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Configuration-interaction Monte Carlo method and its application to the trapped unitary Fermi gas

Abhishek Mukherjee1,2 and Y. Alhassid1

1Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA
2European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Villa Tambosi, I-38123 Villazzano, Trento, Italy

(Received 17 April 2013; published 18 November 2013)

We develop a quantum Monte Carlo method to estimate the ground-state energy of a fermionic many-particle
system in the configuration-interaction shell model approach. The fermionic sign problem is circumvented by
using a guiding wave function in Fock space. The method provides an upper bound on the ground-state energy
whose tightness depends on the choice of the guiding wave function. We argue that the antisymmetric geminal
product class of wave functions is a good choice for guiding wave functions. We demonstrate our method for
the trapped two-species fermionic cold atom system in the unitary regime of infinite scattering length using the
particle-number projected Hartree-Fock-Bogoliubov wave function as the guiding wave function. We estimate
the ground-state energy and energy-staggering pairing gap as a function of the number of particles. We compare
our results with exact numerical diagonalization results and with previous fixed-node coordinate-space Monte
Carlo calculations.
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I. INTRODUCTION

The configuration-interaction (CI) shell-model approach
is widely used in nuclear, atomic, and molecular physics. It
accounts for both shell effects and correlations in finite-size
many-particle systems (see, e.g., Refs. [1,2]). The CI many-
particle model space for an N -fermion system is a truncated
space spanned by N -particle Slater determinants constructed
from a given finite single-particle basis. An effective CI
Hamiltonian is defined in this truncated space.

When the many-particle model space is sufficiently small,
the CI Hamiltonian can be diagonalized by conventional
methods. However, the combinatorial increase of the dimen-
sionality of the many-particle space versus the size Ns of the
single-particle basis and/or the number of particles N prohibits
direct diagonalization for largeNs and/or N . This difficulty can
be overcome in part by using quantum Monte Carlo methods
for which the computational effort scales much more gently
with the size of the single-particle model space. An example
is the auxiliary-field Monte Carlo (AFMC) method. The
AFMC approach has been applied within the CI framework
to nuclei [3–6] (where the method is known as the shell-model
Monte Carlo method), and more recently to the cold atomic
condensate in a harmonic trap [7].

Other quantum Monte Carlo methods include coordinate-
space (“r-space”) Monte Carlo methods, e.g., diffusion Monte
Carlo (DMC) and Green’s-function Monte Carlo (GFMC) [8].
These methods filter out the ground state with the help of an
appropriately defined projection operator or a propagator. A
GFMC method that works on a discrete lattice in coordinate
space (known as lattice GFMC) was also developed [9–11].

Here we introduce a configuration-interaction Monte Carlo
(CIMC) method that provides an upper bound on the ground-
state energy of a fermionic system in the CI framework. Our
method builds on techniques developed in the lattice GFMC
method. A discrete configuration space is defined by the
occupation numbers of the single-particle states and an initial
configuration-space wave function is propagated in imaginary
time. The sign problem is circumvented by introducing a
propagator that depends on a guiding wave function and keeps

the wave function positive semidefinite. The method yields
an upper bound on the ground-state energy whose accuracy
(as an estimate of the ground-state energy) depends on the
choice of the guiding wave function. We argue that the use
of antisymmetric geminal product (AGP) wave functions [12]
as guiding wave functions offers a good compromise between
accuracy and computational efficiency.

We demonstrate the CIMC method by applying it to the
trapped two-species fermionic cold atom system in the unitary
limit of infinite scattering length. We use the particle-number
projected Hartree-Fock-Bogoliubov (HFB) wave function (a
member of the AGP class) as the parameter-free guiding wave
function. Cold atomic gases have recently attracted much
interest both experimentally and theoretically [13,14]. The
interaction strength in these systems can be controlled by
tuning the scattering length near a Fano-Feshbach resonance.
Since these systems depend on a small number of parameters,
they are useful for testing many-body methods of strongly in-
teracting systems. The unitary limit is particularly challenging
since, in the absence of a small parameter, it is not amenable
to perturbative treatments.

II. THE CONFIGURATION-INTERACTION MONTE
CARLO (CIMC) METHOD

Our method consists of two main components: (i) projecting
on the ground-state wave function through a random walk in
configuration space, and (ii) circumventing the fermionic sign
problem with the help of a guiding wave function.

