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Path-integral ground state and superfluid hydrodynamics of a bosonic gas of hard spheres
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We study a bosonic gas of hard spheres by using the exact zero-temperature path-integral ground-state (PIGS)
Monte Carlo method and the equations of superfluid hydrodynamics. The PIGS method is implemented to
calculate for the bulk system the energy per particle and the condensate fraction through a large range of the gas
parameter na3 (with n the number density and a the s-wave scattering length), going from the dilute gas into the
solid phase. The Maxwell construction is then adopted to determine the freezing at na3 = 0.264 ± 0.003 and
the melting at na3 = 0.290 ± 0.003. In the liquid phase, where the condensate fraction is finite, the equations
of superfluid hydrodynamics, based on the PIGS equation of state, are used to find other relevant quantities as
a function of the gas parameter: the chemical potential, the pressure, and the sound velocity. In addition, within
Feynman’s approximation, from the PIGS static structure factor we determine the full excitation spectrum, which
displays a maxon-roton behavior when the gas parameter is close to the freezing value. Finally, the equations
of superfluid hydrodynamics with the PIGS equation of state are solved for the bosonic system under axially
symmetric harmonic confinement obtaining its collective breathing modes.
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I. INTRODUCTION

In this paper we analyze a system of identical interacting
bosons by using the hard-sphere (HS) model [1], which is a
useful reference system for classical and quantum many-body
theories both for weak and strong interactions because it
depends only on one interaction parameter: the sphere dia-
meter a [1–3]. The quantum HS model has led to the
understanding of several general features of helium in its
condensed phases [2,3], serving as a reference or a starting
point for studies with more accurate potentials [4]. In addition,
the quantum HS model provides the standard benchmark
for mean-field approaches [5] such as, for example, Gross-
Pitaevskii equation or Hartree-Fock-Bogoliubov approxima-
tion [6]. A large number of approaches have been put forward
to deal with quantum HS and, among them, Monte Carlo
method based on Feynman‘s path integrals come out as a most
powerful tool [7]. Path-integral Monte Carlo (PIMC) studies
of quantum HS systems at finite temperature cover almost
the whole relevant gas parameter range [7–10]. However, at
zero temperature, there are studies that cover (with different
techniques) only portions of the na3 range and are mainly
devoted to the investigation of different properties such as
the universal behavior in the dilute limit [5] or the gas-solid
transition [4].

Here we calculate the equation of state of the bulk quantum
HS system of identical bosons from very low gas parameter
value up to high-density solid with path-integral ground-state
(PIGS) Monte Carlo [11] method, which provides exact
expectation values on the ground state. Our exact PIGS
results for the equation of state are then used to derive other
relevant properties by means of the equations of superfluid
hydrodynamics [2,3]. Actual experiments on bosonic atomic
gases reach so low temperatures that the effects of thermal
fluctuations are largely negligible, making a zero-temperature
approach well justified [2,3]. The paper is organized in
the following way. The basic features of the PIGS method
are reported in Sec. II. Numerical results on the ground-state
energy and condensate fraction are shown and discussed in

Sec. III, where we compare our data with previous Monte
Carlo calculations and other theoretical approaches. In Sec. IV
we introduce the zero-temperature hydrodynamic equations of
superfluids [2,3] and we use them (with the PIGS equation of
state) to find other relevant quantities as a function of the gas
parameter: the chemical potential, the pressure, and the sound
velocity. We find that our sound velocity, which gives the
low-momentum linear slope of the excitation spectrum, is in
excellent agreement with the numerical results obtained with
the help of the PIGS static response function. Moreover, within
Feynman’s approximation, we determine the full spectrum
of elementary excitations, which displays a maxon-roton
behavior when the gas parameter is close to the freezing value.
In Sec. V we consider the inclusion of an anisotropic but
axially symmetric trapping harmonic potential. The collective
modes of the confined Bose gas are then easily calculated
using again the equations of superfluid hydrodynamics with
the PIGS equation of state, which is locally approximated with
a polytropic equation of state [12]. The paper is concluded by
Sec. VI.

II. PIGS METHOD

The aim of PIGS is to improve a variationally optimized
trial wave function ψt by constructing, in the Hilbert space of
the system, a path which connects the starting ψt with the exact
lowest-energy wave function of the system, ψ0, constrained by
the choice of the number of particles N , the geometry of the
simulation box, the boundary conditions, and the density n,
provided that 〈ψt |ψ0〉 �= 0. The correct correlations among
the particles arise during this path through the action of the
imaginary time evolution operator Ĝ = e−τĤ , where Ĥ is the
Hamiltonian operator. In principle, ψ0 is reached in the limit of
infinite imaginary time, but a very accurate representation for
ψ0 is given by ψτ = e−τĤψt , if τ is large enough (but finite).

