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Excitation properties and effects of mass imbalance in the BCS-BEC crossover regime of an
ultracold Fermi gas
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We investigate single-particle properties of a mass-imbalanced Fermi gas in the BCS (Bardeen-Cooper-
Schrieffer)–BEC (Bose-Einstein condensation) crossover region. In the presence of mass imbalance, we point
out that the ordinary T -matrix approximation, which has been extensively used to clarify various BCS-BEC
crossover physics in the mass-balanced case, unphysically gives a double-valued solution in terms of the superfluid
phase transition temperature Tc in the crossover region. To overcome this serious problem, we include higher
order strong-coupling corrections beyond the T -matrix level. Using this extended T -matrix theory, we calculate
single-particle excitations in the normal state above Tc. The so-called pseudogap phenomena originating from
pairing fluctuations are shown to be different between the light-mass component and heavy-mass component,
which becomes more remarkable at higher temperatures. Since Fermi condensates with hetero-Cooper pairs
have recently been discussed in various fields, such as exciton (polariton) condensates as well as color
superconductivity, our results would be useful for the further development of Fermi superfluid physics, beyond
the conventional superfluid state with homo-Cooper pairs.
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I. INTRODUCTION

Since the achievement of the superfluid phase transition
in 40K [1] and 6Li [2–4] Fermi gases, various possibilities
beyond this simplest s-wave pairing state have been discussed
in this field, such as a p-wave superfluid [5–13], the Sarma
phase [14–17], a dipolar Fermi condensate [18–22], and a
mass-imbalanced Fermi superfluid [23–41]. Although none
of these states has been observed yet, the high tunability
of cold Fermi gases makes us expect that some of them
may be realized in the near future. Once an unconventional
pairing state is obtained, one can study its superfluid properties
in a wide parameter region, by adjusting various tunable
parameters, such as the strength of a pairing interaction [42].
Since an ultracold Fermi gas is expected as a useful quantum
simulator for the study of strongly correlated fermion systems,
an unconventional superfluid Fermi gas would also contribute
to the further development of superfluid physics.

Among various possibilities discussed in ultracold Fermi
gases, in this paper, we pick up a hetero-pairing state in the
presence of mass imbalance [23–41]. In this state, Cooper pairs
are formed between different species with different masses,
which is quite different from the ordinary homo-Cooper pairs
in metallic superconductivity. This unique pairing state is
expected to realize the Sarma phase [39], where single-particle
excitations are gapless in spite of a nodeless s-wave superfluid
order parameter [14–17]. In addition, hetero-Cooper pairs
have also been discussed in various fields, such as an exciton
condensate in a semiconductor [43,44], exciton-polariton
condensate in a semiconductor microcavity [45–48], as well as
color superconductivity in a dense quark matter [49,50]. Thus,
the mass-imbalanced superfluid Fermi gas is related to various
aspects of Fermi superfluid physics. At present, gas mixtures
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of two different fermionic species [23–29], as well as 40K-6Li
hetero-pairs [25,28], have been realized.

In the current stage of research for a mass-imbalanced Fermi
gas, the achievement of the superfluid phase transition is one of
the most important issues. For this purpose, the so-called pseu-
dogap phenomenon (which has been extensively discussed in
the BCS-BEC crossover regime of a mass-balanced Fermi gas
[51–59]) would be useful, because this precursor phenomenon
of the superfluid instability enables us to see to what extent the
system is close to the superfluid phase transition. Thus, in this
paper, we examine single-particle excitations in the BCS-BEC
crossover regime of a mass-imbalanced Fermi gas, to clarify
pseudogap physics in this system.

Here, we point out some keys in considering a mass-
imbalanced Fermi gas. In the case of a noninteracting gas
mixture of N/2 light fermions (with mass mL) and N/2 heavy
fermions (with mass mH), both the components have the same
Fermi surface size at T = 0, as schematically shown in Fig. 1
(where N is the total particle number). Then, since a Cooper
pair is usually formed between a light fermion (σ = L) at the
momentum p and a heavy fermion (σ = H) at − p near the
Fermi surface (in the weak-coupling case), the mass imbalance
is not so serious for the pair formation. On the other hand,
at finite temperatures, the chemical potential μσ in the σ

component behaves as [60]

μσ (T ) = εσ
F

[
1 − π2

12

(
T

T σ
F

)2]
, (1)

where εσ
F = (3π2N )2/3/(2mσ ) and T σ

F = εσ
F /kB are the Fermi

energy and the Fermi temperature in the σ component,
respectively. The resulting effective Fermi momenta defined
by

k̃Fσ ≡
√

2mσμσ (T ) (2)

are different between the two components, which is similar to
an electron gas under an external magnetic field, as well as a
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FIG. 1. (Color online) Schematic single-particle dispersions
ξ pσ = p2/(2mσ ) − εσ

F of a light fermion (σ = L) and a heavy fermion
(σ = H). εσ

F and mσ are the Fermi energy and an atomic mass
of the σ component, respectively. In the absence of population
imbalance, both the components have the common Fermi momentum,
kF ≡

√
2mLεL

F =
√

2mHεH
F .

spin-imbalanced Fermi gas. In that sense, the temperature T

works like an effective magnetic field in the presence of mass
imbalance. In addition, since the Fermi degeneracy of each
component is dominated by the scaled temperature T/T σ

F , the
heavy fermions become closer to the classical regime than
the light-mass component. (Note that T/T H

F > T/T L
F when

mH > mL.) Thus, the pseudogap associated with strong pairing
fluctuations is expected to be more remarkable in the light-
mass component for a given temperature, although both the
components equally contribute to the formation of preformed
pairs, which is the origin of the pseudogap in the present
system.