We assume a general CI Hamiltonian which includes only
two-body interactions

H =
∑
a∈S

εaa
†
aaa + 1

2

∑
abcd∈S

Vabcda
†
aa

†
bacad, (1)

where a
†
a creates a particle in the single-particle state labeled

by a. The set S of single-particle states is assumed to be finite
of size Ns .

We define an operator P by

P = 1 − �τ (H − ET ), (2)
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where ET is an energy shift (to be discussed later). This
operator can be used to propagate in imaginary time a wave
function in the many-particle space from τ to τ + �τ by

|�τ+�τ 〉 = P|�τ 〉. (3)

The ground-state wave function |�gs〉 can be projected out by
the repeated application of P on an initial wave function �0

that has a nonzero overlap with �gs, i.e.,

|�gs〉 = lim
τ→∞ |�τ 〉, (4)

provided the eigenvalues of P are between −1 and 1. The
latter condition implies that the time step �τ satisfies �τ <

2/(Emax − ET ), where Emax is the maximal eigenvalue of H .
Equation (4) is exact and there is no error that depends on the
size of the time step.

The method works in the N -particle Hilbert space that
is spanned by the set of all N -particle Slater determinants
constructed from the single-particle orbitals a ∈ S. We will
denote these Slater determinants or “configurations” by |n〉,
where n ≡ {na} and na = 0,1 is the occupation number of
orbital a. The one-step propagation (3) can be written in the
configuration representation as

�τ+�τ (m) =
∑

n

〈m|P|n〉�τ (n), (5)

where �τ (n) ≡ 〈n|�τ 〉 is the wave function representation in
configuration space. We rewrite the configuration-space matrix
elements of P in the form

〈m|P|n〉 = g(n)p(m,n), (6)

where

g(n) =
∑

m

〈m|P|n〉, (7)

and

p(m,n) = 〈m|P|n〉
g(n)

. (8)

We first consider the case when the matrix elements of P
are all non-negative, i.e., 〈m|P|n〉 � 0 for all m and n. Then
0 � p(m,n) � 1 with

∑
m p(m,n) = 1 and g(n) � 0, and we

can interpret p(m,n) for fixed n as a probability and g(n) as
a weight. This enables us to carry out the propagation of �τ

in (5) stochastically as follows. Assuming at a given time τ the
wave function �τ is non-negative in configuration space, i.e.,
�τ (n) � 0 for all n, the wave function �τ can be represented
as an ensemble of configurations n. According to (5) and the
non-negativity of the matrix elements of P , the wave function
remains non-negative at τ + �τ , i.e., �τ+�τ (m) � 0 for all
m. For each configuration n, a new configuration m is chosen
with probability p(m,n) and replicated with weight g(n). The
resulting ensemble of configurations {m} samples the wave
function |�τ+�τ 〉 at the next imaginary-time step τ + �τ .
We note that in CIMC, the diffusion in configuration space is
determined by the interaction part of the Hamiltonian, while
in coordinate-space Monte Carlo methods it is the kinetic part
which governs the diffusion.

After a sufficiently large number of time steps, the
contribution from excited states to |�τ 〉 becomes negligible.

Ensembles generated at subsequent time steps are considered
as representatives of |�gs〉 and a decorrelated subset of these
ensembles is used to calculate observables.

As mentioned above, the propagation with P filters
out the ground state when the time step satisfies �τ <

2/(Emax − ET ). This upper bound for �τ becomes smaller
with increasing N and/or Ns since Emax gets larger. Conse-
quently, the number of time steps required for decorrelation
and for projecting the ground state increases. This makes
the simple algorithm described above inefficient for large Ns

and/or N .
We overcome this latter difficulty by using an algorithm

proposed in Ref. [15]. We start by choosing a finite imaginary
time step δτ (which is different from �τ ). Assuming the
configuration n is a member of the ensemble at time τ ,
we describe the choice of the corresponding configuration
and its replication weight at time τ + δτ . We define a
propagation time δτp that is initially set to δτ and a weight
g that is initially set to 1. We then sample a time δτd for
an off-diagonal move from the (un-normalized) probability
distribution e−πdδτd , where πd = ∑

m�=n〈m|H − ET |n〉. If
δτd � δτp, then n remains unchanged in the next time step
and is replicated with the weight g = e−δτp

∑
m〈m|H−ET |n〉.

