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Coupling vortex dynamics with collective excitations in Bose-Einstein condensates
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Here we analyze the collective excitations as well as the expansion of a trapped Bose-Einstein condensate
with a vortex line at its center. To this end, we propose a variational method where the variational parameters
have to be carefully chosen in order to produce reliable results. Our variational calculations agree with numerical
simulations of the Gross-Pitaevskii equation. The system considered here turns out to exhibit four collective
modes of which only three can be observed at a time depending on the trap anisotropy. We also demonstrate that
these collective modes can be excited using well established experimental methods such as modulation of the
s-wave scattering length.
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I. INTRODUCTION

In this work, we are interested in the dynamics of a trapped
Bose-Einstein condensate (BEC) containing a line vortex at
its center. Here we are particularly interested in obtaining the
collective oscillation modes of the system which couples the
vortex-core oscillations with the oscillations of the condensate
external dimensions. The interest in this problem is motivated
by the fact that these oscillations can be measured in the
laboratory by moving the atomic cloud out of its equilibrium
configuration by using the Feshbach resonance in order to
modulate the scattering length [1–5]. These oscillations are
also studied in other physical systems such as two-species
condensates [6], BCS-BEC crossover [7–9], and superfluid
helium [10]. From the theoretical point of view, we are
interested in how the size of the vortex core oscillates with
respect to the external dimensions of the cloud. The mode
with the smallest oscillation frequency is the quadrupole
mode which occurs when the longitudinal and radial sizes
of the condensate oscillate out of phase. The breathing mode
requires more energy to be excited since the change in the
density of the atomic cloud imposes a greater resistance against
deviation from its equilibrium configuration than in the case
of quadrupole excitations [11,12].

The frequency shifts of quadrupole oscillations due to the
presence of a singly charged vortex have been analytically
explored for positive scattering lengths using the sum-rule
approach [13] as well as the effects of lower-dimensional
geometry on the frequency splitting of quadrupole oscillations
[14]. In Refs. [15–17], the dynamics of normal modes for a sin-
gle vortex has been studied using hydrodynamic models, which
focus on the vortex motion with respect to the center of mass of
the condensate. This concept was also used in the case of multi-
component Bose-Einstein condensates [18] as well as in the de-
scription of the dynamics of single perturbed vortex lines [19].

Preliminary calculations using a variational approach with
a Gaussian ansatz, which does not take into account the
independent variation of the vortex-core size [3,6,18,20],
shows a small shift in the frequencies of the aforementioned
modes (Fig. 1). This shift has already been obtained via a
hydrodynamic approximation in Refs. [12,21]. Thus we can
expect the frequency of the monopole (breathing) mode to
decrease while the quadrupole frequency increases in the
presence of the vortex.

To calculate the dynamics of a vortex with charge � in a
more consistent way with the physical reality, which allows for
the coupling between vortex core and the external dimensions
of condensate, we could naively use a Thomas-Fermi (TF)
ansatz [22],

ψ(ρ,ϕ,z,t) = A(t)

[
ρ2

ρ2 + ξ (t)2

] �
2

√
1 − ρ2

Rρ(t)2
− z2

Rz(t)2

× exp

[
i�ϕ + iBρ(t)

ρ2

2
+ iBz(t)

z2

2

]
, (1)

where Rρ(t) and Rz(t) are the respective condensate sizes in
radial (ρ̂) and axial (ẑ) directions, and ξ (t) is the size of the
vortex core. The variational parameters Bρ(t) and Bz(t) specify
the variations of the velocity field δv = Bρ(t)ρρ̂ + Bz(t)zẑ.
The next step is to calculate the equations of motion for the
five variational parameters (ξ , Rρ , Rz, Bρ , Bz). Following these
calculations, the equations of motion would be linearized. For
the ansatz (1), this procedure leads to imaginary frequencies
which are not consistent with the stable configuration where
a singly charged (� = 1) vortex resides at the center of the
condensate. The linearized equations of motion can be written
in a matrix form according to

Mδ̈ + V δ = 0, (2)

where δ is the vector with components given by deviations of
the variational parameters from their equilibrium values. The
solution of (2) is a linear combination of oscillatory modes
whose oscillation frequencies obey the equation∏

n

� 2
n = det(M−1V ) = det V

det M
. (3)