The wave function ψτ can be analytically written by
discretizing the path in small imaginary time steps. This
discretization is necessary since the available approximations
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for Ĝ became more accurate as the imaginary time step goes
smaller [13]. Here we have used the Cao-Berne approximation
[14], which is one of the most efficient propagators (i.e.,
allows for larger values of imaginary time step) for HS [9].
Because of this discretization of the imaginary time path,
the quantum system is mapped into a system of specially
interacting classical open polymers [11]. Each open polymer
represents the full imaginary time path of a quantum particle
that is sampled by means of the Metropolis algorithm. Thus
the entire imaginary time evolution of the system is sampled
at each Monte Carlo step [15].

An appealing feature of the PIGS method is that, in ψτ , the
variational ansatz acts only as a starting point, while the full
path is governed by Ĝ, which depends only on the Hamiltonian
Ĥ . Thus the PIGS method turns out to be unbiased by the
choice of the trial wave function [15] and then the only input
is Ĥ . In the coordinate representation, the Hamiltonian of the
quantum HS system is

H = − h̄2

2m

N∑
i=1

∇2
i +

∑
〈i,j〉

V (rij ), (1)

where rij = |�ri − �rj | and

V (r) =
{+∞ for r < a,

0 otherwise.
(2)

The Hamiltonian (1) can be reduced in a useful adimensional
form by giving the energies in units of h̄2

2ma2 and the lengths in
units of a, which represents also the s-wave scattering length.
We make use of these reduced units throughout the paper.

The trial wave function ψt does not really need to be fully
variational optimized: in fact, for a large enough value of τ ,
PIGS results turn out to be independent on ψt , in both the
phases [15,16]. The sole role of ψt is to determine the length
of the path in imaginary time [15] to converge on ψ0: the
better is ψt , the faster is the convergence. Here, as ψt , we
have employed a Jastrow wave function, where the two-body
correlations are given by the first-order expansion of the exact
solution for the two-body problem, i.e.,

ψt (R) =
∏
〈i,j〉

(
1 − a

rij

)
, (3)

where R = {�r1, . . . ,�rN } are the coordinates of the N HS.
All the approximations involved in the PIGS method, i.e.,

the choice of the total imaginary time τ and of the imaginary
time step δτ (that fixes the quality of the approximation on
Ĝ), are so well controlled that the resulting systematic errors
can be reduced within the unavoidable Monte Carlo statistical
error. In this sense PIGS is an exact T = 0 K method [11,15].

In order to improve the ergodicity of the Monte Carlo
sampling, we have implemented bosonic permutations [17],
even if not required in principle since (3) has the correct
Bose symmetry, and a canonical (i.e., with fixed N ) version of
the worm algorithm [18], which has the ulterior advantage of
giving access also to off-diagonal properties within the same
simulation.
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FIG. 1. (Color online) Energy per particle E/N in units of
h̄2/2ma2 in the gas phase as a function of the gas parameter na3

computed with PIGS (filled squares) compared with previous GFMC
[4] (shaded circles) and DMC [5] (open triangles) results. Error bars
are smaller than the used symbols. Dashed line: LHY perturbative
approach [19]; dot-dashed line: Yukalov-Yukalova improved pertur-
bative approach [21]; solid line: fit of PIGS data.

III. GROUND-STATE ENERGY AND
CONDENSATE FRACTION

We have studied with PIGS a system of N = 256 HS
in a cubic box with periodic boundary conditions in all
the directions, for values of the gas parameter na3 ranging
from dilute gas, namely na3 = 10−3, up to na3 = 0.5, deep
inside the solid phase. By studying the convergence in τ

and δτ of the energy per particle we have fixed the values
τ = 0.225 2ma2/h̄2 and δτ = 0.015 2ma2/h̄2 to be a very
good compromise between accuracy and computational cost.
For some values of na3, we have checked the convergence
of our results both by reducing the time step to δτ = 0.005
2ma2/h̄2 and by extending the total projection time up to
τ = 0.245 2ma2/h̄2. We have performed also simulations with
N = 400 and N = 500 HS in order to verify the presence of
size effects, especially close to the gas-solid transition region.
We find that the energy per particle does not sensibly change
within the error bars, inferring that our results are not affected
by a significant size effect.

