely
the Hamiltonian, the total number of particles, which is
proportional to the norm of the wave function,

P =
∫

|ψ(r)|2dr, (15)

and the z component of the angular momentum,

M = i

∫
ψ∗(yψx − xψy)dr, (16)

where ψ∗ stands for the complex conjugate.
As shown in Fig. 1, the magnitude of the polarizing field

grows at r → ∞, which results in a growing local value of
the dipole moment. With the repulsive DDI, fundamental and
vortical solitons may self-trap in a finite isotropic area around
the center, due to the greater strength of the DDI-mediated
repulsion in the outer area. The 1D version of the system is
described by the obvious 1D reduction of Eqs. (14) and (13).

In reality, the indefinite growth of the polarizing field at
r → ∞ is not necessary. As shown below, solitons emerging
in such settings are well-localized modes, hence the supporting
profile of the external field should be actually created in a
finite area, as the presence of the field at large distances from
the center, to which the soliton extends no tangible tail, is
not needed. The same argument is relevant as concerns the
possible presence of EP (7). Formally speaking, trapped modes
cannot exist in the presence of the expulsive potential which
indefinitely grows at r → ∞. However, as is shown below, the
system considered in a finite area of a reasonably large size
may readily overcome the destructive effect of the EP.

Thus, our objective is to demonstrate the self-trapping
of localized modes (of the fundamental and vortical types
alike) in the present model via the action of the repulsive
DDI, assuming that the local dipole moments are induced
by the external field according to Eq. (1), with the field
growing from the center to periphery as rα . As we demonstrate
below analytically, an important difference of the present
nonlocal model from its local counterparts [45–49] is tight
superexponential localization of the solitons, see Eq. (23)
below, in contrast with the loose (power-law) localization in
the local models, which is determined by the Thomas-Fermi
approximation (TFA) [45],

|ψ(r)|2 ∼ r−α. (17)

Obviously, the sharp localization should help to observe
solitons in the experiment.

Another significant difference is that the minimum value
of the growth rate α, above which normalizable self-trapped
modes exist in the present model, is α(dd)

min = 3, and it does
not depend on spatial dimension D, see Eq. (24) below (we
actually use α = 4), unlike the above-mentioned minimum
value in the local model with the cubic nonlinearity:

α > α(local)
min = D, (18)

which actually follows from Eq. (17) [45]. Also drastically
different from the local model are scalings which characterize
dependences between the solitons’ norm and chemical po-
tential, as Eqs. (27) and (28) demonstrate in the following
sections.

To estimate a range of physical parameters relevant to the
setting considered here, we note that the intrinsic nonlinearity,
induced by the magnetic [9] or electric [61] DDIs, may be
roughly estimated as the contact interaction with an effective
scattering length, as ∼ mg2/h̄2. With characteristic values of
the molecular electric polarizability relevant to experiments
with ultracold gases, χ ∼ 100 Å

3
[62], and the corresponding
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molecular weight, ∼100, the magnitude of the effective
scattering length sufficient for the formation of localized
modes, as ∼ 0.1 nm [42], may be emulated by the polarizing dc
electric field in a range of E ∼ 10 kV/cm, which is definitely
accessible to the experiment. Further, results for the 1D and
2D settings, presented in Figs. 3 and 6, respectively, along
with the modulation profile (21) adopted below, demonstrate
that, within the area of the actual localization of the solitons,
the field increases from the center to periphery by a factor
�20, which is compatible with the above-mentioned range
of the values of E. Because the density of the condensate
is very low (∼1015 cm−3, in the most typical case), and the
contact of molecules with the field-inducing grids is prevented
by the optical trap, see Fig. 1, the electric breakdown of the
low-density gas is not a severe danger either in this setting.