Otherwise, a new configuration n′ is chosen with proba-
bility 〈n′|H − ET |n〉/πd (n′ �= n), and the weight factor is
multiplied by e−δτd

∑
m〈m|H−ET |n〉. This process is repeated

with the replacements n → n′ and δτp → δτp − δτd until
we have δτd � δτp. This algorithm generates the probability
distribution p(m,n) and weight g(n) that correspond to the
propagator e−δτ (H−ET ) = lim�τ→0 Pδτ/�τ without any time
step errors due to the finiteness of δτ [11].

The above algorithm breaks down if p(m,n) < 0, i.e., if
〈m|H |n〉 > 0 for a given pair of configurations m �= n. For
a general CI Hamiltonian, this might be the case and is
the manifestation of the Monte Carlo sign problem for our
method.1

In continuum r-space Monte Carlo methods the sign
problem is circumvented with the help of a fixed-node
approximation, which can be used to obtain an upper bound
on the ground-state energy. However, in the CI approach the
Hilbert space is labeled by discrete quantum numbers. It was
shown in lattice GFMC that a fixed-node-like approximation
can be introduced to obtain an upper bound on the ground-state
energy also for discrete Hilbert spaces. In the following we
show how this can be formulated for a CI Hamiltonian.

We choose a guiding wave function �G and define for any
configurations n and m with �G(n) �= 0 the quantity

s(m,n) ≡ �G(m)〈m|H |n〉/�G(n). (9)

We then introduce a family of Hamiltonians Hγ defined over
configurations n with �G(n) �= 0 such that the off-diagonal

1An important exception is the pairing Hamiltonian, for which
a diffusion Monte Carlo algorithm free of a sign problem can
be formulated within the CI framework using the occupations of
time-reversed pairs [16,17].
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matrix elements are given by [9–11]

〈m|Hγ |n〉 =
{−γ 〈m|H |n〉 s(m,n) > 0,

〈m|H |n〉 otherwise,
(10)

while the diagonal matrix elements are

〈n|Hγ |n〉 = 〈n|H |n〉 + (1 + γ )
∑

m �= n
s(m,n) > 0

s(m,n). (11)

We note that Hγ=−1 = H . We define a γ -
dependent propagator Pγ for configurations n with
�G(n) �= 0 by

〈m|Pγ |n〉 = 1 − �τ�G(m)〈m|Hγ − ET |n〉/�G(n). (12)

Using Eqs. (10) and (11) in Eq. (12), the diagonal matrix
elements of Pγ are given by

〈n|Pγ |n〉 = 1 − �τ

⎛
⎜⎜⎜⎝〈n|H |n〉 − ET + (1 + γ )

∑
m �= n

s(m,n) > 0

s(m,n)

⎞
⎟⎟⎟⎠ (13)

and are non-negative for a sufficiently small �τ . The off-
diagonal matrix elements are

〈m|Pγ |n〉 =
{

γ�τs(m,n) s(m,n) > 0,

−�τs(m,n) otherwise.
(14)

Thus, for γ � 0 (and sufficiently small �τ ), the propagator
Pγ satisfies 〈m|Pγ |n〉 � 0 for any m and n, and is therefore
free of the sign problem. The stochastic projection algorithm
outlined above can then be generalized with the replacement
of 〈m|H |n〉 by �G(m)〈m|Hγ |n〉/�G(n). This stochastic
projection filters out the wave function �G(n)�γ (n), where
�γ (n) is the ground-state wave function of Hγ .

The ground-state energy Eγ of Hγ [in the nonsingular space
�G(n) �= 0] is an upper bound for the ground-state energy
E0 of the original Hamiltonian H for γ � 0. This result is
derived in Refs. [10,11] for the case when �G is nonzero for all
configurations in the Hilbert space. In the following we derive
this result for the case where �G(n) may vanish for certain
configurations (this is typically the situation for CI guiding
wave functions). In this case the propagator Pγ is nonsingular
only in the subspace of configurations n spanned by �G(n) �=
0. The Hamiltonian Hγ is also nonsingular in this subspace.
The energy Eγ is an upper bound for the ground-state energy of
H when restricted to this nonsingular subspace [10,11]. This
latter energy is an upper bound on E0 (which is the ground-state
energy of H in the full Hilbert space). Thus, Eγ is an upper
bound on E0.

