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Effects of interaction on thermodynamics of a repulsive Bose-Einstein condensate
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We report the effects of interaction on thermodynamic properties of a repulsive Bose-Einstein condensate
confined in a harmonic trap by using the correlated potential harmonics expansion method. This many-body
technique permits the use of a realistic interactomic interaction, which gives rise to the effective long-range inter-
action of the condensate in terms of the s-wave scattering length. We have computed temperature (T ) dependence
of the chemical potential, specific heat, condensate fraction, entropy, pressure, and the average energy per particle
of a system containing a large number (A) of 87Rb atoms in the Joint Institute for Laboratory Astrophysics (JILA)
trap. The repulsion among the interacting bosons results in a small but measurable drop of condensate fraction
and critical temperature (Tc), compared to those of a noninteracting condensate. These are in agreement with the
experiment. Although all thermodynamic quantities have a strong dependence on A and to a smaller extent on the
interatomic interaction, our numerical calculation appears to show that a thermodynamic quantity per particle fol-
lows a universal behavior as a function of T/Tc. This shows the importance of Tc for all thermodynamic properties
of the condensate. As expected, for T > Tc, these properties follow those of a trapped noncondensed Bose gas.
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I. INTRODUCTION

Since the achievement of the Bose-Einstein condensation
(BEC) in dilute vapors of alkali-metal atoms, there has been
a flurry of activities on BEC, both experimental [1–4] as well
as theoretical [5–8], highlighting the importance of studying
various properties [5–10] of interacting bosons confined in
an external potential trap. However, most of these works
have been focused on the static and zero-temperature aspects
of the condensates. Much less attention has been paid to
the theoretical study of different thermodynamic properties
because such studies require a large number of energy levels
of the condensate, involving extremely computer-intensive
calculations. This is true even for the mean-field Gross-
Pitaevskii (GP) equation. For an essentially exact many-body
technique like the diffusion Monte Carlo (DMC) method
[11], such calculations are much heavier. On the other hand,
analytical expressions can be obtained for noninteracting
bosons, assuming the number (A) of trapped bosons to be
very large [5,6]. Effects of finite size (finite A) were estimated
to be small for A > 104 noninteracting bosons [5]. But the
effect of atom-atom interactions is quite important even in
a typical dilute condensate, for which n|as |3 � 1, where n

is the number density and as is the s-wave scattering length.
The parameter expressing the importance of interaction energy
compared to the kinetic energy is A|as |/aho [5], with aho

being the harmonic oscillator length. Thus for the original
JILA experiment [2] with A = 40 000 and as/aho = 0.004 33,
the effect of interactions is quite significant, even though the
condensate is very dilute. Moreover, the strong central peak
has a higher density than the outer regions. Hence, smaller
average pair separation for condensed particles enhances the
effect of atom-atom interaction for T < Tc. On the other
hand, for T > Tc, average interatomic separation is much
larger than the range of two-body interaction and the effect
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of interaction on the noncondensed Bose gas is negligible.
Moreover, the finite-size effect may be pushed up to larger
A in the presence of interaction, since the net interaction
increases as the number of pairs. It is already known that
interatomic interaction produces an appreciable effect on
the energy, density profile, and some other static properties
of even a dilute condensate [5,12]. Thus one may expect
a priori an appreciable effect of interatomic interaction on
the thermodynamics of a condensate.

In this communication, we focus our attention on the less
explored domain of BEC thermodynamics, with particular
emphasis on the effect of interatomic interactions through a
many-body treatment. For this purpose, we use the correlated
potential harmonics expansion (CPHE) technique [12,13]. The
CPHE method is an approximate but ab initio many-body
theory, particularly suited to dilute BEC, where correlations
higher than two-body ones can be safely disregarded [13]. Due
to freezing of irrelevant degrees of freedom, the computational
technique is quite manageable, even for large A (for details,
see the next section). This method has been established over
the past few years as a simple but powerful technique to
study dilute BEC. It has been used successfully to study
different aspects of BEC, viz., its ground-state properties and
low-lying collective excitations at T = 0. An advantage of
the CPHE method is that it produces an effective potential
in the hyper-radial space, in which the condensate executes
collective motions as a single quantum entity. Thus, calculating
the excited states of the system is relatively simple. Recently
the CPHE method has also been used to calculate the heat
capacity of an attractive condensate [14] containing a fixed
number of 7Li atoms. For an attractive interaction the number
of atoms is limited by an upper bound, viz., the critical number,
beyond which the condensate collapses. On the other hand, the
number of atoms in a repulsive condensate can be quite large.
Due to numerical limitations, the original CPHE method was
computationally possible for A up to ∼15 000. Although the
upper limit of A has been pushed up using a mathematical
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limiting relation for static properties [15], in this work, we
restrict ourselves to 5 000 � A � 15 000 trapped 87Rb atoms
to study the temperature dependence of several thermody-
namic observables of the repulsive condensate. The number is
comparable with the JILA experiment [2], but small enough so
that the finite-size effect may show up. We find that the general
pattern of the experimental results is fairly well reproduced in
our calculation. Comparing with earlier estimates obtained
from approximate solutions of the GP equation [5] and also
with path integral Monte Carlo calculations [16], we find that
our results are in the same range, but closer to experimental
ones, for T not too close to Tc. These show that the effect
of interactions on thermodynamics of the repulsive JILA
condensate is non-negligible but relatively weak. This can
be understood as follows. For T < Tc, only a few particles
are in states other than the ground state. The occupation
of such states is given by the Bose distribution, depending
on the difference of energy of the levels and the chem-
ical potential μ(T ). The latter is slightly smaller than the
ground-state energy. It was found earlier that energies of the
ground and excited states depend strongly on interaction [12],
while excitation energies depend weakly on interaction for
repulsive condensates [17]. This will affect μ(T ), as also ener-
gies of all the levels strongly but their difference weakly. Since
only a microscopic fraction of the particles occupy the excited
states, total energy of the system at T not too close to Tc does
not depend too strongly on the interatomic interaction. Thus
the thermodynamic parameters (except the energy per particle)
are less strongly dependent on the atom-atom interaction than
the energies of the ground and excited states.