The similarity between a mass-imbalanced Fermi gas and a
spin-imbalanced Fermi gas at finite temperatures also implies
that theoretical studies of the former system also meet the
same problem as that known in the latter [61–63]. That is,
in a spin-imbalanced Fermi gas, the Gaussian fluctuation
theory developed by Nozières and Schmitt-Rink [64–66],
as well as the (non-self-consistent) T -matrix approximation
[67], that have been extensively used to successfully explain
various BCS-BEC crossover physics in the absence of spin
imbalance, break down [61–63]. Indeed, we later show that
a mass-imbalanced Fermi gas also has the same problem. In
the spin-imbalanced case, Ref. [63] has recently presented a
minimal extension of the T -matrix approximation to overcome
this problem, by properly including higher order fluctuations
beyond the T -matrix level. The calculated spin susceptibility
in this extended T -matrix theory agrees well with the recent
experiment on a 6Li Fermi gas [63]. In this paper, we also
employ this strategy to assess the validity of the extended
T -matrix approximation in the mass-imbalanced case.

This paper is organized as follows. In Sec. II, we explain
our extended T -matrix approximation (ETMA) for a two-
component Fermi gas with mass imbalance. In Sec. III, we
evaluate the superfluid phase transition temperature Tc in
the BCS-BEC crossover region to see how the ETMA gives

improved results compared with the ordinary T -matrix approx-
imation. In Sec. IV, we calculate single-particle excitations in
the normal state above Tc to clarify effects of mass imbalance
on the pseudogap phenomenon. Throughout this paper, we set
h̄ = kB = 1, and the system volume V is taken to be unity.

II. EXTENDED T -MATRIX THEORY OF A
MASS-IMBALANCED FERMI GAS

We consider a two-component uniform Fermi gas with mass
imbalance, described by the Hamiltonian

H =
∑
p,σ

ξ pσ c†pσ c pσ

−U
∑

q

∑
p, p′

c
†
p+q/2,Lc

†
− p+q/2,Hc− p′+q/2,Hc p′+q/2,L. (3)

Here, c pσ is an annihilation operator of a Fermi atom with the
kinetic energy ξ pσ = ε pσ − μσ = p2/(2mσ ) − μσ , measured
from the Fermi chemical potential μσ , where the labels
σ = L,H distinguish between the light-mass (mL) component
and heavy-mass (mH) component. −U (<0) is a pairing
interaction, which is assumed to be tunable by a Feshbach
resonance [42]. We actually measure the interaction strength
in terms of the s-wave scattering length as , given by

4πas

m
= −U

1 − U
∑

p
m
p2

, (4)

where m = 2[m−1
L + m−1

H ]−1 is twice the reduced mass. In
this scale, the weak-coupling BCS regime and the strong-
coupling BEC regime are characterized by (kFas)−1 <∼ −1
and 1 <∼ (kFas)−1, respectively, where kF = (3πN )1/3 is the
Fermi momentum of a two-component gas of N Fermi atoms
(where N is the total number of Fermi atoms). The region
−1 <∼ (kFas)−1 <∼ 1 is called the BCS-BEC crossover region.

Strong-coupling corrections to single-particle excitations
are conveniently described by the self-energy �σ ( p,iωn) in
the single-particle thermal Green’s function,

Gσ ( p,iωn) = 1

iωn − ξ pσ − �σ ( p,iωn)
, (5)

where ωn is the fermion Matsubara frequency. In the extended
T -matrix approximation (ETMA) [63], the self-energy is
diagrammatically described as Fig. 2, which gives

�σ ( p,iωn) = T
∑
q,νn

	(q,iνn)G−σ (q − p,iνn − iωn), (6)

where νn is the boson Matsubara frequency. In Eq. (6), −σ

represents the opposite component to the σ component. (For
example, when σ = H, −σ means the L component.) The
particle-particle scattering matrix 	(q,iνn) in Eq. (6) describes
pairing fluctuations, having the form

	(q,iνn) = − U

1 − U
(q,iνn)
, (7)
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FIG. 2. (a) Self-energy correction �σ ( p,iωn) in the extended T -
matrix approximation (ETMA). The double-solid line describes the
dressed Green’s function Gσ in Eq. (5). In this panel, −σ means
the opposite component to the σ component. (b) Particle-particle
scattering matrix 	(q,iνn). The solid line denotes the bare Green’s
function G0