It is seen from Eq. (12) that as long as the initial ensemble
includes only those configurations for which �G(n) �= 0,
the Monte Carlo projection does not reach configurations
m for which �G(m) = 0. Thus, the Monte Carlo projection
correctly finds the ground-state energy in the space where Pγ

is nonsingular and provides an upper bound on E0.
One can verify using Eqs. (10) and (11) that

〈�G|Hγ |�G〉 = 〈�G|H |�G〉. Since Eγ is the ground-state
energy of Hγ , Eγ � 〈�G|Hγ |�G〉 = 〈�G|H |�G〉, i.e., the
upper bounds on E0 given by Eγ are tighter than the variational
upper bound with �G.

The energies Eγ are estimated using the “mixed” estimate
for the Hamiltonian Hγ ,

Eγ =
∑

n EL(n)�G(n)�γ (n)∑
n �G(n)�γ (n)

≈ 1

NE

∑
i

EL(ni), (15)

where NE is the size of the ensemble {ni} rep-
resenting �G(n)�γ (n) and EL(n) = 〈�G|Hγ |n〉/�G(n) =
〈�G|H |n〉/�G(n) is the so-called local estimate of the energy.

The energy shift ET is used to control the size of the
configuration population. It is adjusted infrequently during
the evolution to keep the population of configurations roughly
constant and provides an independent estimate (the “growth”
estimate) of the ground-state energy of Hγ . However, its
statistical error is typically much larger than that of the mixed
estimate in Eq. (15).

The finite time step δτ is kept fixed throughout the entire
calculation. In principle, its value is arbitrary since the method
is free from time step errors. However, if δτ is too large,
then the configuration population undergoes large fluctuations
between consecutive time steps. On the other hand, if δτ is too
small, then the number of time steps required to decorrelate
the energy becomes very large. As a compromise we choose
an intermediate value for δτ .

A linear extrapolation of Eγ from any two values of γ � 0
to γ = −1 also provides an upper bound on E0 that is tighter
than the individual Eγ [18]. This follows from

H = H−1 = 1

γ2 − γ1

[
(1 + γ2)Hγ1 − (1 + γ1)Hγ2

]
(16)

implying that

〈�γ1 |H |�γ1〉 = 1

γ2 − γ1
[(1 + γ2)〈�γ1 |Hγ1 |�γ1〉

− (1 + γ1)〈�γ1 |Hγ2 |�γ1〉]. (17)

Using the standard Rayleigh-Ritz variational principle
we have E0 = 〈�GS|H |�GS〉 � 〈�γ1 |H |�γ1〉 and
Eγ2 = 〈�γ2 |Hγ2 |�γ2〉 � 〈�γ1 |Hγ2 |�γ1〉. Together with
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〈�γ1 |Hγ1 |�γ1〉 = Eγ1 we obtain

E0 � 1

γ2 − γ1
[(1 + γ2)Eγ1 − (1 + γ1)Eγ2 ]. (18)

The right-hand side in the above inequality is precisely the
linear extrapolation from any two values γ1 and γ2 to γ = −1.

We found that the best compromise between the tightness
of the upper bound and the size of the statistical error in the
extrapolation is obtained for γ1 = 0 and γ2 = 1. This choice
gives ECIMC = 2Eγ=0 − Eγ=1 as our best upper bound for the
ground-state energy E0.

The tightness of the energy upper bound is determined to a
large extent by the quality of the guiding wave function. If the
guiding wave function is the exact ground-state wave function
(i.e., �G = �gs), then Eγ = E0 for all γ . Furthermore, for
�G close to �gs the difference Eγ − E0 is second order in
�G − �gs [10]. Thus, the accuracy of the CIMC method can
be improved by systematically improving the quality of the
guiding wave function.