We also observe that although the critical temperature (Tc)
and all the thermodynamic parameters of the system depend
on the number of trapped bosons and to a smaller extent on the
interatomic interaction, a thermodynamic quantity per particle
in a dimensionless form appears to be a universal function of
T/Tc only (the only exception being the energy per particle
of the noninteracting condensate, which is appreciably lower
than that of the interacting condensate, as it follows from the
foregoing discussion). Thus by knowing Tc for a particular
configuration of the condensate and a knowledge of the uni-
versal function for a particular thermodynamic parameter, one
can get that thermodynamic quantity per particle as a function
of temperature T . Such information is quite useful because
a direct experimental measurement is usually very difficult.
This observed characteristic for the finite interacting systems
corresponds to the scaling behavior reported earlier [5,18].

The plan of the paper is as follows. In Sec. II A the
potential harmonics expansion method is briefly outlined for
convenience in reading and definition of symbols used. In
Sec. II B the numerical scheme for calculation of thermody-
namic properties of 87Rb condensate is presented. The results
and discussion are presented in Sec. III and finally in Sec. IV
we present our concluding remarks after a brief summary.

II. FORMALISM

A. Correlated potential harmonics
expansion (CPHE) technique

In this subsection, we briefly discuss the correlated po-
tential harmonics expansion (CPHE) method adopted for the

approximate solution of the many-body Schrödinger equation
for the dilute Bose condensates. Since this technique is already
well established and documented, we only present a brief
outline in the following. Interested readers can find the details
in Refs. [12,13,19].

The relative motion of a system of A identical bosons of
mass m confined by an external trap Vtrap is given by[

− h̄2

m

N∑
i=1

∇2
�ζi

+ Vtrap(�ζ1, . . . ,�ζN ) + V (�ζ1, . . . ,�ζN ) − ER

]

×ψ(�ζ1, . . . ,�ζN ) = 0, (1)

where {ζ1, . . . ,ζN } is a set of N = A − 1 Jacobi vectors [20]
and ER is the energy of relative motion. The hyperspherical
variables consist of a hyperradius

r =
[

N∑
i=1

ζ 2
i

] 1
2

, (2)

and (3N − 1) hyperangles constituted by the polar angles of N

Jacobi vectors and N − 1 angles defining the relative lengths
of these Jacobi vectors [20]. The hyperspherical harmonics
expansion method (HHEM) consists of expanding ψ , in
the complete set of hyperspherical harmonics (HH), which
are the eigenfunctions of the N -dimensional hyperangular
momentum operator. Substitution of this expansion in Eq. (1)
and projection on a particular HH give rise to a set of coupled
differential equations (CDE). This straightforward procedure
becomes difficult as A increases beyond 3, due to the very
rapid increase in the degeneracy of HH basis [20]. Note that
this basis incorporates all many-body correlations.

However, for a dilute BEC a great simplification is possible.
The bosons in the condensate have extremely low energies
(∼10−13 eV), so that the two-body scattering is described com-
pletely by the s-wave scattering length (as), and |as | becomes
the range of the effective interaction. This effective interaction
for the BEC can be attractive or repulsive, according to whether
as is negative or positive, although the actual interatomic
interaction has an attractive tail −C6/r6

ij of the van der Waals
potential (rij being the separation of the (ij ) pair) [6], with a
range ∼10 Bohr. The average pair separation in a dilute BEC is
much larger than |as |, and the pair feels the effective potential.
However, if rij were small compared to |as |, the interacting
pair would feel the strong van der Waals attraction (even in
a repulsive condensate) and could form a bound state. Now a
binary molecule formation is possible only through three-body
collisions, so that the third particle flies away with the released
binding energy. In order to eliminate depletion of the BEC
through molecule formation, the density of a laboratory BEC is
designed to be so low that the average pair separation is much
larger than |as |, i.e., n|as |3 � 1 is satisfied, where n is the
number density [5]. Now, n ∼ A/a3

ho, where aho = √
h̄/(mω)

is the oscillator length of the trap of frequency ν = ω/2π .
Hence this condition is A| as

aho
|3 � 1. For the 87Rb condensate

as = 100 Bohr and for the JILA trap, as

aho
= 0.004 33. For

A � 15 000, this condition is well satisfied.
Because of the extreme diluteness of the condensate and

the lack of three-body collisions, only two-body correlations
in ψ are relevant and the latter can be decomposed in Faddeev
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components ψij for the (ij )-interacting pair, which becomes a
function of the pair separation �rij and r only [21]

