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Noel Murray,1 Michael Krygier,1 Mark Edwards,1 K. C. Wright,2 G. K. Campbell,2 and Charles W. Clark2

1Department of Physics, Georgia Southern University, Statesboro, Georgia 30460-8031, USA
2Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland,

Gaithersburg, Maryland 20899, USA
(Received 9 September 2013; published 13 November 2013)

This paper reports the results of a theoretical and experimental study of how the initial circulation of ring-
shaped Bose-Einstein condensates (BECs) can be probed by time-of-flight (TOF) images. We have studied the
dynamics of a BEC after release from a toroidal trap potential by solving the three-dimensional Gross-Pitaevskii
(GP) equation. The trap and condensate characteristics matched those of a recent experiment. The circulation,
experimentally imparted to the condensate by stirring, was simulated by imprinting a linear azimuthal phase on
the initial condensate wave function. The simulated TOF images were in good agreement with the experimental
data. We find that upon release the dynamics of the ring-shaped condensate proceeds in two distinct phases. First,
the condensate expands rapidly inward, filling in the initial hole until it reaches a minimum radius that depends
on the initial circulation. In the second phase, the density at the inner radius increases to a maximum after which
the hole radius begins slowly to expand. During this second phase a series of concentric rings appears due to
the interference of ingoing and outgoing matter waves from the inner radius. The results of the GP equation
predict that the hole area is a quadratic function of the initial circulation when the condensate is released directly
from the trap in which it was stirred and is a linear function of the circulation if the trap is relaxed before
release. These scalings matched the data. Thus hole size after TOF can be used as a reliable probe of initial
condensate circulation. This connection between circulation and hole size after TOF will facilitate future studies
of atomtronic systems that are implemented in ultracold quantum gases.
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I. INTRODUCTION

Recently, there has been much research activity devoted
to “atomtronic” systems: confined ultracold atomic gases
that are analogous to electronic devices and circuits [1,2].
Atomtronic devices rely on neutral atoms, often Bose Einstein
condensed, for their operation. Characteristics of the atoms in
these devices include tunable collisional interactions, internal
structure, long-range coherence, and superfluidity. Thus atom-
gas analogs of quite a number of electronic devices have been
proposed including diodes [3,4] and transistors [5], and a
capacitor discharged through a resistor [6,7]. The coherence
and superfluid properties of these systems make them useful
as sensors and other devices that can take advantage of
superfluidity.

Of particular interest is the realization of an atomic-gas
analog of a superconducting quantum interference device
(SQUID). Traditional SQUIDs are used to construct magnetic-
field detectors, voltmeters, gradiometers, and a host of other
metrologic devices [8]. SQUID circuits have been realized
with either tunnel or weak-link junctions [9,10]. In gaseous
Bose-Einstein condensates (BECs), Josephson-like junctions
have been demonstrated in double-well potentials [11,12] and
a closed-loop atom “circuit” was implemented in a ring-shaped
confining potential [13].

Recently, an atom circuit analogous to an rf SQUID [8] was
implemented in a ring BEC by creating a rotating weak link
(a region of reduced superfluid density) with a blue-detuned
laser beam [14]. In that experiment, the rotating weak link was
used to drive phase slips which changed the circulation around
the ring. In order to measure the circulation, the condensate
was released from the trap allowing it to expand in time of
flight (TOF). The image of the resulting condensate exhibited

a smooth density profile for zero circulation and a hole whose
size depended on the winding number m (the number of times
the phase winds through 2π in a closed loop around the ring)
for nonzero circulation. The winding numbers of released
condensates were inferred by measuring the distribution of
hole areas in the TOF images.

In this paper we present an experimental and theoretical
study of the connection between the condensate winding
number at the time of release with the size of the hole in
the TOF image. This connection has important consequences
for the field of atomtronics since it provides a solid theoretical
foundation for the formulation of models that can underly the
analogies between electric circuits and ultracold atomic-gas
systems, as seen, for example, in Ref. [14].