As concerns the role of EP (7), an estimate suggests
that it can be made negligible in comparison with the DDI,
in the region where the self-trapped mode is localized, if
the condensate density is raised to values ∼1018cm−3 (then,
the number of molecules expected in the nearly-1D soliton
will be ∼106, instead of the most typical value ∼103 [42]).
Alternatively, the same result may be achieved by bringing
the ac drive to a proximity of the resonance with the relative
detuning |ω0 − ω| /ω0 ∼ 10−3; see Eq. (2).

Lastly, it is relevant to mention that a similar situation may
be expected in BEC with long-range interactions induced by
the resonant laser illumination [63]. However, the considera-
tion of that setting is beyond the scope of the present work.

The rest of the paper is structured as follows. In Sec. II,
analytical and numerical results are reported for basic types
of stable self-trapped modes which can be supported by the
spatially growing nonlocal repulsion, namely, 1D and 2D
fundamental solitons, twisted (spatially odd) modes in 1D,
and solitary vortices in 2D. The phenomenology of the soliton
modes is summarized by means of dependences of their
chemical potentials and spatial size on the norm. In most cases,
these dependences can be explained by means of a simple
analysis of scaling in Eq. (19) (with χ = 0). Stability of the
modes in the presence of EP (7) is considered too, as well as
the TFA for the 1D and 2D fundamental solitons. In Sec. III,
motion of shifted and/or kicked 1D and 2D fundamental
solitons around the center is considered. In Sec. IV, we
change the 1D setting from the single-well modulation of
the polarizing field to a double-well configuration and study
properties of solitons in that case (configurations of this
type were not studied previously even in models which
maintain bright solitons by means of the spatially growing
local repulsive nonlinearity). The paper is concluded by Sec. V.

II. SOLITONS SUPPORTED BY THE FIELD-INDUCED
REPULSIVE DIPOLE-DIPOLE INTERACTION

A. Analytical considerations

Stationary solutions to Eq. (14) with chemical potential μ

are looked for as ψ(t,r) = e−iμtφ(r). Setting, by means of
an obvious rescaling, h̄ = m = Cdd = 1, and, as said above,
scaling the distances so that x = 1 corresponds to physical
length ∼10 μm, the corresponding equation for the (generally,
complex) stationary wave function φ is derived in the following

form:

μφ(r) + 1

2m
∇2φ(r) − g(r)φ(r)

∫
dr′f (r − r′)g(r′)|φ(r′)|2

+χF 2(r)φ(r) = 0. (19)

As said here, we chiefly solved Eq. (19) with m = 1, but
coefficient m is kept as a free one for the consideration of
the TFA (see below), which corresponds to dropping the
kinetic-energy term in the equation, i.e., setting m → ∞. The
above-mentioned physical estimates imply that values P ∼ 1
of the scaled norm (15) correspond to the numbers of particles
N ∼ 103 and 104 in the 1D and 2D solitons displayed below;
see Figs. 3 and 6.

By multiplying Eq. (19) by φ∗(r) and integrating the result
over the space, it is easy to prove that the equation may
give rise to localized solutions only with μ > 0 (this proof
is similar to that in the model with the spatially modulated
strength of the local self-repulsive nonlinearity [46]), while the
usual bright solitons, in the uniform space with self-attractive
nonlinearities, always have μ < 0.

The tightness of self-trapping of the 2D modes is charac-
terized by their effective area,

Aeff = P 2

(∫
|φ(r)|4 dr

)−1

, (20)

where P is the norm introduced in Eq. (15). The 1D counterpart
of Aeff measures the effective width of the 1D mode.

To introduce the spatial modulation of the local dipole
moment, we assume that the strength of the polarizing field
and, accordingly, the local moment [see Eqs. (3) and (4)] grow
with r as

g(r) = rα + g0, (21)

with g0 � 0. Two interpretations of this modulation profile are
possible: (i) the constant term, g0, may be a permanent part of
the particle’s dipole moment, while rα is, in the appropriately
scaled notation, the addition induced by the external field
whose strength grows as rα , or (ii) the field profile is patterned
as in Eq. (21), the entire dipole moment being induced by the
field.