ψ =
A∑

i,j>i

ψij (�rij ,r). (3)

Clearly then ψij (�rij ,r) can be expanded in a subset of HH,
called the potential harmonics (PH) subset. This subset is
sufficient for the expansion of the interaction potential V (�rij )
as a function in the hyperangular space. A simple analytic
expression for the potential harmonic P lm

2K+l(�
ij

N ) is possible
[21]. Here, l and m are the orbital angular momentum of the
system and its projection and K is the 3N -dimensional grand
orbital quantum number. Expansion of the Faddeev component
in the PH basis is given as

ψij (�rij ,r) = r− (3N−1)
2

∑
K

P lm
2K+l

(
�

(ij )
N

)
ul

K (r)η(rij ). (4)

An additional short-range correlation function η(rij ) is in-
cluded to improve the convergence of the basis [12]. It
is chosen to be the zero-energy solution of the two-body
Schrödinger equation

−h̄2

m

1

r2
ij

d

drij

(
r2
ij

dη(rij )

drij

)
+ V (rij )η(rij ) = 0, (5)

which has the same short-range behavior as ψij (�rij ,r). The
asymptotic form of η(rij ) is given in terms of as as C(1 − as

rij
)

[6]. The short-separation behavior of V (rij ) (such as the hard
core radius of the van der Waals potential) can be adjusted to
correspond to the experimental as value. Substitution of the
expansion, Eq. (4), in the Faddeev equation and projection on
the PH for the (ij )-partition give [12]{
−h̄2

m

d2

dr2
+ h̄2

mr2
[L(L + 1) + 4K(K + α + β + 1)]

+Vtrap(r) −ER

}
UKl(r) +

∑
K ′

fKlVKK ′ (r)fK ′lUK ′l(r)=0,

(6)

where UKl(r) = fKl u
l
K (r),L = l + 3A−6

2 , α = 3A−8
2 , β = l +

1
2 , with l being the orbital angular momentum of the system
contributed by the interacting pair. The constant f 2

Kl is the
overlap of the PH for interacting partition with the sum of
the full set of PH for all partitions. An expression in a closed
form can be found in Ref. [21]. The resulting potential matrix
element VKK ′ (r) is [12]

VKK ′ (r) = (
h

αβ

K h
αβ

K ′
)− 1

2

∫ +1

−1

[
P

αβ

K (z)V

(
r

√
1 + z

2

)

×P
αβ

K ′ (z)η

(
r

√
1 + z

2

)
Wl(z)

]
dz, (7)

where h
αβ

K and Wl(z) are respectively the norm and weight
function of the Jacobi polynomial P αβ

K (z) [22]. Inclusion of the
short-range correlation function, η(rij ), makes the PH basis
nonorthogonal. Standard procedure for handling nonorthog-
onal basis can be followed. However, dependence of the
overlap 〈P lm

2K+l(�
(ij )
N )|P lm

2K ′+l(�
(kl)
N )η(rkl)〉 on the hyper-radius

r makes this very involved. On the other hand, actual numerical
calculation shows that this overlap matrix is nearly a constant
times the unit matrix, except for a very narrow interval of
small r values. Disregarding its derivatives, we approximately
get Eq. (6), with effective potential matrix element given by
Eq. (7) [23]. One notices that the effective two-body interaction
becomes V (rij )η(rij ). One can understand this physically as
follows. Since the interacting atoms in the BEC have very low
energy, a pair of them do not come close enough to “see” the
actual interatomic interaction (note that η(rij ) is vanishingly
small for small values of rij [19]). Thus the effective interaction
seen by the pair is governed by as through η(rij ).

This procedure reduces algebraic and numerical complexi-
ties drastically, since the number of active degrees of freedom
reduces to only four for a particular (ij )-partition, with the
remaining unimportant ones being “frozen”. This permits us
to solve the system up to A = 15 000. For larger A, the quantity
α becomes too large to be handled by the computer, especially
for the weight function Wl(z) of the Jacobi polynomial [12].
The CPHE technique has been successfully applied to study
T = 0 properties of both repulsive and attractive condensates
[12,13,24].

To solve Eq. (6) we adopt the hyperspherical adiabatic
approximation (HAA) [25], instead of a numerical algorithm
for solving CDE, for simplicity as well as for a better
physical insight, as discussed below. In HAA, the hyper-
radial motion is adiabatically separated from the hyperangular
motion, assuming the former is much slower than the latter.
This assumption is justified, since the hyper-radial motion
corresponds to the breathing mode. It has been tested to be
accurate to better than 1% for both nuclear and atomic systems
[26]. The hyperangular motion is solved by diagonalizing the
potential matrix, together with the hypercentrifugal repulsion
for a fixed value of r . The lowest eigenvalue, called the lowest
eigenpotential ω0(r), is used in the adiabatically separated
uncoupled hyper-radial differential equation