σ , and the dotted line describes the pairing interaction −U .

where


(q,iνn) = T
∑
k,ωn

G0
L(k + q/2,iνn + iωn)

×G0
H(−k + q/2,−iωn)

= −
∑

k

1 − f (ξk+q/2,L) − f (ξ−k+q/2,H)

iνn − ξk+q/2,L − ξ−k+q/2,H
(8)

is the lowest-order pair correlation function. In Eq. (8), f (ε) =
[eε/T + 1]−1 is the Fermi distribution function. G0

σ ( p,iωn) =
[iωn − ξ pσ ]−1 is the bare Green’s function describing a free
Fermi gas.

The ordinary (non-self-consistent) T -matrix approximation
(TMA) is obtained by simply replacing the dressed Green’s
function G−σ (q − p,iνn − iωn) in Eq. (6) with the bare one
G0

−σ (q − p,iνn − iωn). Diagrammatically, it corresponds to
the replacement of the double solid line (G−σ ) in Fig. 2(a) by
the single solid line (G0

−σ ).
The superfluid phase transition temperature Tc is deter-

mined from the Thouless criterion [68], which states that
the superfluid instability occurs when the particle-particle
scattering matrix 	(q,iνn) has a pole at q = νn = 0. The
resulting equation for Tc is given by

1 = UT
∑
k,ωn

G0
L(k,iωn)G0

H(−k,−iωn)

= U

2

∑
k

tanh[ξkL/(2T )] + tanh[ξkH/(2T )]

ξkL + ξkH
. (9)

We numerically solve the Tc equation (9) under the assumption
that NL = NH = N/2, where

Nσ = T
∑
p,ωn

Gσ ( p,iωn) (10)

is the number of Fermi atoms in the σ component. For a given
interaction strength, we self-consistently determine Tc, μL,
and μH from the coupled equations (9) and (10).

Once Tc is determined, the chemical potentials μL and μH

above Tc are simply determined from the number equation
(10). Then, the single-particle spectral weight Aσ ( p,ω), as
well as the density of states ρσ (ω), in the normal state
are evaluated from the analytic continued Green’s function

as [69]

Aσ ( p,ω) = − 1

π
ImGσ ( p,iωn → ω + iδ), (11)

ρσ (ω) =
∑

p

Aσ ( p,ω), (12)

where δ is an infinitesimally small positive number.

III. SUPERFLUID PHASE TRANSITION TEMPERATURE
AND EFFECTS OF MASS IMBALANCE

Figures 3(a1) and (a2) show the ETMA solutions of the
coupled equations (9) and (10) when mL/mH = 0.9. As in the
mass-balanced case, Tc gradually deviates from the mean-field
result (TMF) with increasing the interaction strength. In the
BEC regime, Tc approaches a constant value, which is well
described by the BEC phase transition temperature (TBEC) of a
Bose gas of NB = N/2 molecules with mass M = mL + mH,
given by

TBEC = 2π

M

(
NB

ζ (3/2)

)2/3

. (13)

The Fermi chemical potential μσ also exhibits the typical
BCS-BEC crossover behavior, as shown in Fig. 3(a2). Starting
from the weak-coupling regime, one sees that μσ gradually
decreases to be negative, as one passes through the BCS-BEC
crossover region. In the BEC regime, |μL + μH| approaches
the binding energy of a two-body bound state, Ebind =
1/(ma2

s ), as expected [where the effective mass m is defined
below Eq. (4)].

In contrast, the ordinary T -matrix approximation (TMA)
does not give the expected smooth BCS-BEC crossover in
the presence of mass imbalance. In Figs. 3(b1) and (b2),
we find that although the ratio mL/mH = 0.9 of the mass
imbalance does not so deviate from unity in this figure,
the TMA unphysically gives double-valued solutions around
the unitarity limit. We briefly note that a similar unphysical
result is also obtained in the Gaussian fluctuation theory [64]
(although we do not explicitly show the results here).

In a sense, the breakdown of the TMA shown in Fig. 3(b1)
and (b2) has been already expected from the similarity between
the mass-imbalanced system and the spin-imbalanced one.
As another viewpoint, however, we point out that the TMA
involves an internal inconsistency in the presence of mass
imbalance. To see this in a simple manner, we replace the
particle-particle scattering matrix 	(q,iνn) in Eq. (7) by the
bare interaction −U . In this case, the ETMA self-energy
(�ETMA

σ ) and the TMA self-energy (�TMA
σ ) are simplified as,

respectively

�ETMA
σ = −UT

∑
p,ωn

G−σ ( p,iωn) = −UN

2
, (14)

�TMA
σ = −UT

∑
p,ωn

G0
−σ ( p,iωn) = −UN0

−σ , (15)

where N0
σ = T

∑
p,ωn

G0
σ ( p,iωn). The ETMA self-energy in

Eq. (14) reasonably describes the situation that a fermion
in the σ component interacts with N/2 fermions in the
−σ component. However, in the TMA case in Eq. (15),
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FIG. 3. (Color online) Self-consistent solutions of the coupled equations (9) and (10) when mL/mH = 0.9. (a) Extended T -matrix
approximation (ETMA). (b) T -matrix approximation (TMA). The upper panels show Tc, and the lower panels show the Fermi chemical
potential μσ . TMF is Tc in the weak-coupling BCS theory. εF(=TF) is the Fermi energy (Fermi temperature) of an assumed two-component gas
of N = NL + NH Fermi atoms with mass m.