Solitons with a convergent norm exist if the growth rate
α in Eq. (21) exceeds a certain critical value, αmin. In the
local model with the strength of the cubic self-repulsive term
growing as rα , the TFA [see Eq. (17)] readily demonstrates
that the self-trapped modes are normalizable for α > D, as
stated in Eq. (18). In fact, this result is an exact one, which is
not predicated on the validity of the TFA [45].

In the present nonlocal model, another approximation
makes it possible to identify αmin. Indeed, assuming that the
soliton is represented by an axisymmetric localized solution
of Eq. (19), φ(r), or by its 1D counterpart φ (x), in the limit
of r → ∞ (or |x| → ∞, at D = 1), the asymptotic form of
Eqs. (19), (21), and (13) with χ = 0 yields

d2φ

dr2
+ D − 1

r

dφ

dr
+ 2μφ

− 4rα−3φ(r)
∫ ∞

0
|φ(r ′)|2g(r ′)(πr ′)D−1dr ′ = 0. (22)
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For α > 3, Eq. (22) takes the form of the 1D linear Schrödinger
equation, with coordinate r , and an effective potential growing
as rα−3. Accordingly, the asymptotic form of the relevant
solution to this equation is

φ(r) = φ0 exp

(
−4

√
QD

α − 1
r

α−1
2

)
, (23)

where constants φ0 and QD ≡ ∫ ∞
0 φ2(r)g(r)

(
πr ′)D−1

dr are
characteristics of the corresponding global solution. Thus, at

α > α(dd)
min = 3, (24)

the superexponentially localized self-trapped states exist for
either dimension, D = 1 or 2. Furthermore, an analysis of
Eq. (19), with regard to Eqs. (21) and (13), suggests that,
at α > 3, the solitons exist for all values of norm (15). In
particular, at P → 0 the soliton becomes broad, and Eq. (19)
gives rise to the following scaling relations between P , peak
density φ2

0 , and a characteristic radial size of the soliton, r0:

r0 ∼ P − 1
2α−1 , φ2

0 ∼ P
2α+D−1

2α−1 . (25)

On the other hand, at α < 3 Eq. (22) simplifies, in the lowest
approximation, to φ′′ + 2μφ = 0, which, obviously, cannot
have localized solutions with μ > 0. Detailed analysis of the
critical case, α = 3, is beyond the scope of the present work.
Below, we report numerical results with α = 4, for D = 1 and
2 alike.

B. One-dimensional solitons

The numerical solution of the 1D version of Eq. (19) with

g(x) = x4 + g0 (26)

was carried out by means of numerical code PCSOM elab-
orated in Refs. [64,65]. First, in Fig. 2 we present basic
results obtained in the model including EP (7) with strength χ .
Figure 2(a) demonstrates that, if χ is not small enough, the EP
generates a nonvanishing tail, which breaks the self-trapped
character of the mode. For the same case, Fig. 2(c) shows that
the presence of the EP makes the soliton unstable in direct
simulations, which were performed by adding small random
perturbations to the initial configuration. The instability is,
naturally, still stronger for a smaller value of the norm, as
shown in Fig. 2(b). On the other hand, the increase of the norm
makes the soliton robust due to the stronger nonlinearity, in
accordance with the estimate given at the end of Sec. I.

Next, we report the results obtained in the basic model
with χ = 0, to which the more general one may be reduced
as discussed in Sec. I. In this case, the numerical solution of
the 1D version of Eq. (19) produces families of fundamental
(spatially even) and twisted (odd) solitons. Typical examples
are displayed in Fig. 3 [higher-order (multipole) localized
1D modes can be easily found too]. In particular, Figs. 3(c)
and 3(g) show that the soliton families satisfy the so-called
anti-Vakhitov-Kolokolov criterion, dμ/dP > 0, which plays
the role of a necessary stability condition for bright solitons
in self-repulsive media [66]. Indeed, direct simulations of
the perturbed evolution of the solitons, performed in the
framework of Eq. (14), confirm that the entire families of
the fundamental and twisted solitons are stable; see examples
of the stability test in Figs. 3(b) and 3(f).