Ideally, �G should encode all our a priori knowledge
about the ground-state wave function. However, for the CIMC
method to be practical, we should be able to calculate
�G efficiently and accurately. As we discussed above, the
configuration space in which the stochastic projection is
carried out is determined by the condition �G �= 0. It is
preferable for this space to be sufficiently large so as to include
the dominant correlations.

In coordinate-space Monte Carlo methods, optimized
Slater-Jastrow or BCS-Jastrow wave functions are examples
of highly accurate yet efficient guiding wave functions. For a
CI Hamiltonian, a good choice is provided by the AGP class
of wave functions [12]. The most general AGP wave function
for an even N -particle system is given by

|�AGP〉 =
(∑

ab

φaba
†
aa

†
b

)N/2

|0〉, (19)

where |0〉 is the particle vacuum. The coefficients φab are the
“geminals” which encode information about the correlations
in the system. The AGP wave functions incorporate important
two-body correlations yet they are described by a single
Pfaffian, i.e., �AGP(n) is the Pfaffian of an N × N matrix
[19]. This latter property ensures their efficient numerical
evaluation. More recently, AGP wave functions have also
been used extensively in coordinate-space quantum Monte
Carlo calculations (see, e.g., in Ref. [20]). We emphasize that
while our estimate always provides an upper bound for the
ground-state energy, the tightness of this upper bound depends
on the choice of the guiding wave function and cannot be
predicted a priori.

III. APPLICATION TO THE TRAPPED UNITARY FERMI
GAS

To demonstrate the CIMC method, we consider the two-
species (labeled by spin up and spin down) fermionic cold
atom system, in which atoms with opposite spins interact via
a short-range interaction, modeled by a contact interaction
δ(r − r′). The CI many-body Hamiltonian of this system in an

isotropic harmonic trap is given by

H =
∑
i∈S

εi(a
†
i↑ai↓ + a

†
i↓ai↓) + gh̄ω

(
h̄

mω

)3/2

×
∑

ijkl∈S
〈ij |δ(r − r′)|kl〉a†

i↑a
†
j↓al↓ak↑, (20)

where ω, m, and εi are, respectively, the frequency of the
trap, the particle mass, and the single-particle energies in an
isotropic harmonic trap. The label i denotes a single-particle
state in orbital space and ↑,↓ denote spin-up and spin-down
particles.

The dimensionless coupling strength g for finite Ns is
determined by the condition that the two-particle ground-state
energy in the laboratory frame reproduces the exact energy [7].
In the unitary limit of infinite scattering length the exact
two-particle ground-state energy is 2h̄ω [21]. We note that
the renormalization of the contact interaction in a finite model
space is a nontrivial problem and there exist more rigorous
treatments of the effective interaction [22–24].

We choose the single-particle model space S to include all
single-particle orbitals within Nmax harmonic oscillator shells,
i.e., with energy εi � (Nmax + 3

2 )h̄ω. A model space with
Nmax = 9 has Ns = 440 single-particle states. The respective
many-particle space for N = 20 particles has dimension
∼1035.

For this system it is reasonable to assume that the dominant
correlations are in the pairing and particle-hole channels. A
wave function that includes these correlations is described by
the HFB approximation. The HFB wave function does not
conserve particle number, thus it is necessary to project it on a
fixed number of particles. We only consider here even-N spin-
balanced systems and odd-N systems with one unbalanced
spin-up particle. The particle-number projected Hartree-Fock-
Bogoliubov (PHFB) wave function (projection after variation)
belongs to the AGP class of wave functions. For the even-N
(N = 2n) system it is given by

|�e
PHFB〉 =

(∑
ijk

vk

uk

DikDjka
†
i↑a

†
j↓

)n

|0〉, (21)

where the matrix D describes the transformation to the canon-
ical basis, and uk,vk are the coefficients of the Bogoliubov
transformation in the canonical basis [25].

For the odd-N (N = 2n + 1) system, the wave function
belongs to the generalized AGP class of wave functions and is
given by

∣∣�o
PHFB

〉 =
(∑

i

Diba
†
i↑

) ⎛
⎜⎝∑

ij

k �=b

vk

uk

DikDjka
†
i↑a

†
j↓

⎞
⎟⎠

n

|0〉,

(22)

where b is the “blocked” spin-up orbital in the canonical
basis. The configuration-space representations of �e

PHFB(n)
and �o

PHFB(n) are determinants of n × n and (n + 1) × (n + 1)
matrices, respectively.