[
−h̄2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0 (8)

to obtain ER and the hyperadial wave function ζ0(r) in
the extreme adiabatic approximation (EAA) [25]. Besides
simplifying calculations, the HAA provides a physical insight
in terms of an effective potential, ω0(r), for the hyper-radial
motion, while the structure of the condensate is obtained in
terms of ζ0(r). We solve Eq. (8) by the Runga-Kutta method,
subject to appropriate boundary conditions to get ER and
ζ0(r). The center-of-mass energy is added to each energy
eigenvalue to obtain the energy levels Enl. To avoid the serious
numerical difficulty in evaluating Wl(z) for l > 0, we take the
potential matrix element (which does not change much with
l) for l = 0 and add the hypercentrifugal repulsion (HCR)
term corresponding to the chosen value of l. For calculation of
Enl, contribution of HCR is important only near the minimum
of the well in ω0(r). The contribution of ordinary centrifugal
repulsion (due to l) is bundled together with the “hypercentrifu-
gal part” due to hyper angular momentum, in Eq. (6). In a
noninteracting condensate, the minimum of ω0(r) occurs at
rmin 
 √

3A, and the effect of ordinary centrifugal repulsion is
correctly taken. But in a repulsive condensate, the minimum of
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ω0(r) occurs at a value of rmin � √
3A for large A, since rmin

increases due to A(A − 1)/2 pairwise repulsions. Since the
contributions of both ordinary and hypercentrifugal repulsions
decrease as r−2 in Eq. (6), the effective contribution due to
ordinary centrifugal repulsion becomes quite small for large
A. Hence Enl for l > 0 becomes appreciably lower than what
it should have been. We have corrected for this empirically by
taking the contribution of the ordinary centrifugal repulsion
corresponding to the appropriate r values. Note that energies
of l = 0 states (En0) are not affected.

For the interatomic potential, we choose the commonly used
realistic van der Waals (vdW) potential, whose short-range
repulsion is modeled by a hard core of radius rc [6]

V (rij ) = ∞ for r < rc

= − C6

rij
6

for rij � rc, (9)

which has the well-known r−6
ij attractive tail. The value of C6

is known for a particular type of atoms and rc is adjusted to
reproduce experimental as in the asymptotic form of η(rij ) [6].
This ensures that the correct effective two-body interaction,
expressed in terms of as , has been taken.

B. Calculation of thermodynamic quantities

The number of bosons in the energy level Enl at a
temperature T > 0 is given by the Bose distribution function

f (Enl) = 1

eβ(Enl−μ) − 1
, (10)

where β = 1/kBT and μ is the chemical potential, obtained
from

A =
∞∑

n=0

∞∑
l=0

(2l + 1)f (Enl). (11)

Clearly μ is a function of T . At T = 0, μ is equal to the
ground-state energy and all the bosons occupy this level. The
total energy of the condensate at a temperature T is

E(A,T ) =
∞∑

n=0

∞∑
l=0

(2l + 1)f (Enl)Enl. (12)

The specific heat of the condensate for a fixed particle number
is

CA(T ) = ∂E(A,T )

∂T

∣∣∣∣
A

, (13)

which can be calculated using Eqs. (10), (12), and (13)
[14]. In the usual textbook treatment in the thermodynamic
limit [27], μ is taken to remain equal to the ground-state
energy for T � T 0

c , where T 0
c is the critical temperature in

the thermodynamic limit. Bose condensation takes place at
T < T 0

c . In this treatment, the sums in Eqs. (11) and (12) are
replaced in the semiclassical approximation by integrals over
energy, assuming a continuous energy spectrum and a closed
expression for T 0

c can be given. But for finite A in the harmonic
trap, assumption of a continuous energy spectrum is not valid.
Exact numerical evaluation of the sum shows that μ depends on
T for all T : It decreases very slowly from its value E00 at T =
0, for T less than a particular value Tc, and then it decreases

rapidly for T > Tc. In this case, the critical temperature is
not well defined and no analytic expression is possible for Tc.
Instead, one notices that CA(T ) increases to a maximum at
T = Tc and then falls to its asymptotic value of 3kBA for large
T [28]. We follow the definition of transition temperature
Tc [28] to be the temperature at which CA(T ) is a maximum

∂CA(T )

∂T

∣∣∣∣
Tc

= 0. (14)

It is seen that as A → ∞, Tc approaches T 0
c , for noninteracting

bosons [28]. In our numerical procedure, we calculate a large
number of energy levels Enl, with n and l running typically
from 0 to 300 and 0 to 200 respectively. Using these values and
a chosen upper energy limit Eu, all energy levels Enl < Eu are
included in Eq. (11) to solve for μ. We next increase Eu and re-
peat the process, until μ converges for a particular temperature.
This value of μ and Eu are used for calculation of CA(T ), con-
densate fraction (defined as the number of atoms in the ground
state divided by A), and other thermodynamic quantities.

The entropy of the system is calculated using the standard
relation for bosons [6]

S = kB

∑
nl

{[1 + f (Enl)] ln[1 + f (Enl)] − f (Enl) ln f (Enl)}.