FIG. 2. (Color online) (a) Self-trapped modes found for different
values of strength χ of the expulsive potential (7), as indicated in
the panel, for scaled norm P = 1 and g0 = 0.2 in Eq. (26). Perturbed
evolution of the self-trapped modes is shown in panel (b) for P = 0.1,
in (c) for P = 1, and in (d) for P = 5. In the latter three panels,
χ = 0.1 and g0 = 0.2. The evolution is unstable for the weakly and
moderately nonlinear modes in panels (b) and (c) and stable for the
strongly nonlinear one in panel (d).

For g0 = 0, a simple analysis of Eq. (19) demonstrates
that μ scales as r−2

0 , whereas the effective self-trapping size,
r0 (provided that it is essentially larger than the transverse
thickness, ε), scales with the total norm, P , exactly as in
Eq. (25). From here, the following scaling can be predicted
for α = 4 and g0 = 0:

μ (g0 = 0) ∼ P
2

2α−1 ≡ P 2/7, (27)

which pertains to the fundamental and twisted modes alike, and
is quite close to the scaling exponent, ≈1/3, obtained as the
best fit of the numerically found dependences, μ(P ) (for both
the fundamental and twisted solitons), to power-law functions
in Figs. 3(c) and 3(g). This scaling is specific to the solitons
in the nonlocal model, while in the local one it is completely
different, μ ∼ P , for D = 1 and 2 alike [45].

The presence of g0 > 0 in Eq. (26) does not affect very
broad solitons corresponding to small P , hence the curves
corresponding to g0 = 0 and g0 = 0.2 in Figs. 3(c) and 3(g)
start from the same point at the smallest value of P . On the
other hand, for narrow solitons with large P , one can still use
the asymptotic equation (22) for the soliton’s tail (at |x| → ∞),
while inside the integral one may substitute g(x) ≈ g0, as
suggested by Eq. (26). This means that, for the narrow solitons,
scaling relations are obtained in the form of Eqs. (25) and (27),
but with 2α replaced by α. In particular, for α = 4 Eq. (27) is
replaced by

μ (g0 > 0) ∼ P
2

α−1 ≡ P 2/3, (28)

which is reasonably close to the empirically found fitting
exponent 5/6 quoted in Figs. 3(c) and 3(g).

As mentioned above, the derivation of the scaling rela-
tions (27) and (28) does not depend on the type of the
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(a) (b)

(b) (c)

(e) (f)

(g) (h)

FIG. 3. (Color online) (a) An example of a 1D fundamental
soliton with P = 1 and g0 = 0.2. (b) Stable perturbed evolution of
this soliton. (c) The chemical potential versus the total norm for
1D fundamental-soliton families with different values of g0 [see
Eq. (21)]. (d) The spatial width, Aeff , defined by the 1D counterpart
of expression (20), vs P for the same families of the fundamental
solitons. In panel (c), continuous curves display a fit of the numerical
results to power-law approximations. (e)–(h) The same as in panels
(a)–(d) but for twisted 1D solitons. In particular, panel (e) pertains to
P = 1 and g0 = 0.2.

self-trapped mode (fundamental/twisted), in agreement with
the numerical results presented in Figs. 3(c) and 3(g). Higher-
order multipole modes, which are not considered here, are
expected to feature the same scaling too. On the other hand,
the local model with the spatially growing strength of the
self-repulsion [45,46] suggests that instability may appear in
families of higher-order modes.