The particle-number projected Bardeen-Cooper-Schrieffer
(PBCS) and Hartree-Fock (HF) wave functions have similar
forms. In PBCS the D matrix is the identity, while in
HF vk/uk = θ (kF − |k|) with kF being the highest occupied
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FIG. 1. (Color online) The CIMC ground-state energy estimates
vs particle number N forNmax = 6 at unitarity using the renormalized
Hamiltonian described in the text for different choices of the guiding
wave function: PHFB (solid circles), PBCS (open squares), and HF
(open diamonds). The statistical errors are smaller than the size of
the symbols in all cases.

orbital in the canonical basis. Generally, the quantities Dij , uk ,
and vk have to be recalculated self-consistently depending on
the particular wave function we use, e.g., the values of uk,vk

in PHFB are different from their values in PBCS.
The PBCS wave function includes correlations in the

pairing channel only, while the HF wave function includes
correlations in the particle-hole channel only. We expect the
PHFB wave function, which includes correlations in both
channels to be superior to either of those. This expectation is
confirmed in Fig. 1 where we compare the CIMC ground-state
energy estimates at the unitary limit for different choices
of the guiding wave function: HF, PBCS, and PHFB in a
truncated model space of Nmax = 6 oscillator shells. The
energy estimates provided by the PHFB guiding wave function
are much lower than those of the HF and PBCS wave functions
for all values of the particle number N .

Next we investigate the quality of the PHFB wave function
as a guiding wave function. To this end, we compare in
Table I the CIMC energies using the PHFB as the guiding wave
function with the exact results for smaller values ofNmax and N

for which exact numerical diagonalization is possible [24,26].
We find that for an even (odd) number of particles the CIMC
energies are within 1% (2–3%) of the exact results.

For larger systems, exact numerical diagonalization is not
possible. However, r-space fixed-node DMC results are avail-
able [27–29]. In Fig. 2 we compare the CIMC ground-state
energies using Nmax = 9 (solid circles) with fixed-node DMC
calculations for N � 20. The CIMC ground-state energies
using Nmax = 9 oscillator shells are 0.5–3% higher than those
obtained in Ref. [27]. The ground-state energy estimates from
Ref. [28] (open diamonds) are typically slightly higher than
those in Ref. [27] (open squares) but with larger statistical
error. The latest state-of-the-art r-space fixed-node DMC
energies reported in Ref. [29] (open inverted triangles) further
improve the results of Ref. [27]. At Nmax = 9 the differences
between the CIMC energies for successive values of Nmax

become smaller than their statistical errors. We have not carried
out any Nmax → ∞ extrapolations in this work.

TABLE I. Comparison of the CIMC ground-state energies vs the
exact ground-state energies for a CI model space of Nmax = 3 and
Nmax = 8, and for several values of the particle number N . For the
CIMC energies, the numbers in parentheses denote the statistical error
in the last significant digit. The Nmax = 3 energies were obtained
using the OXBASH code [26], while the Nmax = 8 energies were
obtained using a serial version of the diagonalization code developed
in Ref. [24].

Ground-state energy
[units of h̄ω]

Nmax N CIMC Exact

3 6 8.639(7) 8.601
7 11.176(4) 11.021
8 12.292(7) 12.179

8 2 2.000(6) 2.000
3 4.391(4) 4.279
4 5.208(9) 5.138

In Fig. 3 we compare the energy-staggering pairing gaps
� calculated in the CIMC method with the pairing gaps
obtained from the r-space GFMC calculations of Refs. [27,28].
We have also included the pairing gaps obtained from the
density functional theory calculations of Ref. [30]. The energy-
staggering pairing gap for an odd-N system is defined by

� = E0(N ) − 1
2 [E0(N − 1) + E0(N + 1)], (23)

where E0(N ) is the ground-state energy for N particles. Our
results seem to be consistent with the results of Refs. [27,30],
although the CIMC statistical errors are much smaller than
the statistical errors of the fixed-node DMC calculations. The
nonsmooth behavior at N = 7 is probably due to the shell
closure at N = 8.