The plan of the paper is as follows. In Sec. II we
describe the conditions of the experiment where ring-shaped
condensates were created, stirred, released, and imaged.
Typical results from these experiments are also displayed.
Section III describes the modeling of the experiment based
on the Gross-Pitaevskii (GP) equation and Sec. IV shows a
comparison of experiment with GP simulations. We found that
simulations based on the GP equation matched the data well.
Having established that the GP equation can provide a good
description of condensate behavior under these conditions, we
present the GP-equation picture of the dynamics of a released
ring BEC as a function of its initial winding number. Finally,
Sec. VI provides a summary of the results and places the result
in context.

II. DESCRIPTION OF THE EXPERIMENT

The ring BEC, shown in Fig. 1(a), contains ≈ 4 × 105 23Na
atoms, spin polarized in the 32S1/2|F = 1,mF = −1〉 state.
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FIG. 1. (Color online) (a) In situ 2D density image of the
initial condensate used to determine the parameters of the confining
potential. (b) The 2D density image of the TIGPE theoretical result,
and (c) cut-through density profiles comparing the experimental data
(red curve with points explicitly displayed), the fitted solution of the
TIGPE (green, dotted curve), and the fitted solution (blue, solid curve)
blurred by convolving it with a Gaussian having a 4 μm 1/e2 radius.

The atoms are held in an optical dipole trapping potential
formed by a combination of up to three laser beams. Two of
these trapping beams are red detuned from atomic resonance:
a horizontal “sheet” beam providing the primary confinement
in the vertical direction with trap frequency ωz/2π = 600 Hz,
and a vertically propagating LG1

0 “ring” beam, which can be
used to create a toroidal potential minimum. This red-detuned
trap configuration was used previously for experiments con-
ducted in the same laboratory [13,14]. An alternative setup,
which uses a vertically propagating blue-detuned “antiring”
beam formed by reimaging the light transmitted through a ring-
shaped intensity mask onto the BEC, is now used to provide
a ring-shaped trap during experiments. This blue-detuned trap
allows the BEC to be confined to a narrower annulus than the
red trap with a smoother trap minimum.

As described below, the blue-detuned trap is now used
for performing experiments, and the red-detuned LG1

0 beam
is added only to facilitate loading and releasing the blue-
detuned ring trap. If the imaging resolution were perfect, the
blue-detuned trap would be hard walled; however, the 4 μm
resolution of the imaging system blurs the edges of the trap.
With our narrow annulus, the shadow in the intensity pattern
can be approximated by a two-dimensional (2D) Gaussian ring
with a 1/e2 radius of 9(1) μm and mean radius of 18.5(1) μm.
This smooth, narrow annular trap can support stable persistent
currents of up to winding number m = 12 (see below).

For this experiment, the atomic sample was initially trapped
and cooled to below the BEC transition in the red-detuned
ring trap, primarily by ramping down the intensity of the sheet
beam. After the BEC was formed, the blue-detuned ring was
ramped up to its full value while keeping the red-detuned
ring on after which the red-detuned ring was ramped off.
The BEC was then driven into a circulating state by stirring
it with a tightly focused blue-detuned beam propagating in
the vertical direction. The position and intensity of this beam
was controlled by an acousto-optic deflector, using the same
time-averaged scanning technique reported in Ref. [14], which
creates a broad, effectively flat potential in the radial direction.

The height of the (initially stationary) potential barrier was
ramped up over 200 ms to a height above the chemical potential

of the BEC. Once at full height, the barrier was accelerated in
the azimuthal direction around the ring up to a final angular
velocity �, which could be varied between 0 and 15 Hz. After
this period of acceleration, the velocity was held constant while
the barrier height was ramped to zero over 200 ms, allowing
the condensate to reconnect around the ring.

Immediately following this stirring procedure, the conden-
sate was often in a highly excited state with one or more vortex
excitations in the annulus. We therefore allowed 5.65 s of hold
time for those excitations to damp out [15], leaving the BEC
in a simple, vortex-free persistent current state.

Once the BEC was prepared in a circulating state, one of two
procedures was followed to allow the condensate to expand
prior to absorption imaging. In the first case, the trapping
beams were turned off suddenly (<1 μs), and the condensate
was allowed to expand for 10 ms TOF. In the second case, the
red-detuned ring trap was turned back on, and then the radial
confinement of the condensate was relaxed to allow atoms to
fill in the center of the ring prior to the 10 ms TOF.