Further, Figs. 3(d) and 3(h) show that, quite naturally, the
spatial size of the fundamental and twisted modes decreases
with the increase of the total norm, cf. Eq. (25). In this
connection, Eq. (25) predicts, for α = 4, Aeff ∼ P −1/7 in 1D,

µ

(a) (b)

(c) (d)

FIG. 4. (Color online) (a) Profiles of 1D fundamental solitons for
a gradually increasing mass parameter, m [see Eq. (19)], and g0 = 0.
(b) The same for g0 = 0.2. Panels (c) and (d): The chemical potential
and spatial size of the soliton versus m for different values of g0. The
case of large m represents the Thomas-Fermi approximation in the
model with the long-range interactions.

which is in accordance with the empirically found scaling
exponents in Figs. 3(d) and 3(h).

C. The Thomas-Fermi approximation for
1D fundamental solitons

As said above, the TFA very accurately predicts properties
of fundamental solitons self-trapped in the model with the local
strength of the self-repulsive contact nonlinearity growing as
rα [45]. This fact suggests to try the same approximation in
the present model, which implies the consideration of the limit
of m → ∞ in Eq. (19). Unlike the local case, the TFA for the
nonlocal equation cannot be solved analytically.

Figure 4 shows a set of profiles of 1D fundamental solitons,
produced by the numerical solution of Eq. (19) for increasing
m, at different values of g0, along with the chemical potential
and effective size of the solitons as functions of m. The results
demonstrate that the TFA is very accurate at g0 > 0, but it fails
for g0 = 0. This conclusion is not surprising, as the validity
of the TFA is predicated on the presence of a nonvanishing
self-repulsive nonlinearity.

D. Numerical results for two-dimensional solitons

Similar to the 1D case, the numerical solution of the 2D
equation (19) was at first performed taking into regard the
EP, χ > 0. As Fig. 5 shows, it has been concluded that, like
in the 1D model, the 2D modes with a sufficiently strong
nonlinearity remain robust, in agreement with the estimates
presented at the end of Sec. I, while weakly nonlinear modes
are subject to strong instability.

Further, Eq. (19) with χ = 0 reveals families of stable
fundamental and vortical 2D solitons, which are displayed
in Fig. 6. Note that Fig. 6(b) shows the TFA for the 2D
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FIG. 5. (Color online) (a) The 2D self-trapped mode with χ =
0.1, P = 0.1, and g0 = 0.2. (b) Completely unstable perturbed
evolution of the mode from panel (a). (c) A strongly nonlinear
2D mode with χ = 0.1, P = 5, and g0 = 0.2. (d) Stable perturbed
evolution of the mode from panel (c).

fundamental soliton, with a flat area at the center, which is
a typical feature of that approximation.

The vortices are produced, as usual, by the substitution of
φ(r,θ ) = �(r) exp (iSθ ) in Eq. (19), where (r,θ ) are the polar
coordinates in the 2D plane, �(r) is a real amplitude function,
and S is integer vorticity (we here consider only S = 1). Note
that the asymptotic approximation (23) applies, at r → ∞, to
the vortices as well as to the 2D fundamental solitons.

The effective scaling of dependences μ(P ) for g0 = 0 in
Figs. 6(c) and 6(g), as well as the scaling for narrow solitons
(large P ) in the case of g0 > 0 in Eq. (21), which is also
presented in Figs. 6(c) and 6(g), is explained by the same
relations (27) and (28) which were derived above for the 1D
case, as the derivation produces the results which do not depend
on the dimension (the dimension cancels out in the process
of the derivation) or on the type of the soliton (fundamental
or vortical). In addition to that, a straightforward analysis of
the scaling for the effective area of the 2D solitons yields
Aeff ∼ P −2/7, which also agrees well with the empiric scaling
exponents indicated in Figs. 6(d) and 6(h).

Numerical tests of the perturbed evolution demonstrate that
both the fundamental and vortex soliton families are entirely
stable. Comparison to the model with the spatially modulated
coefficient in front of the local self-defocusing term [45,46]
suggests that instability may arise for higher-order vortices.
This issue is beyond the scope of the present work.