N0
−σ (which is evaluated by the bare Green’s function)

is usually different from N/2. Then, for example, in the
extreme case with μL > 0 and μH = 0 at T = 0 [which
gives N0

L = (2mLμL)3/2/(6π2) > 0 and N0
H = 0], Eq. (15)

unphysically gives that, while a heavy fermion interacts with
light fermions (�TMA

H �= 0), a light fermion behaves as a free
particle (�TMA

L = 0), although the interaction occurs between
the two components. Indeed, using Eq. (15) in the number
equation (10), we obtain a singular behavior of μL and μH

around μH = 0, as shown in Fig. 4, which is somehow similar
to the singularity seen in Fig. 3(b2).

Figure 5(a) shows the phase diagram of a mass-imbalanced
Fermi gas obtained in the ETMA. The superfluid phase
transition temperature Tc decreases, as the ratio mL/mH

decreases. In the BEC regime, the superfluid phase transition
always occurs, irrespective of the value of mL/mH. Indeed,
rewriting Eq. (13) as

TBEC = 4mL/mH

[1 + (mL/mH)]2
× 0.218TF, (16)

we find that TBEC monotonically decreases to only vanish in
the limit mL/mH → 0.

On the other hand, Fig. 5(a) shows that Tc vanishes at a
finite value of mL/mH(>0) in the BCS regime. Rewriting the
kinetic energies ξ pL,ξ pH in the forms

ξ pL = m

mL

(
p2

2m
− μ

)
− h, (17)

ξ pH = m

mH

(
p2

2m
− μ

)
+ h (18)

(where μ = [μL + μH]/2), one finds that the system is similar
to that under an effective magnetic field, given by

h = mLμL − mHμH

mL + mH
. (19)

 0

0.3

0.6

0.9

1.2

 0  1  2  3

μL/εF

μH/εF

UN/εF

FIG. 4. (Color online) Calculated chemical potential μσ , when
the self-energy �TMA

σ in Eq. (15) is used in the number equation (10).
We set mL/mH = 0.9 and T = 0.
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FIG. 5. (Color online) Calculated superfluid phase transition
temperature Tc and effects of mass imbalance. (a) ETMA.
(b) Mean-field theory. The dashed line shows TBEC in Eq. (13). In
panel (a), Tc discontinuously vanishes in the BCS side, when the
ratio mL/mH becomes smaller than a critical value, which is shown
as the dotted lines.

Equation (19) is usually finite when mL �= mH, except for a
free Fermi gas at T = 0. Then, the mismatch of the Fermi
surfaces between the two components occurs, leading to the
vanishing Tc in the BCS regime.

However, in quantitatively evaluating this pairing-breaking
effect, one should note that the ETMA uses the bare Green’s
function G0

σ ( p,iωn) in the particle-particle scattering matrix
	(q,iνn) in Eq. (7). As a result, although the ETMA number
equation (10) includes many-body corrections through the self-
energy �σ ( p,iωn), the Tc equation (9) is still at the mean-field
level.

A problem coming from this inconsistency is that the
above mentioned mismatch of the Fermi surfaces may be
overestimated in the Tc equation. To see this in the BCS regime,
we conveniently introduce the effective radius k̄Fσ of the Fermi
sphere in the σ component [70,71] from the pole of the analytic
continued dressed Green’s function at ω = 0 as

k̄Fσ =
√

k̃2
Fσ + 2mσ�σ (k̄Fσ ,iωn → 0 + iδ)]

� k̃Fσ + mσ

k̃Fσ

�σ (k̃Fσ ,iωn → 0 + iδ), (20)

where k̃Fσ = √
2mσμσ . In obtaining the last expression, we

have assumed a small self-energy. At very low temperatures,
the Fermi surface sizes of the light-mass and heavy-mass
components should be almost the same (k̄Fσ=L � k̄Fσ=H) in
order to satisfy NL = NH = N/2. [We confirm this from
the analyses on the spectral weight Aσ ( p,ω) in Sec. IV.]

In this case, noting that the second term in the last line in
Eq. (20) depends on σ , one expects that k̃F,σ=L �= k̃F,σ=H. Since
k̃Fσ = √

2mσμσ gives the effective Fermi surface size in the
bare Green’s function, the Fermi surface mismatch occurs in
this Green’s function, despite that such a magnetic field effect
is weak in the dressed Green’s function. Since the ETMA Tc

equation (9) uses the bare Green’s function, this inconsistency
is considered to overestimate the suppression of Tc in the BCS
regime.