This more complex release scheme was developed to
make the central hole associated with the persistent current
visible earlier in TOF expansion. In experiments using the
blue-detuned trap the handoff back to the red trap is required
because lowering of the blue-detuned ring confinement alone
allows atoms to escape the central trap region into the periphery
of the sheet trap. To execute this handoff in this experiment,
we first turned the red-detuned ring trap back on over 200 ms,
and then ramped the blue-detuned ring off in 300 ms, and
finally ramped the red-detuned ring down to about 10% of its
typical power in 50 ms. Imaging of the BEC was done using
partial-transfer absorption imaging [13].

A representative set of experimental TOF images is shown
in Fig. 3 for the direct-release procedure, and in Fig. 4 for
the radial relaxation procedure. The phase winding number
of the persistent current for each run of the experiment was
determined by measuring the hole sizes for all runs for a given
release procedure (i.e., either direct release or radial relaxation)
and making a histogram plot of these to obtain the distribution
of hole sizes.

There were approximately 100 experimental runs for
each release procedure, as shown in Fig. 2. The histograms
displayed in that figure show that the hole sizes cluster
around discrete values and that the spaces between these
clusters exhibit clear gaps. This hole-size behavior enables
the assignment of a winding number, m, to each cluster
starting with m = 0 for the cluster centered at the smallest
area and increasing sequentially. The measured hole area was
also affected by the imaging resolution, particularly for the
direct-release images shown in Fig. 3 and for small values of
m where the 4 μm resolution is comparable to the size of the
hole. The stirring speed was varied in such a way as to ensure
that many samples were obtained for each winding number in
the expected range.

III. SIMULATING THE EXPERIMENT

To simulate the experiment we divided it into three distinct
phases. These were (1) forming the initial condensate, (2)
stirring the condensate to give it a nonzero circulation, and
(3) probing the condensate by releasing it and allowing it to
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FIG. 2. Circulation of stirred condensates was determined ex-
perimentally from the distribution of hole sizes in the expanded
cloud. These distributions are shown in the histograms above for
the direct-release case (upper) and for the ramp-and-release cases
(lower). The winding number m assigned for a given hole area is
labeled for each bin.

expand before imaging. To simulate phase one we determined
the initial condensate wave function by solving the time-
independent, Gross-Pitaevskii equation (TIGPE). The values
of the parameters of the model potential used in the TIGPE
were determined by varying them until the density profile of
the solution matched the experimental profile of the in situ
condensate, as shown in Fig. 1.

In phase two the result of stirring the condensate was
simulated by multiplying its wave function by eimφ , where
φ is the azimuthal angle in cylindrical coordinates. This adds
m units of circulation to the condensate (angular momentum
mh̄ per particle if cylindrically symmetric) by imprinting a

linear azimuthal phase around the ring. Finally, the release
of the condensate was simulated by evolving the result of
phase (2) using the time-dependent Gross-Pitaevskii equation
(TDGPE). Here there were two cases: (3a) direct release,
where the TDGPE is evolved with Vtrap set to zero, or (3b)
ramp and release, where the ring-Gaussian potential depth,
VG, is reduced to about 10% of its initial value and then the
potential is turned off.

The TIGPE used to obtain the initial condensate, ψ0(r), has
the form

− h̄2

2M
∇2ψ0 + Vtrap(r)ψ0 + gN |ψ0|2ψ0 = μ0ψ0, (1)

where M is the mass of a (23Na) condensate atom, g is the
strength of the atom-atom interaction due to binary scattering,
N is the number of condensate atoms, μ0 is the chemical
potential, and Vtrap is the potential created by external laser
beams as described in Sec. II.

The potential is modeled as a superposition of a vertical
(z direction) harmonic potential due to the horizontal light
sheet and a horizontal (xy plane) ring-Gaussian potential due
to the vertical masked-Gaussian laser beam. This potential
(in which the energy origin is referenced at the potential
minimum) has the form

Vtrap(r,t) = 1
2Mω2

zz
2 + f (t)VG(1 − e−2(ρ−ρ0)2/w2

), (2)

where ρ =
√

x2 + y2 and f (t) is a function of time that
enables simulation of ramp-and-release–type experiments.
The parameters in this potential are ωz, the frequency of
the vertical harmonic confinement, and VG, ρ0, and w, are,
respectively, the depth, radius, and 1/e2 width of the ring-
Gaussian potential.