(15)

Finally, the pressure is calculated (in terms of the dimension-
less quantity PV

kBT
, V being the volume of the condensate) using

the relation of grand partition function

PV

kBT
= −

∑
nl

ln(1 − e−β(Enl−μ)). (16)

III. RESULTS AND DISCUSSION

We perform the calculations for chosen values of A

in a condensate of 87Rb atoms having s-wave scattering
length as = 0.004 33 aho, corresponding to the original JILA
experiment [2], and assume a spherically symmetric harmonic
trap of frequency of ω = 2π × 77.78 Hz. In order to compare
with the noninteracting case for a finite value of A, we use the
procedure and relations of Sec. II B with the noninteracting
energy values Enl = 2n + l.

In Fig. 1, we plot μ/μ0 calculated by the CPHE method
as a function of T (in nK) for A = 5 000,10 000, and
15 000 (continuous red [gray] curves labeled by 2,4, and 6
respectively), where μ and μ0 are the chemical potentials at
temperatures T and 0 respectively. For comparison we also
plot the noninteracting results for the same values of A (dotted
blue [gray] curves, labeled by 1,3, and 5 respectively). It is seen
that both the interacting and noninteracting bosons have the
same general features. Below a certain transition temperature
Tc (calculated later in the text), μ/μ0 decreases very slowly
for both interacting and noninteracting bosons, remaining
almost constant. This is close to the prediction of the textbook
treatment in the thermodynamic limit (A → ∞). Beyond Tc,
μ/μ0 decreases rapidly. One can also see from Fig. 1 that the
fall in μ/μ0 is rapid for smaller A and gradually becomes
slower for larger A. However, μ decreases more rapidly with
T for larger A, since μ0 (which is equal to the ground-state
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FIG. 1. (Color online) Plot of calculated μ/μ0 against T in nK
for A bosons in the harmonic trap by the CPHE method. Curves
labeled by 2, 4, and 6 are for A = 5 000,10 000, and 15 000 interacting
bosons respectively. μ/μ0 for noninteracting bosons are also plotted
for comparison for the same values of A as curves labeled by 1, 3,
and 5 for A = 5 000,10 000, and 15 000 respectively.

energy) increases rapidly with A. The fact that for T < Tc, the
chemical potential is almost equal to μ0 indicates that below
Tc, a macroscopic fraction of the particles reside in the ground
state. We find that μ/μ0, for both interacting and noninter-
acting condensate, depend strongly on A for T > Tc. In this
temperature range, for a particular value of A and T , interaction
increases μ/μ0 appreciably over its noninteracting value.

To obtain Tc from Eq. (14), we next calculate the spe-
cific heat using Eqs. (12) and (13). Calculated values of
CA(T )/AkB , for both interacting and noninteracting bosons
with A = 5 000,10 000, and 15 000, have been plotted against
T (in nK) in Fig. 2. Once again, the general features are the
same for both interacting and noninteracting cases. The heat
capacity increases with T smoothly and becomes maximum at
a particular T = Tc. Beyond that it drops suddenly, the drop
being more sudden as A increases. CA(T ) finally converges to
3AkB for large T . For condensates with repulsive interaction
at T > Tc, very excited energy levels are also occupied with a
small but nonvanishing probability. These are cut off in order
to reduce the CPU time. As a result, the asymptotic parts of
such curves in Fig. 2 do not converge properly. From Fig. 2,
it is clear that although for small A, the curve is continuous at
Tc, a conceived discontinuity in the slope of the heat capacity
curve becomes gradually distinct as A increases, as predicted
in the thermodynamic limit. From Fig. 2, it can also be seen
that the effect of interaction on the heat capacity is relatively
small, but it increases with A.

Transition temperature (Tc) is obtained numerically from
the calculated CA, using Eq. (14). In Table I, we present
ground-state energy (in units of h̄ω) and Tc (in nK), calculated
by the CPHE method, in the second and fifth columns
respectively for selected values of A given in the first column.
The third column lists the values of critical temperature (T 0

c ) of
noninteracting bosons in the thermodynamic limit, given by [6]

T 0
c =

[
A

ζ (3)

]1/3
h̄ω

kB

, (17)

 0
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C
A
/A

K
B

T(nK)

    A=5000,  interacting
    A=5000,  noninteracting

    A=10000,  interacting
   A=10000,  noninteracting

    A=15000,  interacting
   A=15000,  noninteracting

FIG. 2. (Color online) Plot of CA(T )/AkB against T in nK
for indicated number of bosons in the harmonic trap. Results for
noninteracting bosons are also included. The left, middle, and right
pairs of closely spaced curves correspond to A = 5 000, 10 000, and
15 000 respectively. For each closely spaced pair, the left curve is for
interacting bosons, while the right one is for noninteracting bosons. It
is seen that the repulsive interaction lowers Tc and the effect increases
with A. Also the fall in CA/AkB for T > Tc becomes sharper with
increase in A.

where ζ (3) is the ζ function. In a typical laboratory conden-
sates, there are lowerings of the critical temperature due to
repulsive interaction, as also due to the finite-size effect [5].
In the fourth column, we present our calculated transition
temperature (T ′

c ) for noninteracting bosons in the same trap.
The lowering due to finite-size effect (T ′

c − T 0
c ) is seen to

be somewhat larger than the estimate given in Ref. [5].
The lowering of the transition temperature due to repulsive
interaction, �Tc = T ′

c − Tc, is presented in the sixth column. It
increases with increase in A, in agreement with the theory [5].
This lowering of Tc in a repulsive BEC can be intuitively
understood to be due to the lowering of the peak density
of the gas, as more of the particles are pushed upward into
higher energy states. The repulsive interaction thus increases
the energy of the system and therefore it must be cooled down
to an even lower temperature, so that a macroscopic fraction
of the particles can be in the ground state. The experimental
values T

exp
c (≈ 0.94 × T 0

c ) [2] are presented in the seventh
column. CPHE results for Tc are close to but smaller than the
experimental values and the percentage difference is shown in
the last column. The magnitude of the percentage difference
gradually decreases as A increases.