III. MOBILITY OF THE FUNDAMENTAL SOLITONS

As well as in the model with the spatially modulated
strength of the repulsive local nonlinearity [46], it is relevant
to consider motion of stable solitons, which can be naturally
initiated by a sudden shift of the soliton from the central posi-
tion and/or by kicking it. In this section, we study oscillatory

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 6. (Color online) Two-dimensional self-trapped modes ob-
tained in the model without the expulsive potential [χ = 0 in Eqs. (14)
and (19)]. (a) An example of the 2D fundamental soliton with P = 1
and g0 = 0.2. (b) The Thomas-Fermi approximation for the same
soliton, obtained from Eq. (19) with m = 104. (c) The chemical
potential of the fundamental 2D solitons vs their total norm at different
values of g0. (d) The effective soliton’s area Aeff [see Eq. (20)] vs
the total norm for different values of g0. (e) The amplitude profile
of the 2D vortex soliton for P = 1, g0 = 0.2, and vorticity S = 1.
(f) The phase distribution in this vortex. (g) The chemical potential of
the vortex-soliton family versus the total norm for different values of
g0. (h) The effective area, Aeff , vs the total norm for the same families
of vortical solitons.

and elliptic motion of 1D and 2D solitons, respectively, in the
absence of the EP in Eq. (14), χ = 0.

A. The 1D motion: Oscillations and destruction of the soliton

In the 1D case, the motion of the fundamental soliton was
initiated by a shift (x0), which corresponds to initial condition
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FIG. 7. (Color online) The evolution of a 1D fundamental soliton with P = 1 and χ = 0, which was initially shifted off the center by
x0 = 0.25. Panels (a), (c), (e), and (g) display top views of the evolution for g0 = 0,0.2,0.4, and 0.8, respectively. Panels (b), (d), (f), and (h)
are the center-of-mass trajectories of the moving solitons from panels (a), (c), (e), and (g), respectively, with the center-of-mass coordinate
defined as x(t) ≡ P −1

∫ +∞
−∞ x|ψ(x,t)|2dx.

ψ(x,t = 0) = φ(x + x0). Figure 7 displays generic examples
of the subsequent evolution of the shifted solitons, for different
values of g0 . In Figs. 7(a) and 7(b), pertaining to g0 = 0,
the soliton initially compresses itself and then approximately
keeps its shape, performing undamped, although apparently
irregular, oscillations around the center. In Figs. 7(c)–7(h) cor-
responding to g0 �= 0 (g0 = 0.2, 0.4, and 0.8), the frequency of
the oscillatory motion increases with g0, while the amplitude
of the center-of-mass oscillations gradually decreases, and the
soliton suffers a slow decay, in the course of the evolution.
The oscillating soliton features a gradual decay too with the
increase of the initial shift; see an example in Fig. 8(a).
Eventually, the soliton is quickly destroyed if the initial shift
exceed a certain critical value, as shown in Fig. 8(b).

B. The motion of 2D solitons: spiral trajectories

In the 2D case, one may expect the motion of a soliton,
considered as a quasiparticle, along an elliptic trajectory, which

FIG. 8. (Color online) (a) The evolution of the 1D fundamental
soliton with P = 1 and g0 = 0, which was initially shifted off the
center by x0 = 0.625. (b) Destruction of the soliton following the
initial shift by x0 = 1.5.

can be initiated by shifting the soliton from the center along the
x direction (by distance x0) and simultaneously kicking it (in
other words, imparting some velocity, η) in the y direction, i.e.,
setting ψ(r,t = 0) = φ(r − x0)eiηy . Figures 9 and 10 show
results of the simulations at different values of x0 and η.