For purposes of numerical work, we introduced a set of
scaled units and expressed the TIGPE and the TDGPE in terms
of scaled variables measured in these units. The scaled units
are referenced to a chosen unit of length, denoted by L0, and
scaled spatial coordinates are given by x̄ ≡ x/L0, ȳ ≡ y/L0,
and z̄ ≡ z/L0. Energy and time units are defined in terms of L0,
E0 ≡ h̄2/(2ML2

0), and T0 ≡ h̄/E0, enabling the definition of
a scaled time: t̄ ≡ t/T0. Hereafter barred symbols will denote
quantities expressed in their appropriate scaled units.

m=1

m=7 m=8

m=2

m=9

m=3 m=4

m=10 m=11

m=5m=0

m=6

FIG. 3. Time-of-flight images of the condensate after direct release from the trap and 10 ms TOF. Each image is labeled with the circulation
m that was determined by analysis of hole size as shown in Fig. 2.
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FIG. 4. Time-of-flight images of the condensate after ramp down and release from the trap and 10 ms TOF. Each image is labeled with the
circulation m that was determined by analysis of hole size as shown in Fig. 2.

It will also be convenient to express the solution of the
TIGPE in terms of scaled units as ψ0(r) ≡ L

−3/2
0 ψ̄0(r̄). In

terms of these variables the TIGPE becomes

−∇̄2ψ̄0 + V̄trapψ̄0 + ḡN |ψ̄0|2ψ̄0 = μ̄ψ̄0. (3)

Here ḡ ≡ g/(E0L
3
0), ∇̄2 = (∂2/∂x̄2 + ∂2/∂ȳ2 + ∂2/∂z̄2) is

the Laplacian in terms of scaled variables, and the trap potential
takes the form

V̄trap(r̄,t̄) = ω̄2
z z̄

2 + f (t̄)V̄G(1 − e−2(ρ̄−ρ̄0)2/w̄2
)

≈ ω̄2
z z̄

2 + f (t̄)ω̄2
ρ(ρ̄ − ρ̄0)2, (4)

where ω̄z ≡ ωz/ω0, ω̄ρ = (2V̄G/w̄2)1/2, and ω0 is the scaled
frequency unit that is related to the length unit by
L0 = (h̄/Mω0)1/2. The length unit we chose for the results
presented here was L0 = 10 μm and, since the condensate
was composed of 23Na atoms, the energy unit became
E0 = 1.444 × 10−33 J = 0.105kB nK, where kB is Boltz-
mann’s constant. The time unit was T0 = 72.7 ms and the
angular frequency unit was ω0 = 27.5 rad/s.

To simulate the experiment, the following parameter values
were used: N = 400 000 atoms, ωz = 2π × 600 Hz, ρ0 =
18.5 μm, and w = 9.45 μm. These were their experimentally
determined values. This left only the potential depth, VG,
undetermined. The value of VG was obtained by matching
the measured density profile of the in situ condensate with that
predicted by the Gaussian-blurred TIGPE solution. A Gaussian
blur was applied to the TIGPE solution by convolving it with a
Gaussian having a 4 μm 1/e2 width. This measured 2D profile
is displayed in Fig. 1(a). After extracting the measured in situ
density along a cut through the center of the initial-state BEC
[see Fig. 1(c)], we solved the TIGPE for various values of VG

and applied a Gaussian blur to each. The value of VG selected
was the one for which the associated Gaussian-blurred TIGPE
solution best matched the measured cut-through in situ density
profile of the initial condensate. The fit produced a value of
VG/kB = 31.5 nK (where kB is Boltzmann’s constant) for the
potential depth. The resulting theoretical 2D density profile is
shown in Fig. 1(b), and a comparison of experimental, TIGPE,
and Gaussian-blurred TIGPE cut-through densities for the final

value of VG is shown in Fig. 1(c). The values of VG and w

correspond to a radial harmonic frequency of ωρ ≈ 150 Hz.
The rest of the experiment was simulated by solving the