The above discussion indicates the importance of the
consistent treatment of the number equation and the Tc

equation in quantitatively evaluating Tc in a mass-imbalanced
Fermi gas. In this sense, the mean-field BCS theory consisting
of the Tc equation (9) and the mean-field number equation,

Nσ = T
∑
p,ωn

G0
σ ( p,iωn), (21)

is consistent, because both the equations use the bare Green’s
function G0

σ ( p,iωn). In this theory, we always obtain a
finite Tc irrespective of the value of mL/mH, as shown in
Fig. 5(b). Although the mean-field theory cannot describe
the BCS-BEC crossover behavior of Tc, it would be valid
for the weak-coupling regime, so that this result also implies
the overestimation of the effective magnetic field effect in
the ETMA. To improve this point, it would be effective to
employ the self-consistent T -matrix theory [72], where the
dressed Green’s functions are also used in the Tc equation.
We will discuss this in our future paper [73]. In this paper,
we examine single-particle properties of a mass-imbalanced
Fermi gas within the framework of the ETMA.

IV. SINGLE-PARTICLE EXCITATIONS IN A
MASS-IMBALANCED FERMI GAS

Figure 6 shows the single-particle density of states ρσ (ω) in
the BCS-BEC crossover regime of a mass-imbalanced Fermi
gas at Tc. In the BCS side at (kFas)−1 = −0.5, one sees dip
structures in both the light- and heavy-mass components.
Since the superfluid order parameter vanishes at Tc, these
are pseudogaps originating from pairing fluctuations. The
pseudogap structures become more remarkable for a stronger
pairing interaction. In the BEC regime when (kFas)−1 = +1,
both ρL(ω) and ρH(ω) exhibit finite gaps (∼εF) associated with
the binding energy of a two-body heteromolecule.

Figure 7 shows the density of states in the mass-balanced
case. From the comparison of this figure with Fig. 7, pseudogap
effects on the density of states are very similar between the
mass-imbalanced case and the mass-balanced case.

This similarity at Tc is also seen in the single-particle
spectral weight Aσ (p,ω). In the mass-balanced case shown
in Figs. 8(a1)–8(a3), the spectral peak line gradually deviates
from the free particle dispersion with increasing the interaction
strength [panels (a1) and (a2)]. In the unitarity limit [panel
(a2)], the spectral peak around ω = 0 is affected by the
pseudogap effect [53–55]. In the BEC regime [Fig. 8(a3)],
the spectral weight exhibits a double-peak structure, which
just corresponds to the gap in Fig. 7 at this interaction strength.
These typical pseudogap behaviors in the BCS-BEC crossover
region [51–59] are also seen in both the light-mass component
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FIG. 6. (Color online) Calculated density of states ρσ (ω) at Tc, when mL/mH = 0.5. (a) Light-mass component. (b) Heavy-mass component.

and the heavy-mass component of a mass-balanced Fermi gas,
as shown in Figs. 8(b1)–8(b3) and 8(c1)–8(c3), respectively.

Since the dressed Green’s function Gσ is used in Aσ (p,ω)
[see Eq. (11)], the effective radius k̄Fσ of the Fermi sphere
in Eq. (20) is directly related to the momentum at which the
peak line in Aσ ( p,ω) crosses the zero-energy line (ω = 0).
Although the precise determination of this quantity from
Aσ ( p,ω) is actually not easy because of the pseudogap effect
around ω = 0, we can still roughly estimate k̄Fσ in the unitarity
limit from Figs. 8(b2) and 8(c2) as

k̄Fσ=L � k̄Fσ=H � kF. (22)

Thus, as far as we treat the dressed Green’s function Gσ in
Eq. (5), the Fermi surface mismatch is almost absent even in
the unitarity limit at Tc. On the other hand, by evaluating k̃Fσ

in Eq. (2), we obtain

k̃FσL =
√

2mLμL = 0.68pF 	 k̃FσH =
√

2mHμH = 0.14pF.

(23)

As mentioned previously, this Fermi surface mismatch in
the bare Green’s function G0

σ directly affects the ETMA Tc

equation (9), leading to the suppression of Tc. When the
dressed Green’s function Gσ is also used in the Tc equation,
such a depairing effect would be much weaker.