Next we calculate the condensate fraction A0(T )/A, where
A0 is the number of particles in the ground state at T . For the
noninteracting Bose gas in the thermodynamic limit, it is given
by [5] A0

A
= 1 − ( T

T 0
c

)3. The calculated condensate fraction
for interacting condensates containing A = 5 000,10 000, and
15 000 bosons are plotted as a function of T (in nK) in
Fig. 3. The general nature is similar to that of the ideal
Bose gas, although quantitative differences exist for the actual
numerical values, showing the effects of realistic interatomic
interaction and finite size. In the same figure, we also plot
our calculated condensate fraction for the same number of
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TABLE I. Ground-state energies and critical temperatures of the condensate containing different numbers (A) of 87Rb atoms.

T
′
c (nK) Tc (nK) �Tc (nK)

Ground-state for noninteracing for interacting due to T exp
c (nK) Difference (%)

A energy (h̄ω) T 0
c (nK) bosons bosons interaction expt. [2] from expt.

5 000 20207.0053 60.03 55.81 55.06 −0.75 56.43 −2.43
7 000 31916.8493 67.16 62.87 62.01 −0.86 63.13 −1.77
9 000 44996.8594 73.03 68.87 67.79 −1.08 68.65 −1.25
11 000 59257.0459 78.08 73.96 72.71 −1.25 73.40 −0.94
13 000 74564.9947 82.55 78.78 77.18 −1.60 77.60 −0.54
15 000 90821.9956 86.58 83.53 81.12 −2.41 81.39 −0.33

noninteracting bosons. It is seen that noninteracting values
of A0

A
and transition temperature are larger than those for the

corresponding repulsive condensate, although the difference
is only a few percent. We next compare our results with other
theoretical calculations and also with available experiments.
Among the few many-body calculations of thermodynamical
quantities reported so far, an important one is the path-integral
Monte Carlo (PIMC) calcuation by Krauth [16], which was
carried out for 10 000 bosons in the JILA trap. Hence for a
comparison, we select A = 10 000 and present A0

A
calculated

by the CPHE method as a function of T
T 0

c
in Fig. 4. Results of

PIMC calculations and mean-field theory (MFT) estimates [5],
and also experimental results [2], are also presented in the
same figure. The experimental and PIMC results are obtained
by digitally scanning Fig. 27 of Ref. [5]. The MFT curve
is obtained from Eq. (122) of Ref. [5] with η = 0.4. From
this figure, one notices that the CPHE results are closer
to the experimental points than either the MFT or PIMC
results. However, the differences are relatively small, while
the experimental points scatter. Due to the experimental
uncertainties, relative merits of different theoretical estimates
is rather inconclusive at this stage. Nevertheless, all these
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FIG. 3. (Color online) Plot of condensate fraction A0(T )/A
calculated by CPHE method against T in nK for 5 000,10 000,
and 15 000 repulsively interacting bosons in the harmonic trap. The
left, middle, and right pairs of closely spaced curves correspond to
A = 5 000, 10 000, and 15 000 respectively. Plots for noninteracting
bosons are also included, which lie above the corresponding inter-
acting curve for each closely spaced pair. This again shows that Tc

decreases due to repulsive interaction.

theoretical estimates indicate a significant importance of
interatomic interactions.

However from Figs. 2, 3, and 4, it is clear that the effect of
interaction on thermodynamic quantities is not too drastic for a
dilute condensate, although ground-state energy (hence also μ)
of the repulsive condensate increases by a large amount due to
the interaction, and this amount increases rapidly with A (see
Table I). Note that the ground-state energy of a noninteracting
condensate containing A bosons in the trap is 1.5Ah̄ω and
the extremely rapid increase in the ground-state energy of the
interacting condensate is due to the net interaction of all the
pairs, which increases roughly as A2. The average contribution
of an interacting pair to the ground state of the condensate,
(E00 − 1.5Ah̄ω)/[A(A − 1)/2], is quite small (∼6 × 10−4 for
A = 15 000 87Rb atoms in the JILA trap). This quantity
decreases with increasing A. This is understandable, since
as A increases, the net repulsive interaction on a given particle
pushes the particle outward, thus increasing the average
interparticle separation. Although the ground-state energy of
the condensate increases by a large amount due to interaction,
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FIG. 4. (Color online) Plot of condensate fraction A0(T )/A
calculated by CPHE method against T/T 0

c for A = 10 000 bosons
in the harmonic trap (black dotted curve). Experimental results [2]
(blue [gray] diamonds), path integral Monte Carlo (PIMC) results [16]
(solid circles), and mean-field theory (MFT) estimates [5] (brown
[dark gray] continuous curve) are also presented for comparison.
Experimental and PIMC results have been obtained by digitally
scanning Fig. 27 of Ref [5]. For T < Tc, the experimental points
are closer to the CPHE results. Results for noninteracting bosons are
shown by the dash-dotted (red [gray]) curve.
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FIG. 5. (Color online) Plot of A0/A against T/Tc for indicated
number of interacting particles in the trap. All these curves, as well
as plots for noninteracting particles, lie on a universal curve and are
indistinguishable.