TDGPE, whose form in scaled units is

i
∂ψ̄

∂t̄
= −∇̄2ψ̄ + Ū (r̄,t̄)ψ̄ + ḡN |ψ̄ |2ψ̄. (5)

The form of Ū (r̄,t̄) differed depending on whether a direct-
release or ramp-and-release experiment was simulated. This
will be discussed more fully below. The TDGPE was solved
using the split-step Crank-Nicolson algorithm [16] on a 3D xyz

spatial grid of 400 × 400 × 200 points which gridded a box of
dimensions 20 × 20 × 10 scaled length units. This translated
into a box of 200 × 200 × 100 μm, which proved to be large
enough to completely eliminate wall-bounce effects. The time
of flight (TOF) of condensate expansion was 10 ms in both
the direct-release and ramp-and-release cases. The TIGPE
solution used to fit the potential parameters was obtained
by solving the TDGPE in imaginary time using the same
algorithm and grid characteristics.

IV. COMPARISON OF EXPERIMENT
WITH GP SIMULATIONS

A. Direct release

The comparison of GP simulations with experiment for
the direct-release case is shown in Figs. 5 and 6. Figure 5
depicts the comparison of condensates which were directly
released after 1 � m � 6 units of angular momentum have
been applied. As noted above, for the simulation curves
angular momentum is added to the initial condensate via phase
imprint. The initial angular momentum corresponding to the
experimental data was determined by analysis of the sizes of
the holes in the final image.

Each of the six graphs displays cut throughs of the optical
density of the condensate cloud after TOF. In addition to the
data (red curves with individual points visible), two simulation
curves are plotted. The dashed (green) line is a cut through of
the density predicted by the TDGPE. The solid (blue) line
is a cut through of the TDGPE prediction convolved with a
Gaussian with a 4 μm 1/e2 radius. Applying this average to
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FIG. 5. (Color online) Comparison of the cut through of the condensate optical density data (shown as individual points connected with a
solid red line) after direct release and 10 ms TOF with GP simulations for initial circulations m = 1, . . . ,6. Two theoretical curves appear in
each graph. The dotted (green) curve is the result of evolving the 3D TDGPE. The solid (blue) curve is a cut through of the TDGPE prediction
convolved with a Gaussian having a 4 μm 1/e2 radius to account for the finite resolution of the experimental instrument.

the theoretical results accounts for the finite resolution of the
imaging optics in the NIST experiment. Figure 6 displays the
identical comparison for the cases 7 � m � 12.

To create the comparisons shown in Figs. 5 and 6 both the
experimental data and the theoretical results were subjected to
some postprocessing. Extracting the experimental cut through
from the raw images involved comparing cut-through data
along different lines through each image. The most symmetric
and highest amplitude density data was selected as the best

representative data for each image. This amounted to an
estimate of the location within each image of the center of the
trap. When creating the comparison plots of experiment with
GP simulations, we shifted the experimental data left-right
so that the center of the trap in the data coincided with the
theoretical origin of coordinates.

We also processed the simulation results by multiplying
them by an overall normalization constant. This was necessary
because the raw experimental data was expressed in arbitrary
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FIG. 6. (Color online) Comparison of the cut through of the condensate optical density data after direct release and 10 ms TOF with GP
simulations for initial circulations m = 7, . . . ,12.
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units and the normalization of the simulation results amounted
to a units conversion. We determined a normalization constant,
Ndr, for the direct-release case by fitting the tail of the m = 1
density profile. This normalization constant was then applied
to the theoretically determined density profiles for all other m

values in the direct-release case without further adjustment.
The same procedure of fitting the tail of the m = 1 density
profile was followed in the ramp-and-release case to obtain a
normalization constant, Nrr, and this value was applied to the
density profiles of all other m values. The values of Ndr and
Nrr were not the same.

As seen in Figs. 5 and 6, direct release and subsequent
expansion of a stirred ring BEC results in an annulus-shaped
optical density image when viewed from above. One can see
that the agreement between the GP simulation results and ex-
periment is very good for directly released condensates. This is
especially the case when the instrument resolution is accounted
for. For all m values, the size of the hole increases with initial
angular momentum and the agreement of experimental hole
size with the GP simulations is especially good. We also
find good agreement out in the wings of the distribution.
Peak-height agreement is not as good; however, this may be
due to variations in potential-well depth around the ring.