Our results for the energy per particle E/N as a function of
the gas parameter are reported in Fig. 1. We find an excellent
agreement with previous GFMC [4] and DMC data [5] in
the range of gas parameter values covered by the previous
studies. We report also two mean-field predictions for E/N :
the perturbative correction to the Bogoliubov mean-field due
to Lee, Huang, and Yang (LHY) [19] that turns out to be
in a quite fair good agreement with Monte Carlo data up to
na3 � 5 × 10−2 [20], and a more recent perturbative approach
due to Yukalov and Yukalova [21] that, however, distances
itself from Monte Carlo data for just lower values of na3.

By adding successive powers at the mean-field prediction
of Bogoliubov with the LHK perturbative correction, we have
fit our data with the expression [20]

E

N
= h̄2

2ma2
fg(na3), (4)
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FIG. 2. (Color online) Pair-correlation function g(r) for different
values of the gas parameter na3 computed with PIGS. Error bars are
smaller than the used symbols.

where

fg(x) = 4πx

(
1 + 128

15
√

π

√
x

)
+ a2x

2 ln(x) + b2x
2

+ a5/2x
5/2 ln(x) + b5/2x

5/2. (5)

The best values for the parameters coming from the fit of
the PIGS data are a2 = 145.5, b2 = 842.8, a5/2 = 422, and
b5/2 = −492. The resulting curve of fg(x) is also reported as
a solid line in Fig. 1.

By increasing the gas parameter the system spontaneously
breaks the translational invariance due to the effect of the
increased correlations among the particles, resulting in a solid
phase, as inferred also from the characteristic oscillations in
the pair-correlation function

g(r) = N (N − 1)

n2

∫ ∏N
j=3 d�rj |ψ∗

0 (�r,0,�r3, . . . ,�rN )|2∫ ∏N
j=1 d�rj |ψ∗

0 (�r1,�r2, . . . ,�rN )|2 (6)

reported in Fig. 2. The emerging crystal is the FCC, that is
the lattice that best fits the cubic geometry of the simulation
box. Very recent PIMC simulations [7] have shown, however,
that the free-energy difference between the two closed-packed
crystals, FCC and HCP, for the quantum HS, is vanishing
small. This is not surprising since the difference in these two
lattices arises from the second shell of neighbors, and the HS
potential is short ranged. In Fig. 3 we report the resulting
energy per particles E/N as a function of the gas parameter.
Even in this case, we find a quite good agreement with older
GFMC data [4]. We find that our results can be well fitted with
a standard third-order polynomial [22]

E

N
= h̄2

2ma2
fs(na3), (7)

where

fs(x) = E0 + Ax + Bx2 + Cx3, (8)

and the best values for the fit parameters are E0 = −9.33,
A = 132.6, B = −253.6, and C = 609.1. The resulting fs(x)
is plotted as a solid line in Fig. 3.
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FIG. 3. (Color online) Energy per particle E/N in units of
h̄2/2ma2 in the solid phase as a function of the gas parameter
na3 computed with PIGS (filled squares) compared with previous
GFMC [4] (shaded circles) results. Error bars are smaller than the
used symbols. Solid line: fit of PIGS data.

By using the polynomial fit to the PIGS data (5) and (8)
it is possible to locate the transition region between the gas
and the solid phase via the standard Maxwell (double tangent)
construction. We find that the coexistence region is bounded by
nf a3 = 0.264 ± 0.003 (freezing gas parameter) and nma3 =
0.290 ± 0.003 (melting gas parameter). These values are close,
but not perfectly compatible, with the older GFMC results [4]
nf a3 = 0.25 ± 0.01 and nma3 = 0.27 ± 0.01. The shift to
higher values for the bounding gas parameters can be due
to a greater accuracy of the imaginary time propagator used
here [7]. Another source of difference can be the strong
dependence of such bounding values on the different used
fitting formula, even if the energies E/N obtained with the
two exact Monte Carlo methods are very close (as one expects
from exact techniques).