In the ordinary T -matrix approximation, it has been shown
that the pseudogap effect can be understood as a particle-
hole coupling effect induced by pairing fluctuations [53]. To
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FIG. 7. (Color online) Calculated density of states ρ(ω) in the
absence of mass imbalance (mL/mH = 1).

see how this picture is obtained in the present ETMA, it
is convenient to approximate the self-energy �σ ( p,iωn) in
Eq. (6) to

�σ ( p,iωn) � −G−σ (− p,−iωn)�2
pg

= �2
pg

iωn + ξ−p,−σ + �−σ (− p,−iωn)
. (24)

Here, �2
pg ≡ −T

∑
q,νn

	(q,iνn) is the so-called pseudogap
parameter [51,53,56,74–76]. In Eq. (24), we have used the
fact that pairing fluctuations described by 	(q,iνn) are en-
hanced in the low-momentum and low-energy region near Tc.
Equation (24) gives

�σ ( p,iωn) = �̃2
pgσ ( p,iωn)

iωn + ξ p,−σ

, (25)

where we have introduced the ETMA pseudogap parameter,

�̃2
pgσ ( p,iωn) = 2�2

pg

1 +
√

1 − 4�2
pg

(iωn−ξ p,σ )(iωn+ξ p,−σ )

. (26)

Substituting Eq. (25) into Eq. (5), we obtain the BCS-type
Green’s function,

Gσ ( p,iωn) = 1

iωn − ξ p,σ − �̃2
pgσ ( p,iωn)

iωn+ξ p,−σ

, (27)

which just exhibits the expected coupling between the particle
branch (ω = ξ p,σ ) and the hole branch (ω = −ξ p,−σ ) by the
ETMA pseudogap parameter �̃pgσ ( p,iωn). We briefly note
that Eq. (27) is reduced to the previous result in the T -matrix
approximation [53], when one retains the term to O(�2

pg) in
Eq. (26).

However, since Eq. (27) only involves the coupling be-
tween the bare particle band (ω = ξ p,σ ) and bare hole band
(ω = −ξ p,−σ ), this approximate treatment is not enough to
quantitatively describe the pseudogapped spectral weight in
the BCS-BEC crossover region. Indeed, in the unitarity limit of
a mass-imbalanced Fermi gas with mL/mH = 0.4 at Tc (where
the ETMA gives μL = 0.73εF and μH = −0.07εF), while
Figs. 9(a1) and 9(b1) show that the particle-hole coupling
occurs around p = 0.9kF, the bare dispersion of the light-mass
component crosses the zero-energy line (ω = 0) at k̃F,L =√

2mLμL = 0.5kF, and that of the heavy-mass component has
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FIG. 8. (Color online) Calculated intensity of single-particle spectral weight Aσ ( p,ω) at Tc. Panels (a1)–(a3) show the mass-balanced case.
Panels (b1)–(b3) (light-mass component) and (c1)–(c3) (heavy-mass component) show the mass-imbalanced case when mL/mH = 0.5. We
take the interaction strengths as (kFas)−1 = −0.5 (uppermost panels), (kFas)−1 = 0 (middle panels), and (kFas)−1 = 1 (lowest panels). The
spectral intensity is scaled by ε−1

F = 2m/k2
F. This normalization is also done in Figs. 9, 12, and 14.

no effective Fermi momentum k̃F,H (because μH = −0.07εF <

0). Thus, when we use the ETMA results for μσ in Eq. (27), the
particle-hole coupling at p � 0.9kF seen in the upper panels in
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FIG. 9. (Color online) Comparison of the single-particle spectral
weight Aσ ( p,ω) in the unitarity limit at Tc when mL/mH = 0.4.
The upper panels are obtained in the ETMA, and the lower
ones show the results when the static approximation in Eq. (27)
is used. The right and left panels show σ = L and σ = H, re-
spectively. In each panel, the solid line shows the spectral peak,
corresponding to the hole branch. As guides for the eye, we
also plot the hole dispersions ω = −[p2/(2mH) − k̄2

F,H/(2mH)] and
ω = −[p2/(2mL) − k̄2

F,L/(2mH)] with k̄F,L = k̄F,H = 0.9kF in panels
(a1) and (b1), respectively (dashed lines). In obtaining the lower
panels, we have taken �pg = 0.7εF, and μσ = k̄2

F,σ /(2mσ ) so that the
particle-hole coupling can occur at p = 0.9kF.

Fig. 9 is not reproduced. However, we briefly note that when
μL and μH in Eq. (27) are treated as fitting parameters, and
they are chosen so that the single-particle dispersions ω = ξ pσ

(σ = L,H) can cross the zero-energy line at p � 0.9kF, the
resulting spectral weight agrees well with the ETMA result
when an appropriate value of the pseudogap parameter �pg is
taken, as shown in Figs. 9(a2) and 9(b2).

Now we consider the region above Tc. Figure 10 shows
the single-particle density of states ρσ (ω) in the normal
state. When we define the pseudogap temperature T ∗

σ as the
temperature at which the pseudogap (dip) structure disappears
in ρσ (ω), this figure indicates that T ∗

L > T ∗
H ∼ 1.2Tc. Thus,

the pseudogap only appears in ρL(ω) in the temperature
region T ∗

L > T > T ∗
H. Since the light and heavy fermions

equally contribute to the formation of preformed pairs (which
is the origin of the pseudogap), this result looks somehow
strange. However, the key is that the Fermi temperatures are
different between the two components as T L

F > T H
F . Because

of this, the difference [T − Tc]/T σ
F of the temperature from

Tc scaled by T σ
F is larger in the heavy-mass component than

in the light-mass component. That is, the former is effectively
further away from the superfluid instability, leading to the
lower pseudogap temperature T ∗

H < T ∗
L . Since the pseudogap

phenomenon equally occurs in the two components in an
ordinary mass-balanced Fermi gas, this is a characteristic
phenomenon in the presence of mass imbalance.

