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Vortex ring dynamics in trapped Bose-Einstein condensates
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We use the time-dependent Gross-Pitaevskii equation to study the motion of a vortex ring produced by phase
imprinting on an elongated cloud of cold atoms. Our approach models the experiments of Yefsah et al. [Nature
(London) 499, 426 (2013)] on 6Li in the Bose-Einstein-condensate regime where the fermions are tightly bound
into bosonic dimers. We find ring oscillation periods which are much larger than the period of the axial harmonic
trap. Our results lend further strength to Bulgac et al.’s arguments (arXiv:1306.4266) that the “heavy solitons”
seen in those experiments are actually vortex rings. We numerically calculate the periods of oscillation for the
vortex rings as a function of interaction strength, trap aspect ratio, and minimum vortex ring radius. In the
presence of axial anisotropies the rings undergo complicated internal dynamics where they break into sets of
vortex lines, then later combine into rings. These structures oscillate with a similar frequency to simple axially
symmetric rings.
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I. INTRODUCTION

Yefsah et al. [1] recently observed anomalously slow
oscillations of a nominal soliton in a harmonically trapped
fermionic superfluid. By illuminating half the cloud with
light, they generated a phase profile with a large jump.
This phase jump evolved into a localized density depletion
that oscillated with a period many times larger than the
period associated with the harmonic trap. This slow motion
is remarkable, as it exceeds previous theoretical calculations
of the oscillation frequency of a soliton [2,3] by an order
of magnitude. Recently, Bulgac et al. [4] hypothesized that
the experimental protocol produces a vortex ring instead of a
soliton. Through integrating time-dependent equations based
upon a superfluid density-functional theory, Bulgac et al.
showed that near unitarity the experimental observations are
consistent with this vortex ring hypothesis. Here we extend
this analysis to the Bose-Einstein-condensate (BEC) regime,
where the fermions are tightly bound into dimers.

To study this problem, we numerically evolve the time-
dependent Gross-Pitaevskii (GP) equation to simulate the
dynamics of vortex rings. We model the phase-imprinting
process and measure the period of oscillations of the vortex
ring as a function of interaction strength, trap aspect ratio, and
initial ring radius. We find that the period of oscillation for the
vortex ring is quantitatively consistent with the experimental
observations in the BEC regime.

In our simulations, the phase imprinting produces a soliton
[5] that decays into a vortex ring through a “snake instability.”
This instability has been explored in the past [5–9], as has the
structure and motion of individual vortex rings [10–22]. Here
we explore the full process in an elongated trap. An excellent
review of the theory of solitons and vortices in BECs can be
found in Ref. [23].

Experimentally, vortex rings have been observed in the
decay of dark solitons [24], in complex vortex-ring–soliton
oscillations [25,26], and in binary condensates [27].

II. PHYSICS OF VORTEX RINGS

The flow in a Bose-Einstein condensate is irrotational
(∇ × v = 0, where v = h̄

m
∇φ is the local velocity and φ is the

phase of the order parameter) except at line singularities. The
superfluid phase winds by 2πn, for integer n, when one moves
around one of these vortex lines. Here we study configurations
where these vortex lines form loops. In particular, consider
a cigar-shaped cloud, elongated along the ẑ axis, with a
vortex ring in a perpendicular plane, concentric with the
cloud. In Sec. III we numerically solve the time-dependent
GP equation to analyze such a ring, but its basic properties
can be understood from a semiclassical argument given by
Jackson et al. [18] for a vortex ring in a spherically symmetric
condensate. They find that each element of the vortex ring
moves with a velocity v:

v = vin(R)ẑ + ωpκ̂ × r, (1)

where κ̂ defines the direction of the circulation at the element.
The first term in Eq. (1) describes the induced velocity

vin(R) resulting from the sum of the velocity contributions
from each element on the ring. For a ring in a uniform
condensate, this induced velocity is a function of the ring
radius R and is given by vin(R) = h̄

2mR
[ln(8R/ξ ) − 0.615]

[14], where ξ is the coherence length. Thus the ring has an
inherent tendency to propagate along the z axis.

A cartoon of this physics comes from the two-dimensional
analog of a vortex ring: a vortex dipole consisting of two point
vortices: one with circulation +κ and the other with −κ . If
these are separated by a distance 2R, they move with a velocity
v = κ

4πR
[28].