The worm algorithm [18] give direct access also to the
one-body density matrix,

ρ1(�r,�r ′) =
∫ N∏

j=2

d�rjψ
∗
0 (�r,�r2, . . . ,�rN )ψ0(�r ′,�r2, . . . ,�rN ), (9)

that in a uniform system turns out to be a function only
of the difference |�r − �r ′|. ρ1 is the Fourier transform of
the momentum distribution of the system; then a finite
plateau in the large distance tail of ρ1 means a Dirac δ

in the zero momentum state, i.e., a macroscopic occupation
of a single-particle quantum state that is the Bose-Einstein
condensation. The condensate fraction n0/n turns out to
be equal to the limiting value of the tail of the one-body
density matrix. We plot our results for n0/n in Fig. 4. In
the solid phase the condensate fraction turns out to be zero,
in agreement with what is found in 4He systems [16,18]. In
the gas phase, even for the condensate fraction we find a
satisfactory agreement with previous DMC results [5] in the
na3 range where they were available. Our data confirm that the
Bogoliubov prediction overestimates the condensate fraction
for a gas parameter larger than na3 � 10−3 [5]. The improved
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FIG. 4. (Color online) Upper panel: condensate fraction n0/n

as a function of the gas parameter na3, computed with PIGS
(filled squares) compared with the previous DMC results [5] (open
triangles). Error bars are smaller than the used symbols. Dashed line:
Bogoliubov formula; dot-dashed line: Yukalov-Yukalova improved
perturbative approach; solid line: fit of PIGS data. Lower panel: zoom
of the upper panel showing DMC and PIGS data in the region where
the condensate fraction is going to zero and perturbative methods
fail.

perturbative approach of Ref. [21] gives a better prediction of
n0/n starting to overestimate the condensate fraction for values
of the gas parameter larger than 10−1, as shown in Fig. 4. To
provide an analytical expression for the condensate fraction as
a function of the gas parameter, we follow Ref. [20] and fit our
data with the formula

n0

n
= �(na3), (10)

where

�(x) = 1 − 8

3
√

π

√
x − c1x − c3/2x

3/2 − c2x
2 − c5/2x

5/2.

(11)

The best values for the fit parameters are c1 = 5.49, c3/2 =
−7.86, c2 = −9.52, and c5/2 = 13.65.

IV. SUPERFLUID HYDRODYNAMICS AND ELEMENTARY
EXCITATIONS

The advantage of a functional parametrization fg(x),
Eq. (5), of the ground-state energy E of the bosonic gas is
that it allows straightforward analytical calculations of several
physical properties [12]. For example, the bulk chemical
potential μ is given

μ = ∂E

∂N
= h̄2

2ma2
[fg(x) + xf ′

g(x)], (12)

as found by using Eqs. (7) and (5) and taking into account that
x = na3 and ∂x/∂n = x/n, while the bulk pressure P reads

P = n2 ∂

∂n

(
E

N

)
= h̄2

2ma2
nxf ′

g(x). (13)

Moreover, the collective dynamics of our bosonic gas of HS
with local density n(r,t) and local velocity v(r,t) can be
described by the following zero-temperature hydrodynamic
equations of superfluids [2,3],

∂n

∂t
+ ∇ · (nv) = 0, (14)

m
∂v
∂t

+ ∇
[

1

2
mv2 + μ[n,a]

]
= 0, (15)

where μ[n,a] is the bulk chemical potential, given by Eq. (12).
These equations describe a generic fluid at zero temperature
which is inviscid (zero viscosity) and irrotational (v ∧ v = 0)
[2,3]. The irrotationality implies that v = ∇θ , where θ =
θ (r,t) is a scalar field which must be an angle variable to
get the quantization of the circulation of the velocity [2,3].
Thus, from the knowledge of the bulk equation of state (12)
one can study the collective superfluid dynamics of the system
by solving Eqs. (14) and (15). In particular, we are interested in
the propagation of sound waves in the superfluid. In this case,
by taking into account a small δn(r,t) variation of the local
density with respect to the uniform value n and linearizing
the hydrodynamic equations, one finds the familiar wave
equation [

∂2

∂t2
− c2

s ∇2

]
δn(r,t) = 0, (16)

where cs is the sound velocity, given by

mc2
s = n

∂μ

∂n
= h̄2

2ma2
[2xf ′

g(x) + x2f ′′
g (x)]. (17)

It is well known that this wave equation admits monochromatic
plane-wave solutions, where the frequency ω and the wave
vector k are related by the phononic dispersion formula

h̄ω(k) = csh̄k, (18)

where k = |k| is the wave number. In Fig. 5 we plot the
bulk chemical potential μ, the bulk pressure P , and the
sound velocity cs as a function of the gas parameter na3.
All these physical quantities are calculated on the basis of the
parametrization (7) and (5) of the PIGS energy E.