the effect of interaction on the excitation spectrum is much
smaller [17]. Hence its effect on the thermodynamic quantities
is also rather small.

We have noticed an interesting feature of the thermody-
namic quantities. When a thermodynamic quantity per particle
in a dimensionless unit is plotted against T/Tc, the plot appears
to fall on a universal curve, independent of the number of
particles in the condensate, regardless of whether they are
interacting or noninteracting. We demonstrate this in Figs. 5
and 6, where we plot A0/A and CA/(AkB) against T/Tc for
different values of A, both interacting and noninteracting. It
can be seen that, within calculational errors, all the curves of
a particular thermodynamic quantity fall on a universal curve,
independent of A and interaction.

In this spirit, in Fig. 7 we plot average energy per particle
[calculated using Eq. (12)] as a function of T/Tc, for different
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FIG. 6. (Color online) Plot of CA/AkB against T/Tc for indicated
number of interacting and noninteracting particles in the trap. The
curves from bottom to top, on the left side up to the peak, correspond
to A = 5 000, 7 000, 9 000, 11 000, 13 000, 15 000 interacting bosons
and A = 15 000 noninteracting bosons respectively. The curves
nearly overlap, except for T/Tc close to 1. The divergence for T/Tc >

1.05 is due to incomplete convergence in the numerical calculation.
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FIG. 7. (Color online) Plot of average energy per particle of the
condensate against T/Tc for indicated number of interacting bosons
in the harmonic trap. Although plots for all interacting cases fall on a
universal curve, those for the noninteracting bosons fall on a different
universal curve. As an example, a plot for A = 15 000 noninteracting
bosons is included as long dash-dotted (pink [gray]) curve.

particle numbers in the condensate. Once again, plots for
interacting condensate for different A fall on a universal curve.
However, the plots of noninteracting cases are indistinguish-
able for different A, but this curve for noninteracting bosons
lie appreciably below the one for interacting bosons. This can
be understood from Table I and the associated discussion.
For T < Tc, the average energy per particle increases slowly
with T . The rate of increase is slower than that of an ideal
noncondensed Bose gas. This can be understood from the fact
that a macroscopic fraction of the bosons in the condensate
remains in the lowest energy state for T < Tc. For T > Tc,
the average energy per particle approaches the classical limit
of 3kBT , since at such temperatures, the Bose gas becomes
noncondensed. The calculated result is similar to that obtained
in Refs. [2,29].

Next we have calculated the average entropy per particle
(S/AkB) using Eq. (15) and the results are plotted against T/Tc
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FIG. 8. (Color online) Plot of average entropy per particle against
T/Tc for indicated number of interacting bosons in the harmonic trap.
These curves, similar to the ones for noninteracting bosons, lie on a
universal curve and are indistinguishable.
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FIG. 9. (Color online) Plot of PV/AkBTc against T/Tc for
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harmonic trap. All the curves lie on a universal curve and are
indistinguishable.

in Fig. 8. Only the particles in the excited states contribute to
the entropy of the system. From Fig. 5, we notice that for a
given value of T/Tc, the fraction of particles in the excited
states (Aex/A) is almost independent of A. Hence S/AkB is
also practically independent of A. This explains the universal
nature of this curve. The same argument holds for the universal
nature of the energy per particle (Fig. 7) and heat capacity per
particle (Fig. 6). The overall nature of both the average energy
and entropy per particle are similar to those found in Ref. [29],
which, however, considered a condensate of only 200 particles
in a cubical box, with a different interaction strength.

Finally we have calculated the thermodynamic quantity
PV/AkBTc using the relation given in Eq. (16). Figure 9 shows
the variation of this quantity as a function of T/Tc. For T > Tc,
the system satisfies the classical relation PV = AkBT , as
expected. It is seen from Figs. 5–9 that each of the quantities
plotted as a function of T/Tc falls to within numerical errors,
on a universal curve (independent of A or interaction) for
that quantity. For the avarage energy per particle, the curves
are independent of A, but are different for interacting and
noninteracting bosons.