B. Ramp and release

To model the ramp down, the potential depth of the initial
trap was ramped down to 10% of its initial value over 50 ms.
The condensate was then released and allowed to expand for
10 ms TOF. The experiment-simulation comparison for this
case is shown in Fig. 7. This figure contains six comparison
graphs in the same format as in Figs. 5 and 6 where the initial
angular momentum ranges over 1 � m � 6. The experimental
data and the results of the GP simulation were processed in
the same way as for the direct release cases.

For the ramp-down case we find that there is less good
agreement in the tails of the distribution than in the direct-
release case but that peak sizes and especially hole sizes match
quite well. It is also clear that the sizes of the holes are larger
for the same m value than in the direct-release case. Thus
ramping down the strength of the radial confinement provides
a better experimental signature of the initial circulation than
direct release.

The agreement between the experimental data and the
predictions of the TDGPE indicates that mean-field theory is
adequate to understand how hole sizes in the expanded cloud
can be used as signatures of condensate circulation before
release. Thus it follows that we should be able to rely on
the TDGPE to also be a reliable predictor of the dynamics
of the condensate cloud after release. This conclusion may
be contrasted with recent work [17–20], which indicates that
some of the dynamics of the in situ cloud (e.g., phase slippage
due to vortex dynamics) may not be as well predicted by
zero-temperature mean-field theory.

V. BEHAVIOR OF THE RELEASED RING BEC

A. Expansion dynamics

The dynamical behavior of a released ring condensate
is illustrated in Figs. 8(a)–8(f). These figures consist of a
sequence of cut throughs of the optical density as a function of
time after release. Four units of angular momentum (m = 4)
have been added to the initial BEC. At the moment of release
the condensate has the shape of the initial ring [Fig. 8(a)].
After release the condensate expands rapidly inward and more
slowly outward. The inward expansion proceeds until the hole
reaches a minimum radius [Fig. 8(b)]. When the hole reaches
its minimum size (which depends upon the initial angular
momentum of the condensate), the density around the edge
of the hole begins to increase rapidly as seen in Fig. 8(c). As
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FIG. 7. (Color online) Comparison of the cut through of the condensate optical density data after ramp down and release and 10 ms TOF
with GP simulations for initial circulations m = 1, . . . ,6.
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FIG. 8. (Color online) Sequence of cut throughs of the optical density as a function of time after direct release depicting the dynamics of
the expansion. The initial condensate was phase imprinted with four units of angular momentum.

the density around the edge grows toward its maximum height,
a series of density rings begins to form [Fig. 8(d)]. As the peak
density begins slowly to decrease, the size of the central hole
begins increasing and more rings form as seen in Figs. 8(e)
and 8(f). In the limit of large times (not shown), the peak
flattens out and the condensate shape takes the form of a large
central hole surrounded by a density plateau which is, in turn,
surrounded by a series of density rings.

The appearance of rings during the rapid increase of the
density around the edge of the hole seems to be an interference
effect. Condensate atoms flow in towards the edge of the hole
and then flow out as evidenced by the rapid increase and
subsequent slower decrease of the density maximum. At a
fixed distance (but larger than the hole radius) from the center
of the condensate, condensate atoms can arrive there by two
distinct pathways. Either they are flowing in towards the edge
of the hole or they are flowing back out having already visited
the hole edge. These two possibilities create two pathways to
the same location and thus exhibit quantum interference.

This dynamical behavior also highlights an essential dif-
ference between simply and multiply connected condensates.
In simply connected condensates the velocity distribution can
generally be probed by release and subsequent imaging of the
density profile. This works as long as interactions between
condensate atoms during the expansion can be neglected. It is
clear that this is not the case for ring condensates.