The second term in Eq. (1) describes the Magnus force on
the ring caused by the harmonic trap. In the case of a straight
vortex line, this force leads to precession with frequency ωp.
Note that wp is not equal to any trap frequency; for instance, in
the Thomas-Fermi limit, a single vortex in a two-dimensional
condensate will precess with a frequency given by [29]

ωp = 3h̄ω2

4μ
ln

(
R⊥
ξ

)
, (2)

where ω is the trap frequency, μ = h̄2/2mξ 2 and R2
⊥ =

2μ/mω2.
A small ring (R � R⊥) beginning at z = 0 will have a

large velocity component in the positive z direction. As it
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moves in the z direction, the Magnus term, κ̂ × r, causes the
ring to grow. Once the ring radius is sufficiently large, the
Magnus force pushes the ring in the negative z direction. In
this manner the ring moves periodically. The two-dimensional
analog of this motion was observed in experiments by Neely
et al. [30].

While this model is too simple to produce a quantitative
prediction for the period of these vortex ring oscillations, it
captures the qualitative behavior of the vortex ring seen in
the numerical simulations discussed in Sec. III C. Moreover,
it predicts that the period should increase roughly as Tring ∼

1
ξ 2 ln(1/ξ ) ∼ gn/ ln gn ∼ g2/5/ ln g, where g is the interaction
strength and n is the density. This scaling is seen in our
simulations (see Fig. 3). We note that the period of dark-soliton
oscillations, Tsol = √

2Tz [31–33], where Tz is the trap period
in the z direction, is independent of g. For sufficiently large g

we expect slower oscillations for the vortex ring than the dark
soliton.

We also note that the vortex ring dynamics are highly
nonlinear and that the ring’s oscillation period is strongly
dependent on the minimum ring radius. As in Bulgac et al.’s
work [4], we find that smaller radii lead to shorter periods (see
Fig. 5). We also find that the oscillations are nonsinusoidal,
with a slight asymmetry between the motion to the left and to
the right.

III. NUMERICAL RESULTS

A. Simulation details

In this section we present results from numerical simula-
tions of the time-dependent GP equation:

ih̄∂tψ = − h̄2

2m
∇2ψ + Vt (r,z)ψ + 4πh̄2aN

m
|ψ |2ψ

+Vi(t,r,z)ψ, (3)

where N is the total number of particles, a is the scattering
length, and ψ is normalized such that∫

|ψ(�r)|2d3r = 1. (4)

Vt (r,z) = m
2 (ω2

r r
2 + ω2

zz
2) is a harmonic trapping potential,

and Vi(t,r,z) is a time-dependent phase-imprinting potential,
which we will describe below.

After rescaling the variables t → ωzt , �r → 1
az

�r where

az =
√

h̄
mωz

, and rescaling ψ → a
3/2
z ψ , we can rewrite the

GP equation in the dimensionless form:

i∂tψ = − 1
2∇2ψ + g|ψ |2ψ + 1

2 (λ2r2 + z2)ψ + Vi(t,r,z)ψ,

(5)

where λ = ωr

ωz
is the trap aspect ratio and g = 4πaN

az

parametrizes the interaction strength. As discussed in
Sec. III C, an experimentally relevant set of parameters is
λ = 6 and g = 3 × 104.

In Secs. III B and III C we assume axial symmetry, while
in Sec. III D we carry out full three-dimensional (3D) sim-
ulations, including slight trap asymmetries. We numerically
solve Eq. (5) using a split-step method. We use a square
grid, choosing our grid spacing sufficiently small that the
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FIG. 1. Condensate dynamics following phase imprinting with
g = 4000, λ = 4. Each graph shows the density |ψ(x,y = 0,z)|2,
where darker colors represent higher density. The dark soliton is
unstable and forms a vortex ring (seen as two zero-density cores) at
time t/Tz ≈ 0.16

dynamics are independent of the grid. We find for our
parameter range that it suffices to take δr = δz = 0.1. Smaller
grids are necessary for larger interactions. Similarly, we find
a time step δt = 10−3 suffices for preventing large phase
jumps between time steps, ensuring numerical stability. We
set Vi(t,r,z) = π

δt
�(t)�(δt − t)f (z) so that a sharp φ phase

jump is imprinted about the line z = 0 after the first time step.
Each simulation begins after first relaxing the system into the
ground state of the trapping potential using imaginary-time
propagation.

The resulting dynamics after phase imprinting can depend
sensitively on the precise shape of f (z). However, away
from the quasi-one-dimensional regime (λ � ng), we find
from our simulations that f (z) generically creates a soliton
that quickly decays into one (as in Fig. 1) or more vortex
rings via a snake instability. For simplicity and in keeping
with the experimental observations in Ref. [1] where there
is only one discernible density depletion, we choose f (z) =
1
2 [1 + tanh(z/δz)], where δz is our numerical grid spacing.
This protocol consistently results in only one long-lasting
vortex ring.