Such a component-dependent pseudogap phenomenon is
also obtained when one adjusts the ratio mL/mH at a fixed
temperature. In Fig. 11, while the pseudogap structure in ρL(ω)
remains even at mL/mH = 0.2 [panel (a)], the dip structure no
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FIG. 10. (Color online) Calculated density of states ρσ (ω) at various temperatures above Tc. (a) Light-mass component. (b) Heavy-mass
component. We take (kFas)−1 = 0, and mL/mH = 0.4.

longer exists in ρH(ω) at this ratio of mass imbalance [panel
(b)]. In this case, although the temperature is fixed, since Tc

is lowered by mass imbalance [see Fig. 5(a)], we again obtain
a larger scaled temperature difference [T − Tc(mL/mH <

1)]/T σ
F in the heavy-mass component [77], leading to weaker

strong-coupling effects in this component.
As expected, Fig. 12 shows that the component-dependent

pseudogap phenomena also appears in the particle-hole cou-
pling effect in Aσ ( p,ω). In the light-mass component shown in
Figs. 12(a1)–12(a3), a hole branch, as well as the modification
of a particle branch around p = kF by the particle-hole
coupling effect, remain down to mL/mH = 0.2. On the other
hand, the particle-hole coupling gradually disappears with
decreasing the ratio mL/mH, and eventually the particle branch
only remains at mL/mH = 0.2 in the heavy-mass component
[Figs. 12(b1)–12(b3)].

The different scaled temperatures between the light-mass
component and heavy-mass component also affect their
momentum distributions, given by

n pσ = 〈c†pσ c pσ 〉 = T
∑
ωn

Gσ ( p,iωn). (28)

In Fig. 13, we clearly see that the broadening of the
Fermi edge at p = kF by thermal fluctuations are more
remarkable in the heavy-mass component, compared with the

light-mass component, which is simply due to the fact that
T/T H

F > T/T L
F . In addition, we also find that n pH is more

sensitive to the temperature than n pL, because of the same
reason.

Figure 14(a1) shows the spectral weight AL( p,ω) as a
function of energy ω. In the low-momentum region (p < kF),
since the occupation number n pL of light fermions is close to
unity [see Fig. 14(a2)], the so-called Pauli blocking works to
some extent there, which suppresses particle scatterings in this
regime. As a result, the spectral peak in the low-momentum
region is sharp. [See the results at p = 0 and 0.5kF in
Fig. 14(a1).] On the other hand, scatterings of a light fermion
frequently occur near the Fermi surface (p ∼ kF), and a broad
spectral peak is obtained at p = kF in Fig. 14(a1).

In contrast, the Fermi degeneracy in the region p <∼ kF

is almost lifted in the heavy-mass component, as shown in
Fig. 14(b2). In addition, the momentum dependence of n pH

shown in Fig. 14(b2) is weak, compared with the case of light
mass-component shown in Fig. 14(a2). Thus, while the heavy
fermions in the low-momentum region can be easily scattered,
the momentum dependence of scattering effects is weak. As a
result, the width of the spectral peak shown in Fig. 14(b1) is
insensitive to the momentum p in the region 0 � p <∼ kF, and
the peak width at p = 0 is broader than the case of light-mass
component shown in Fig. 14(a1).
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V. SUMMARY

To summarize, we have discussed single-particle properties
of a mass-imbalanced Fermi gas in the BCS-BEC crossover
region. The ordinary (non-self-consistent) T -matrix approx-
imation, which is known to be a powerful strong-coupling
theory to study various BCS-BEC crossover physics in the
mass-balanced case, does not work in the presence of mass
imbalance. We overcame this serious problem, by employing
the extended T -matrix theory (ETMA) developed in the case
of a spin-imbalanced Fermi gas. Using this, we determined
the phase diagram of a Fermi gas in terms of the strength of a
pairing interaction, as well as the ratio of mass imbalance.

Within the framework of the ETMA, we calculated the
single-particle density of states ρσ (ω), as well as the spectral
weight Aσ ( p,ω), to see how the pseudogap phenomenon in the

BCS-BEC crossover region is affected by the presence of mass
imbalance. At Tc, the pseudogap appears in these quantities in
both the light-mass component and heavy-mass component,
which becomes more remarkable with the increase in the
interaction strength. In this sense, the pseudogap phenomena in
the presence of mass imbalance is very similar to the ordinary
mass-balanced case.