As in the 1D case, the moving soliton maintains its shape
for small x0 and η but splits into fragments if either x0 or η

FIG. 9. (Color online) The evolution of the 2D fundamental
soliton (for P = 1, g0 = 0,χ = 0) initially shifted by x0 = 0.3 in
the x direction and kicked in the y direction by factor exp (iηy), with
η = 2. Panels (a)–(g) display snapshots of the amplitude distribution
at indicated moments of time. Panel (h) additionally displays the
phase distribution at the last moment of time shown, t = 50. Panel
(i) is the trajectory of the soliton’s center of mass over the time
interval 0 � t � 50. The definition of the center-of-mass position is
{x(t),y(t)} = P −1

∫ ∫ {x,y} |ψ(x,y,t)|2dxdy.
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FIG. 10. (Color online) The same as in Fig. 9, but for g0 = 0.2.

becomes too large. Therefore, we here discuss in detail only
the case of small x0 and η. Figures 9 and 10 show results of
such simulations for g0 = 0 and 0.2.

As well as in the 1D setting, g0 strongly affects the motion.
Figures 9(a)–9(g) show that, at g0 = 0, the soliton keeps its
shape and follows a stable elliptic trajectory for a relatively
long time; see Fig. 9(i). On the other hand, for g0 = 2, Fig. 10(i)
demonstrates that the soliton’s trajectory is an inward-winding
spiral, rather than a closed ellipse, and in this case the 2D
soliton relatively quickly returns to the center.

The soliton which has returned to the central position
maintains differential rotation in its outer layer, which is
necessary to conserve the angular momentum lent to the
system by the initial kick. This vortical structure exists without

FIG. 11. (Color online) (a) Examples of stable even (symmetric)
1D solitons in the model with the double-well modulation func-
tion (29), for P = 1, χ = 0, and g0 = 1 or 4. (b) Simulations of the
perturbed evolution of the even soliton with g0 = 1. (c) Stable odd
(antisymmetric) solitons with P = 1 and g0 = 1 or 4. (d) Simulations
of the perturbed evolution of the odd soliton with g0 = 1.

(a) (b)

FIG. 12. (Color online) (a) The Hamiltonian (energy) of the
even and odd 1D modes, trapped in the double-well modulation
profile (29), vs g0, for a fixed value of the total norm (P = 1). (b) The
degeneration point, gc

0, at which energies of the even and odd norms
become virtually equal, as a function of P . The inset indicates a fit
of the dependence to a power-law approximation.

appearance of a zero density at the center [see Figs. 10(g)
and 10(h)], which resembles known regimes of the differential
rotation in superfluids; see, e.g., Ref. [67].

IV. THE DOUBLE-WELL NONLINEAR POTENTIAL

A natural generalization of the single-well modulation
profile (26) is a double-well profile. In the 1D setting, it can
be defined as

g(x) = (x2 − √
g0)2, (29)

with two minima set at x = ±g
1/4
0 , where g(x) vanishes. An

incentive for the study of this modulation shape is search for
a possibility of the spontaneous symmetry breaking between
portions of the mean-field wave function trapped in the two
symmetric nonlinear potential wells and also a possibility of
Josephson oscillations between them [68]. Here we briefly
report results of this analysis performed in the framework of
1D equation (14) with χ = 0.

Numerical computations yield stable even and odd states
trapped in the double-well modulation profile (29). Typical
examples of such localized modes are shown in Fig. 11. The
comparison of the corresponding values of Hamiltonian (12),
as a function of parameter g0 in Eq. (29), is shown in Fig. 12(a).
It is concluded that the even mode represents the ground state,
as it corresponds to a minimum of the Hamiltonian, although

FIG. 13. (Color online) Irregular Josephson oscillations, initiated
by a 1D wave packet originally placed around one minimum of the
double-well modulation profile (29), with χ = 0. (a) Results of the
simulations initialized by ψ(x,t = 0) = √

2sech[4(x − g
1/4
0 )], with

g0 = 2 and total norm P = 1. (b) The corresponding evolution of the
half-norms, PL = ∫ 0