It is difficult to control the minimum radius Rmin of the
vortex ring using this phase-printing technique. Therefore, to
study the behavior of the vortex ring as function of Rmin, we
do not use phase imprinting but instead relax the gas to a state
with the following ansatz for its phase:

ψ(r,z)

|ψ(r,z)| = (r − Rmin) + iz√
(r − Rmin)2 + z2

. (6)
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FIG. 2. Half of a vortex ring oscillation with g = 4000, λ = 4.
Each graph shows the density |ψ(x,y = 0,z)|2, where darker colors
represent higher density. An arrow is shown pointing to the vortex
ring.

This ansatz closely approximates the phase of the vortex
rings created after phase imprinting and allows us to easily
investigate the ring behavior as a function of Rmin.

B. Example of snake instability and vortex ring dynamics

Figure 1 shows an example of the dynamics of the
condensate following phase imprinting. A soliton, seen as a
density dip extending axially through the condensate, travels
in the positive z direction and almost immediately begins
bowing outward near the center of the gas (see t/Tz = 0.04 in
Fig. 1). By time t/Tz = 0.16 the soliton has decayed via this
snake instability, leaving a vortex ring which is seen as two
zero-density cores in the y = 0 slice shown in Fig. 1.

Figure 2 shows an example of the vortex ring oscillations
that follow the decay of a soliton. At t/Tz ≈ 1.2 the vortex
ring is positioned at z = 0 and is traveling in the negative z

direction. The ring continues to travel in this direction until
t/Tz ≈ 1.8. After this time the ring radius expands to the
edge of condensate while the ring begins traveling back in the
positive z direction. The ring completes half of an oscillation
and returns to z = 0 at t/Tz ≈ 2.4. In the following section we
calculate the frequency of vortex ring oscillations as a function
of g, λ, and Rmin.

C. Period of vortex ring oscillations

Figure 3 shows a plot of the vortex ring oscillation period
as a function of interaction strength g with a trap aspect ratio
of λ = 4. Each point is computed by first preparing the vortex
ring with the phase-imprinting method discussed in Sec. III A
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FIG. 3. (Color online) Vortex ring oscillation period T (normal-
ized by the trap period Tz) vs interaction strength times the density gn

with a trap aspect ratio of λ = 4 after phase imprinting. As predicted
in Sec. II, T ∼ gn/ ln gn; the thick red curve shows a fit of the data
to this scaling.

and then calculating the number of time steps for a vortex
core starting at z = 0 to complete an oscillation and return to
z = 0. As predicted above, the oscillation period increases as
gn/ ln gn for large gn. Moreover, for g � 500, the vortex ring
oscillates at a period larger than the period for a dark soliton
in a BEC T = √

2Tz [31–33].
In Fig. 4 we plot the oscillation period of the ring as a

function of trap aspect ratio λ at constant interaction strength
g = 4000. The period decreases at larger aspect ratios, which
is consistent with observations in Ref. [1]. The explanation for
this trend is that our phase-imprinting method yields vortex
rings with smaller minimum radii at larger λ. As discussed in
Sec. II, the rings with smaller Rmin have smaller periods.

To explore the radius dependence of the ring dynamics,
we find the ring oscillation period as a function of Rmin

[see Eq. (6)] with g = 4000 and λ = 4 using the relaxation
procedure discussed in the last paragraph of Sec. III A. The
results are shown in Fig. 5, which clearly demonstrates that
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FIG. 4. (Color online) Vortex ring oscillation period T (normal-
ized by the trap period Tz) vs trap aspect ratio λ = ωr

ωz
after phase

imprinting with g = 4000. The thick red curve is an interpolation to
guide the eye.
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FIG. 5. (Color online) Vortex ring oscillation period T (normal-
ized by the trap period Tz) vs the minimum vortex ring radius Rmin

with g = 4000 and λ = 4. The thick red curve is an interpolation to
guide the eye.

rings with smaller Rmin have smaller periods; this is consistent
with a similar finding reported in Ref. [4].

Finally, we compare our simulations to the experiment in
Ref. [1]. Typical experimental parameters in the BEC regime
are Tr ≈ 14 ms, Tz ≈ 87 ms, total number of bosonic Fesh-
bach molecules N ≈ 1.1 × 105, Thomas-Fermi radius RT F =
(RT Fx

RT Fy
RT Fz

)1/3 = 135 μm, and 1
kF aF

≈ 2.6, where kF ≈
0.86 μm−1 is the Fermi wave vector and aF ≈ 0.448 μm is
the fermionic scattering length at B = 700G. Noting that a =
0.6aF [34], these parameters give λ = 6.2 and g = 3.08 × 104

in our dimensionless units.
We find that with these parameters the soliton created

after phase imprinting quickly decays into a vortex ring. The

period depends sensitively on the minimum ring radius (as
in Fig. 5), which in turn depends on the phase-imprinting
protocol. We can reproduce (within the reported error bars)
the experimentally measured period of T = 4.4 ± 0.5Tz by
relaxing to a vortex ring state using the ansatz in Eq. (6)
with Rmin = 1.2az. It is plausible that the particular phase
imprinting procedure used in the experiment yields a vortex
ring with a similar minimum ring radius.