IV. SUMMARY AND CONCLUSION

The principal objective of this work has been to investigate
the effects of interaction on the thermodynamic properties of
a repulsively interacting Bose gas containing a large but finite
number of bosons confined in a harmonic oscillator trap. The
importance of this study stems from the fact that although
thermodynamics properties of a noninteracting Bose gas in a
harmonic trap are well studied theoretically, not much attention
has been paid to thermodynamics of interacting bosons. We
solve the many-body problem of atoms interacting via the
realistic van der Waals potential by the correlated potential
harmonics expansion (CPHE) method. This technique uses the
potential harmonics expansion basis, which is a subset of the
full hyperspherical harmonics basis and retains only two-body
correlations. It is justified since the laboratory condensates are
designed to be very dilute, in order that three-body collisions

(which lead to molecule formation and consequent depletion
of the condensate) are absent in the trapped gas. Hence only
two-body correlations are relevant. Use of this subset reduces
the complexity of the full many-body problem dramatically, so
much so that a system containing a large number of interacting
particles becomes manageable. We also include a short-range
correlation function, which is chosen to be the solution
of the zero-energy two-body Schrödinger equation with its
asymptotic behavior corresponding to the experimental s-wave
scattering length as . This short-range correlation function
incorporates the correct short-range behavior of the interacting
pair Faddeev component, and also guarantees that the effective
atom-atom potential corresponds to the experimental as . In
addition, it improves the convergence rate of the chosen
expansion basis. The CPHE method has been successfully
applied to zero-temperature static properties of both repulsive
and attractive condensates.

We have calculated the transition temperature (Tc) and
the temperature dependence of the chemical potential, heat
capacity, condensate fraction, energy, entropy, and pressure
(in the form of PV/kBTc) of a Bose gas containing A atoms
of 87Rb in the original JILA trap. For a finite A, there is no
critical temperature at which there is a sudden change of phase.
Instead, temperature dependence of each thermodynamic
quantity shows a rather rapid—although continuous—change
in behavior at a temperature Tc, which we define as the
transition temperature. We adopt the definition of Tc as the
temperature at which heat capacity( CA) attains a maximum.
We find that Tc is a few percent less than the experimental
value ≈0.94T 0

c [2], where T 0
c is the corresponding critical

temperature for the ideal Bose gas in the thermodynamic
(A → ∞) limit. The calculated chemical potential is found
to decrease very slowly for T < Tc, but then rapidly for
T > Tc. Next our calculated heat capacity, energy, entropy,
and PV/kBTc per particle increase with T , initially slowly and
then rapidly near Tc for T � Tc. The nature of T dependence
changes radically but continuously across Tc. For T > Tc,
the thermodynamic quantities attain their classical, nearly
ideal Bose gas values. The T > Tc behavior is understandable
in the following manner. For T > Tc, all the bosons are
in higher energy levels, which are much more extended
spatially. The peak central density now vanishes and atoms
are distributed thermally. Due to the increased average inter-
particle separation, the interatomic interaction becomes less
important and the ideal Bose gas result is approached as T

increases.
As a further comparison with other theoretical estimates

and experiment, we plotted the condensate fraction calculated
by CPHE method along with the mean-field theory (MFT)
estimate [5], the results of path integral Monte Carlo (PIMC)
calculation [16], and experimental points [2]. We find that
the CPHE results are somewhat nearer to the experimental
points, but due to scattering of the experimental points a
definite conclusion regarding the relative merits is not possible
at this sage. One can only say that the condensate fractions
of a finite and repulsively interacting condensate calculated
by different many-body methods are close to each other, and
are somewhat smaller than the experimental points. However,
there is a significant difference from the noninteracting values,
showing the importance of interactions.
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Our calculations indicate that for large A, the effect of
interatomic interaction is quite drastic on the total energy
of the ground and excited states of the many-body system
(Table I). This is understood by the fact that the net energy
increases due to A(A − 1)/2 interacting pairs. However, as
A increases, the average contribution to energy by a single
interacting pair decreases slowly, since the net repulsion of all
the pairs pushes the particles outwards, increasing the average
separation. On the other hand, the Bose distribution function,
which controls the temperature dependence of thermodynamic
quantities, depends on the difference of the total energy of a
state (Enl) and the chemical potential [μ(T )]. This difference
(as also the excitation energies [17]) do not depend too strongly
on the interaction, since the net repulsion affects each energy
level (and hence the chemical potential, which is slightly less
than the ground-state energy for T < Tc) roughly equally.
As a result the effect of interactions on the thermodynamic
quantities is not too drastic, although that on the energy of the
system is quite large.

In the process of our calculations, we have noticed an
interesting feature. We find that each of the thermodynamic
quantities per particle expressed in a dimensionless unit,
when plotted against T/Tc, falls on a universal curve for
that quantity. The universal curve does not depend on A and
on whether the bosons are interacting or not (except for the

average energy per particle of the noninteracting condensate).
Thus one can obtain a particular thermodynamic quantity at a
temperature T for the condensate containing any number of
interacting or noninteracting particles, knowing the universal
curve for that quantity and Tc (which depends on A and
the two-body interaction). This corresponds to the scaling
behavior of the Bose-Einstein condensates [5].

We conclude from this many-body study that the effect of a
repulsive interaction is quite substantial on the energies of the
collective states of the condensate, but is much less pronounced
on the collective excitations or on the thermodynamics of the
system. Hence the many-body results for the thermodynamic
quantities differ from the results derived from the mean-field
GP equation by only a few percent. We provide a microscopic
explanation of this observation based on our many-body
theory, as explained above. We also observe the scaling
behavior satisfied by the many-body results of the condensate.
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