The zero-temperature equations of superfluid hydrodynam-
ics (14) and (15), equipped by the constitutive equation of
state (12) which is based on the parametrization (7) and (5)
of the PIGS energy, give reliable information only on the low
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FIG. 5. (Color online) Various physical quantities as a function
of the gas parameter na3: the bulk chemical potential μ [in units of
h̄2/(2ma2)], the bulk pressure P [in units of h̄2/(2ma2n)], and the
sound velocity cs [in units of [h̄2/(2m2a2)]1/2].

wave-number branch (linear part) of the spectrum ω(k) of
the elementary excitations. Unfortunately, the imaginary-time
formulation of PIGS method prevents us from obtaining the
exact dynamical properties of the system, such as the full
excitation spectrum ω(k), directly from simulations. Some
features of ω(k) can be obtained within the Feynman’s
approximation:

h̄ω(k) = h̄2k2

2mS(k)
, (19)

where

S(k) = 1

N

〈 N∑
j=1

e−i�k·�rj

N∑
l=1

ei�k·�rl

〉
(20)

is the static structure factor that can be readily obtained during
a PIGS simulation. Our results for the Feynman’s excitation
spectrum for HS at different values of the gas parameter
are reported in Fig. 6. The Feynman’s approximation is
known to be accurate only at very low na3, and to become
only qualitative at higher values of the gas parameter. For
example, in the case of superfluid 4He, where na3 = 0.244,
it overestimates the roton minimum by a factor of about
2. In the low wave-vector limit we find that, in spite of
the well-known size effect on the static structure factor
(20) [23], Feynman’s approximation turns out to be in a
remarkable agreement with the phononic dispersion (18) with
the values of the sound velocity cs given by Eq. (17) and
reported in Fig. 5. It is worth noting that even Feynman’s
approximation (19) for the excitation spectrum, as the energy
per particle and the condensate fraction, deviates from the
Bogoliubov approximation for na3 � 10−3. Another remark-
able feature is that, even within this simple approximation, the
occurrence of a roton minimum at high density is correctly
described.

0 5 10 15
qξ

0

50

100

150

200

h_
ω  

  (
 h_

2 /(
2m

ξ2 ))

na3 = 10-3

na3 = 10-2

na3 = 5 x 10-2

na3 = 10-1

na3 = 0.244
na3 = 0.3
Bogoliubov

FIG. 6. (Color online) Excitation spectrum obtained with
Feynman’s approximation at different values of the gas parameter
na3. Dotted lines are given as guides to the eye. In order to make
comparable results at different na3 the spectra are plotted as a function
of qξ and in units of h̄2/2mξ 2, where ξ = an1/3. In these units,
the Bogoliubov approximation for the excitation spectrum (dashed
line) reads h̄ω(q) = √

(qξ )4 + 2(qξ )2. The relative low wave-vector
phononic dispersion, Eq. (18), are reported as straight lines.

V. INCLUSION OF A TRAPPING HARMONIC POTENTIAL

We consider now the effect of confinement due to an
external anisotropic harmonic potential

U (r) = m

2
[ω⊥(x2 + y2) + ωzz

2], (21)

where ω⊥ is the cylindric radial frequency and ωz is the
cylindric longitudinal frequency. The collective dynamics of
the system can be described efficiently by the hydrodynamic
equations, modified by the inclusion of the external potential
U (r) [2,3], namely

∂n

∂t
+ ∇ · (nv) = 0, (22)

m
∂v
∂t

+ ∇
[

1

2
mv2 + μ[n,a] + U (r)

]
= 0. (23)

It has been shown in Ref. [24] that by assuming a power-law
dependence μ = μ0n

γ for the chemical potential (polytropic
equation of state) from Eqs. (14) and (15) one finds analytic
expressions for the collective frequencies. In particular, for
very elongated cigar-shaped traps (ωρ/ωz � 1) the collective
radial breathing mode frequency ρ is given by

ρ =
√

2(γ + 1)ωρ, (24)

while the collective longitudinal breathing mode z is

z =
√

3γ + 2

γ + 1
ωz. (25)

In our problem we introduce an effective polytropic index γ

as the logarithmic derivative of the chemical potential μ, that
is

γ = n

μ

∂μ

∂n
= 2xf ′

g(x) + x2f ′′
g (x)

fg(x) + xf ′
g(x)

, (26)
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FIG. 7. (Color online) Breathing mode frequencies of the Bose
gas of HS under strong anisotropic axially symmetric harmonic
confinement. ρ is the frequency of the radial breathing mode and
z is the frequency of the axial breathing mode. Here n(0)a3 is the
local gas parameter with n(0) the gas density at the center of the trap.
Inset: effective polytropic index γ as a function of the gas parameter.

where fg(x) is given by Eq. (5). This approach has been very
successful [12] in the study of the experimentally observed
[25] breathing modes of a two-component Fermi gas of 6Li
atoms in the BCS-BEC crossover. Indeed, in Ref. [12] we
have suggested relevant deviations to the mean-field results,
which have been subsequently confirmed by improved experi-
ments [26].