Effects of mass imbalance on the pseudogap phenomenon
become remarkable, as one raises the temperature from
Tc. Since the Fermi temperature T H

F in the heavy-mass
component is lower than that in the light-mass component
T L

F , heavy fermions feel higher scaled temperature, T/T H
F >

T/T L
F . Thus, the pseudogap in ρσ (ω) disappears at a lower

temperature in the heavy-mass component than in the light-
mass component. In addition, since the Pauli blocking inside
the Fermi surface works more effectively in the light-mass
component because of the lower scaled temperature, the
momentum dependence of the peak width in the single-
particle spectral weight Aσ ( p,ω) is more remarkable in this
component. That is, while a sharp spectral peak is obtained
deep inside the Fermi level (because of the suppression
of particle scatterings by the Pauli’s exclusion principle),
the spectral peak becomes broad near the Fermi surface
(where particle scatterings can frequently occur). In contrast,
since the heavy-mass component is closer to the classical
regime because of the higher scaled temperature, T/T H

F >

T/T L
F , particle scatterings deep inside the Fermi surface are

not so suppressed as in the case of light fermions. As a
result, the peak width of the spectral weight in the heavy-mass
component becomes broad even around p = 0, compared with
that in the light-mass component. In addition, the momentum
dependence of the peak width in the heavy-mass component
becomes weaker. Since these different pseudogap phenomena
between the two components never occur in the absence
of mass imbalance, the observation of these component-
dependent pseudogap phenomena by the photoemission-type
experiment [58,59] would be an interesting challenge.

We note that, although the extended T -matrix approx-
imation (ETMA) can overcome the problem existing in
the ordinary T -matrix approximation, it still has room for
improvement. In particular, the ETMA is not a fully self-
consistent approximation in the sense that the particle-particle
scattering matrix uses the bare Green’s function. This inconsis-
tent treatment is considered to overestimate the pair-breaking
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effect associated with mass imbalance, especially in the
weak-coupling BCS regime. Thus, although the present ETMA
gives the vanishing Tc in the BCS regime when mL/mH 
 1,
we need further analyses on this regime beyond the ETMA.
In this regard, an extension of the self-consistent T -matrix
theory to a mass-imbalanced Fermi gas would be useful. We
will discuss this extension in our future paper [73].

In this paper, we have simply treated a uniform system,
ignoring effects of a harmonic trap. Since different species
may feel different trap potentials, when we include effects of
a harmonic trap, we need to consider the situation that the
two components exhibit different density profiles, leading to
spatially dependent population imbalance. Thus, to examine
a real trapped mass-imbalanced Fermi gas, inclusion of both
the mass imbalance and spin imbalance would be important,
which is also an exciting future problem.

So far, only the simplest isotropic s-wave superfluid state
has been realized in ultracold Fermi gases. Although the study
of this system is a crucial issue for the understanding of BCS-
BEC crossover physics, the search for a more complicated
pairing state would be also an important challenge for the
further development of this research field. In addition, Fermi

superfluids consisting of different species have been recently
discussed in various research fields, such as excitons in
semiconductor physics, exciton-polaritons in semiconductor
optics, and color superconductivity in high-energy physics.
Thus, the realization of a mass-imbalanced superfluid Fermi
gas would contribute to the study of these systems. Since
the pseudogap phenomenon is a precursor of the superfluid
instability, the observation of this would be helpful to see
to what extent the system is close to the superfluid phase
transition temperature. Thus, our results would be useful
for not only the understanding of a Fermi superfluid in the
presence of mass imbalance but also the realization of this
heteropairing state.

ACKNOWLEDGMENTS

We thank S. Watabe for useful discussions. This work
was supported by Institutional Program for Young Researcher
Oversea Visits from the Japan Society for the Promotion
of Science. Y.O. was supported by Grant-in-Aid for Scien-
tific Research from MEXT in Japan (25400418, 25105511,
23500056).

[1] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004).

[2] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403
(2004).

[3] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E.
Thomas, Phys. Rev. Lett. 92, 150402 (2004).

[4] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin,
J. H. Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201
(2004).

053621-10

http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/PhysRevLett.92.120403
http://dx.doi.org/10.1103/PhysRevLett.92.150402
http://dx.doi.org/10.1103/PhysRevLett.92.203201
http://dx.doi.org/10.1103/PhysRevLett.92.203201


EXCITATION PROPERTIES AND EFFECTS OF MASS . . . PHYSICAL REVIEW A 88, 053621 (2013)

[5] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev.
Lett. 90, 053201 (2003).

[6] J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich,
J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M.
F. Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702(R)
(2004).

[7] C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach,
W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S.
Julienne, Phys. Rev. A 71, 045601 (2005).

[8] Y. Ohashi, Phys. Rev. Lett. 94, 050403 (2005).
[9] T. L. Ho and R. B. Diener, Phys. Rev. Lett. 94, 090402 (2005).

[10] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett.
94, 230403 (2005).

[11] J. Levinsen, N. R. Cooper, and V. Gurarie, Phys. Rev. Lett. 99,
210402 (2007).
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