For the results shown here we used ∼2 × 105 independent
configurations for the calculation of each energy. In most
cases, the initial ensemble consisted of the noninteracting
ground state. We also verified in a few test cases that the
final result does not depend on the choice of the initial
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FIG. 2. (Color online) The ground-state energy at unitarity for
N � 20 particles. The CIMC results for Nmax = 9 (solid circles) are
compared with fixed-node DMC results of Ref. [27] (open squares),
Ref. [28] (open diamonds), and Ref. [29] (open inverted triangles).
The statistical errors are smaller than the size of the symbols.
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FIG. 3. (Color online) Energy-staggering pairing gap vs number
of atoms N . Our CIMC results for Nmax = 9 (solid circles) are
compared with similar gaps calculated in Ref. [27] (open squares),
Ref. [28] (open diamonds), and Ref. [30] (open triangles). The vertical
bars describe the statistical errors. The CIMC errors are smaller than
the size of the symbols.

ensemble. The calculations for Nmax � 4 were carried out on
a single processor and took up to a few hours. For Nmax > 4
the calculations were performed on a cluster. The largest
calculation with Nmax = 9 and N = 20 took about 900 cpu
hours. We choose δτ ∼ 0.1 for these calculations. With this
choice the number of time steps required to project the ground
state was ∼100 and the number of decorrelation time steps
was �5. We did not find any significant dependence of the
optimal δτ , projection time, or decorrelation time on Ns or N .

The nominal scaling of the computational effort for
the CIMC method with an AGP guiding wave function
is ∼N2(Ns − N )2 × N3 ∼ N5(Ns − N )2 where the factor
N2(Ns − N )2 originates in the maximal number of possible
nonzero matrix elements in Eq. (6) for a given n, while the
factor N3 is the computational effort required to calculate a
Pfaffian or a determinant of an N × N matrix. The prefactor
in this scaling can vary significantly depending on the type of
interaction. For example, in the system described above with
interactions between up and down spins only, there are only
(N/2)2{(Ns − N )/2}2 nonzero terms in Eq. (6) and we only
have to calculate the determinant of an N/2 × N/2 matrix.
Thus, the computational effort in this case is about two orders
of magnitude smaller than in the most general case.

IV. DISCUSSION AND CONCLUSION

It is interesting to compare our method with the constrained-
path Monte Carlo [31] and the full CI quantum Monte Carlo
[32] methods. Both of these methods perform a stochastic
projection of the ground-state wave function in Fock space

similar to our method. In the constrained-path Monte Carlo
method, the Hamiltonian is “linearized” with the help of the
Hubbard-Stratanovich transformation and the random walk is
carried out in the continuous space of the auxiliary fields. The
sign problem is circumvented with the help of a guiding wave
function. However, the mixed energy estimate in this method is
not an upper bound on the true ground-state energy. In the full
CI quantum Monte Carlo method, the random walk is carried
out in the discrete configuration space as in our method. No
guiding wave function is used in this method, and the sign
problem is mitigated using a configuration-annihilation algo-
rithm. However, the computational effort in this method scales
with the size of the many-particle space (i.e., it is exponential
in Ns and N ), although it is a fraction of the computational
effort involved in direct diagonalization methods.

In conclusion, we have introduced a CIMC algorithm
that provides an upper bound for the ground-state energy
of a finite fermionic system in the CI approach. The main
advantage of this method as compared with coordinate-space
DMC is that it can be also used to treat nonlocal interactions
for which the CI approach is more natural. We argue that
the AGP class of wave functions provides a good choice
for guiding wave functions. We demonstrate the CIMC
method for the trapped cold atom Fermi gas condensate at
unitarity using the PHFB wave function as a guiding wave
function. For a small number of particles and sufficiently
small number of single-particle orbitals, we find that the
CIMC ground-state energies are within a few percent of
the exact results. Our CIMC results for number of particles
N � 20 are consistent with previous coordinate-space DMC
calculations.

We emphasize that the CIMC method described here is
quite general and can be applied to other fermionic systems
such as cold atoms in a deformed trap and finite nuclei. It can
also be used to calculate properties other than the ground-state
energy such as the average occupation numbers. It will be
interesting to determine whether the energy upper bounds can
be improved by using other choices for the geminals in the AGP
wave function, or by using other classes of wave functions.
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