B. Hole size scaling with winding number

It is interesting to compare the theoretical predictions for
the scalings of the hole sizes with initial winding numbers for
the direct-release case with the ramp-and-release case. Figure 9
displays the scalings for the two cases. The lower curve in that
figure shows the radii, Rdirect(m), of the holes versus winding
number for the direct-release case for m = 0, . . . ,12. The hole
radius was defined to be 40% of the peak density and this

percentage was chosen so that the extrapolation of the radii
back to m = 0 went through zero. The solid line that also
appears in the lower curve of Fig. 9 is a linear fit [Rdirect(m) =
am + b] to the hole radii. The values of the fit parameters were
a = 1.342 68 μm and b = 0.073 2567 μm. Thus hole radii for
the direct-release case appear to scale linearly with the initial
circulation of the ring BEC over the entire range of m.

The ramp-and-release case shows a different scaling and the
radii versus m, Rramp(m), are shown in the upper curve of Fig. 9.
Here the same definition of hole radius was used. However, the
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FIG. 9. (Color online) Hole size scaling as a function of initial
winding number as predicted by the TDGPE. The hole radius was de-
fined by the point at which the optical density reached 40% of its peak
value closest to the trap axis. The lower curve displays hole radii for
the direct-release simulations (plus symbols). The solid line appearing
in the lower curve is a fit to the direct-release radii to the function
am + b. The upper curve shows corresponding results for the ramp-
and-release case. The asterisks depict the radii, while the solid curve
is a fit of the ramp-and-release hole radii to the function α

√
m + β.
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radii do not appear to be linear. This conclusion is supported by
the accompanying solid line which is a fit to a linear function
of the square root of m: Rramp(m) = α

√
m + β. The result of

the fit yielded α = 7.069 04 μm and β = −4.052 76 μm.
We hasten to emphasize that the scalings (i.e., linear or

square root) of the hole radii with winding number were
independent of our definition of the hole radius. We defined
the hole radius as the location where the condensate density
reached 40% of the peak density. We chose that so that
the particular straight line observed in the direct release
case went through zero radius for m = 0 when extrapolated.
Choosing a different percentage of the peak density for the hole
radius criterion also exhibited linear scalings with different
y intercepts. While we adhered to this definition of hole
radius for the ramp-and-release case, we also found that
the square-root scaling did not depend on the hole radius
definition.

One effect of these different scalings is that the hole
areas for the direct-release case will scale approximately
quadratically with m while the hole areas for the ramp-and-
release case will scale approximately linearly with m. The
exact scaling, however, depends on the particular definition
of the hole radius. Evidence of this effect can be seen in
Fig. 2 where histograms of the experimental hole areas are
shown. In Fig. 2(a), which shows the direct-release hole areas,
the intervals between hole-area clusters can be seen to grow
larger as m increases. In the ramp-and-release case, shown in
Fig. 2(b), these intervals seem to stay the same as m increases.
This supports the conclusion that direct-release hole areas scale
approximately quadratically with m, while ramp-and-release
areas scale approximately linearly with m.

VI. CONCLUSION

In this paper we have shown by comparing experiment
with the results of simulations based on the GP equation how
the circulation of a stirred ring Bose-Einstein condensate can

be probed by measuring the size of the hole after release
and expansion. We found that the experimental data and the
predictions of the time-dependent Gross-Pitaevskii equation
for the sizes of holes produced by stirred and released
condensates agree well over a large range of winding numbers.
This was the case for condensates released directly after
stirring and also after ramp down.

We also used the agreement with the TDGPE to understand
the dynamics of the condensate after release. We found that
the hole of the ring is initially filled in to a minimum radius
that depends on the winding number at release time. Density
around the edge of the minimum-radius hole increases to a
maximum and then begins to decrease. Just after the time of
maximum density interference rings begin to appear. Since
atoms flow in and then flow out, the rings seem to be due
to interference between atoms that are flowing in and those
flowing out.

Ring condensates have exhibited phenomena such as
persistent currents and deterministic phase slips which came
as the result of stirring [13,14]. In the latter case, the system
was modeled as an “atom circuit” in which the phase changes
that occur when traversing a closed path around the ring
sum to a definite and known quantized value. The key to
evaluating these models is the ability to determine the winding
experimentally and correlating observed condensate behavior
with that predicted by the model. Such models will be
essential in understanding the behavior of future “atomtronic”
systems based on Bose-Einstein condensates confined in ring
potentials.
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