−∞ |ψ |2dx and PR = ∫ +∞
0 |ψ |2dx.
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the energies of the two states become practically equal when
g0 exceeds a certain critical value, gc

0; see Fig. 12(a). The
dependence of gc

0 on the total norm P is displayed in Fig. 12(b).
Within the explored parameter region, no stationary states

with broken symmetry (or broken antisymmetry) have been
found. On the other hand, robust but seemingly irregular
Josephson oscillations can be readily initiated by placing the
original matter-wave packet into one well. A typical example
of robust oscillations is displayed in Fig. 13.

V. CONCLUSION

The objective of this work is to explore possibilities for
the formation of 1D and 2D fundamental solitons and solitary
topological modes in the condensate of dipoles induced by
spatially inhomogeneous polarizing fields. Under physically
relevant conditions, this can be realized as self-trapping of
bright solitons and vortices the under the action of repul-
sive DDIs (dipole-dipole interactions) between the induced
dipoles. Motivated by the recent analysis reported for the
model with contact repulsive interactions [45–48], we have
demonstrated that this counterintuitive result is possible if
the local dipole moment of particles, induced by the external
fields perpendicular to the plane in which the condensate is
trapped, grows from the center to periphery faster than r3,
for both dimensions D = 1 and 2 (unlike the local model,
where the growth rate must be faster than rD). The setting also
includes the EP (expulsive potential), due to the interaction of
the induced dipoles with the polarizing field. The EP can be
eliminated by choosing an appropriate relation between the dc
and ac components of the field. Physical parameters have been
estimated for the realization of the setting by means of the
electric field. For modulation profile (21) with α = 4, families
of fundamental 1D and 2D solitons, 1D dipole modes, and 2D
vortices have been found in a numerical form, and their scaling
properties, which are essentially different from what was found
recently in the local models, were explained analytically. It
has also been demonstrated that the 1D and 2D fundamental
solitons remain robust in the presence of the EP, provided
that it is not too strong. The families of the trapped modes

considered here are entirely stable if the EP is eliminated.
In addition, the TFA (Thomas-Fermi approximation) was
developed for the 1D and 2D fundamental solitons. The
character of the solitons’ confinement is opposite to the
character of the repulsive nonlinearity: In the nonlocal model,
the solitons are self-trapped tightly (superexponentially), while
the self-trapping in the local model is loose (algebraic).

A fundamental 1D soliton, shifted from the center, performs
persistent oscillations if the initial shift is small enough,
while a large shift can destroy it. Similarly, shifted and
transversely kicked 2D solitons may feature persistent motion
along elliptic trajectories. The 1D double-well modulation
profile was considered too. In this case, both symmetric
and antisymmetric trapped modes are dynamically stable, the
symmetric ones realizing the ground state. In addition to that,
the double-well structure readily supports persistent, although
irregular, Josephson oscillations between the wells.

As an extension of this work, it may be interesting to
study higher-order (multipole) modes in the 1D setting, and
higher-order vortices in 2D. The effect of the EP on the
twisted and vortical modes may be interesting too. Another
relevant extension may deal with the interplay of the modulated
repulsive DDIs and contact interactions. Furthermore, it should
be quite interesting to study patterns supported by spatially
periodic modulations of the polarizing field, which may be
a specific ramification of the general concept of nonlinear
lattices which, thus far, were considered only in local systems
[69], expect for recent work [70], where bright solitons were
predicted in the 1D condensate of permanent dipoles under the
external field periodically changing its orientation along the
coordinate.
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T. Pfau, Phys. Rev. Lett. 108, 140402 (2012).
[15] M. Klawunn and L. Santos, Phys. Rev. A 80, 013611 (2009).
[16] A. I. Nicolin, Proc. Rom. Acad. Sci. A 14, 35 (2013); B. Nikolić,
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