In Fig. 7 we report the frequencies ρ and z of breathing
modes as a function of the gas parameter n(0)a3, where n(0) is
the density at the center of the strongly anisotropic harmonic
trap. The figure shows a relevant change in the scaled radial
frequency ρ/ωρ that is a direct consequence of the fact
that the effective polytropic index γ increases from γ � 1 in
the weak-coupling regime to γ � 2.2 in the strong-coupling
regime as shown in the inset of Fig. 7.

VI. CONCLUSIONS

The properties of bulk systems of HS for a wide range of the
gas parameter na3, going from the dilute gas to the solid phase,
have been investigated with the exact T = 0 PIGS Monte Carlo
methods. Our results for the energy per particle turn out to be
in good agreement with previous calculations, performed with
different Monte Carlo techniques, in the gas parameter range
in which they were available [4,5]. We have found that recent
beyond mean-field approximations are compatible with our
Monte Carlo data up to na3 � 10−3.

We have then fitted our PIGS data via polynomials
functions, Eqs. (5) and (7), which have been then used to locate
the gas-liquid transition with a standard Maxwell construction.
Our analytical fit extends the range of applicability of the
previous equation of state [20] up to the freezing point,
and beyond it in the metastable region. We have computed
also the condensate fraction n0/n in the whole considered
gas parameter range. In particular, we have found that the
condensate fraction is zero in the solid phase, in agreement

with what happens in the solid phase of systems interacting
with more realistic potentials such as 4He [16,18]. We have
provided an analytical fit also for n0/n showing that, as in
Ref. [5], the Bogoliubov approximation overestimates the
condensate fraction for na3 larger than 10−3, while the recent
improved perturbative approach of Ref. [21] extends the
predictive region of mean-field approaches of about an order
of magnitude, up to na3 � 10−2.

The fit of PIGS data are useful in order to derive other
relevant properties of the bulk system, such as the chemical
potential and the pressure. By means of the zero-temperature
hydrodynamics equations of superfluids it is indeed possible
to obtain other relevant physical quantities. In particular,
we have calculated the sound velocity for gas parameters
up to 0.3. This is relevant also because PIGS cannot give
direct access to dynamical properties of the system. Some
qualitative information about the excitation spectrum can be
recovered via Feynman’s approximation: the low-wave-vector
limit of such an approximate spectrum agrees with the linear
phononic dispersion obtained from the hydrodynamic equation
of superfluids (14) and (15) with the equation of state (5).
More quantitative results on the excitation spectrum can be
obtained by computing the intermediate scattering functions
via PIGS and then by analytically continuing them with
inversion methods, like GIFT [27], for example, in order to
recover the dynamical structure factor. These procedures are
typically laborious and require a large amount of computations,
and they go beyond the aim of this paper; anyway, while
writing this paper, we became aware that a similar study is
under investigation [28]. It is worth noting, however, that even
in an approximate fashion, also an approximation as simple as
Feynman’s is able to capture the emerging of the phonon-roton
spectrum deduced by Landau [29] with the increasing gas
parameter.

Finally, we have shown that analytical expressions of the
exact equation of state can be useful also for predictions
in confined systems. The hydrodynamic equations can be
used to calculate density profiles and collective modes in
various trap configurations [2,3]. Here we have derived the
frequencies of the collective breathing modes of an HS
gas confined in a strongly anisotropic harmonic trap as a
function of the local gas parameter. By including a gradient
correction in the hydrodynamic equations one can rewrite
them as a nonlinear Schrödinger equation (generalized Gross-
Pitaevskii equation) [30,31] and study other fundamental
properties like quantized vortices [31], solitons [32], and shock
waves [33].
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partial support Università di Padova (Research Project “Quan-
tum Information with Ultracold Atoms in Optical Lattices”),
Cariparo Foundation (Excellence Project “Macroscopic Quan-
tum Properties of Ultracold Atoms under Optical Confine-
ment”), and Ministero Istruzione Università Ricerca (PRIN
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