D. Ring dynamics with axial asymmetry

To give a more complete picture, we relaxed our assumption
of axial asymmetry and performed fully three-dimensional
simulations with a trap potential given by Vt (x,y,z) =
1
2 [λ2(0.99x2 + y2) + z2]. We again find the vortex structure
moves periodically in the z direction (with roughly the same
period), but we find additional internal dynamics, some of
which is related to previous studies [35,36].

This evolution is illustrated by Fig. 6(a), which shows the
locations of nonzero vorticity at different times projected into
the x-y plane (here λ = 4, g = 4000). Figure 6(b) shows the
density of the condensate integrated over the x and y directions.
The system at time t = 0 contains a vortex ring of radius
R = 1.0az located at z = 0. After one half of an oscillation
(at t/Tz ≈ 1.4) the vortex ring breaks apart into two lines of
opposite vorticity extending along the x axis, which continue
to move together along the z axis. After reaching the edge of
the condensate, the vortex lines recombine into a ring which
then moves in the opposite direction along the z axis. Similar
behavior is seen over the range of parameters explored in
Sec. III C. From the axial density profiles in Fig. 6(b), however,
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FIG. 6. Vortex ring dynamics in the presence of a small perturbation to axial symmetry (Vt (x,y,z) = 1
2 [λ2(0.99x2 + y2) + z2]). Here

λ = 4, g = 4000, and the system is initialized with a vortex ring of radius R = 1.0az located at z = 0. (a) The locations of nonzero vorticity
at different times projected into the x-y plane. (b) The density of the condensate at different times integrated over the x and y directions,
n(z) = ∫

dxdyρ(x,y,z).
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none of this internal dynamics is apparent. In fact Fig. 6(b)
looks like an oscillating gray soliton.

IV. CONCLUSION

Using numerical simulations, we have found that dark
solitons created through phase imprinting in three-dimensional
BECs are unstable to become vortex rings and that these
vortex rings oscillate with much larger periods than solitons.
We numerically computed the period of these vortex ring
oscillations as a function of interaction strength, trap aspect
ratio, and minimum vortex ring radius. We found that our
results are qualitatively consistent with Jackson et al.’s [18]
semiclassical model of vortex rings for axially symmetric
potential traps. Slight perturbations to axial symmetry produce
negligible changes to the oscillation period of the ring but
cause the ring to break apart and recombine during oscillations.
Finally, we simulate the BEC regime of a recent experiment
claiming to have observed oscillations of “heavy” dark solitons
in cold Fermi gases [1]. The oscillation periods of vortex rings
in our simulations are quantitatively consistent with the periods
of the supposed solitons, and we therefore conclude that these
solitons are likely to be vortex rings or more complicated
objects, as shown in Fig. 6.

A key distinction between vortex rings and solitons, besides
their dynamics, is their density profile: a vortex ring appears
as two density dips in a two-dimensional profile, while a
soliton appears as a solid line of density depletion extending
across the condensate. In fermionic superfluids away from the
BEC regime, the density depletion associated with vortices
and solitons is small, as the cores are filled by normal fluid.
For superfluids initially away from the BEC regime, Yefsah
et al. [1] were forced to ramp the magnetic field to the deep
BEC regime in order to clearly observe any density depletion
in their gas after releasing it from the trap. We recommend
further experiments in the BEC regime where such ramps are

unnecessary. We note that previous experiments with BECs
have successfully distinguished vortex rings from dark solitons
using expansion imaging [24] and in situ imaging [26]. We also
note that several of the images in Ref. [1] are suggestive of
vortex rings or tangles. This is particularly true of the images
in the supplementary information section.

A less direct distinguishing feature of a vortex ring’s
dynamics is the asymmetry of its motion. For example, if the
ring is smaller when moving left to right, it will move faster
during that interval than on the return. In Fourier analysis of
the existing experimental data, this asymmetry would show
up as odd harmonics. We calculated the first odd harmonic
for the experimental parameters and, unfortunately, found it
too small to readily measure. Devising techniques to generate
vortex rings with a smaller minimum radius would improve
this situation.

Finally, we should mention one shortcoming of our mod-
eling. We find that for our axially symmetric simulations
the period of the vortex ring is sensitive to the imprinting
protocol, while the experiment finds very reproducible peri-
ods. Perhaps the more complicated structures in Sec. III D
yield more reproducibility. The computational cost of the
full 3D simulations have prevented us from studying this
in detail.
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