In order to ensure that all frequencies �n are real, we must
have det V/ det M > 0. We know that det V > 0 since its sign
reflects the sign of the variational parameters, which represents
the external dimensions of the cloud in the stationary situation.
Therefore, det M must also be positive. In the case of ansatz (1)
with � = 1, such conditions are not satisfied since det M < 0,
which indicates that there is something wrong with ansatz
(1). In previous works [17,18,23,24], since the authors did not
consider the size of the vortex core as a variational parameter,
this problem did not appear. More specifically, the imaginary
frequency problem arises for excitation modes where the
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FIG. 1. (Color online) Oscillation frequencies from Gaussian
ansatz without taking into account the independent variation of the
vortex-core size. Upper lines correspond to the frequencies of the
breathing mode as a function of the harmonic trap anisotropy, whereas
lower lines represent the frequencies of the quadrupole mode. Solid
(black) lines correspond to a vortex-free Gaussian profile, while
dotted (blue) lines describe a profile with a singly charged vortex.
Note that � is normalized by the frequency of the radial direction ωρ .

vortex core and the external size of the cloud oscillate out
of phase. This kind of motion generates a velocity field which
changes the sign of its radial component as the distance to
the vortex line is increased. Since the ansatz (1) describes
only linear variations of this component, it is natural to expect
nonphysical results in this case.

In Sec. II, the necessary requirements for the wave-function
phase are discussed in order to give support to our variational
method. Section III has the calculation based on the new ansatz
and the corresponding equations of motion are obtained. The
collective modes considering the coupling between vortex and
atomic cloud are obtained via linearization of the equations of
motion, thus resulting in new collective oscillations (Sec. IV).
In Sec. V, we showed that such excitation modes can be excited
using the scattering-length modulation. The free expansion
was also calculated in order to complement a previous work
[24]. Finally, Sec. VII contains the conclusions on our subject
of study.

II. WAVE-FUNCTION PHASE

We start with the Lagrangian density,

L = ih̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− h̄2

2m
|∇ψ |2

−V (r)|ψ |2 − g

2
|ψ |4, (4)

whose extremization leads to the Gross-Pitaevskii equation
(GPE):

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + V (r) + g|ψ |2

]
ψ, (5)

where V (r) = 1
2mω2

ρ(ρ2 + λ2z2) is an external potential, the
trap anisotropy is λ = ωz/ωρ , and g is the coupling constant.
The complex field ψ(r,t) can be written as an amplitude profile
multiplied by a respective phase, as follows:

ψ(r,t) = f (wl,r)eiS(χl,r), (6)

where

S(χl,r) = �ϕ +
∑

l

χlφl(r). (7)

We denoted both, wl = wl(t) and χl = χl(t), respectively, as
the amplitude and phase variational parameters. In principle,
{φl(r)} should be a complete set of functions but, in our present
approximation, we use only a representative incomplete set of
functions. Substituting (6) and (7) into (4), the Lagrangian
L = ∫

L d3r becomes

L = −h̄
∑

l

χ̇l

∫
d3r f 2φl − h̄2

2m

∑
l

χ2
l

∫
d3r f 2|∇φl|2

−
∫

d3r
(

h̄2

2m
|∇f |2 + Vf 2 + g

2
f 4

)
. (8)

In order to account for the dynamics of all three variational
parameters (Rρ , Rz, and ξ ) in f we include a variational phase
which also contains three variational parameters. This way we
chose the following trial function:

S(ρ,z,t) = �ϕ + Bρ(t)
ρ2

2
+ C(t)

ρ4

4
+ Bz(t)

z2

2
. (9)

This allows the radial component of the velocity field to change
its sign for different distances to the symmetry axis of the
cloud. As the superfluid current is connected to the density
variation, it is also desirable that both, amplitude and phase,
have the same number of variational parameters. It is worth
noticing that, in principle, any other ansatz allowing for such
behavior of the velocity field would be equally valid. We chose
to add an extra ρ4 term to the wave-function phase due to its
simplicity. The ansatz (9) also leads to linearized equations of
motion (2) with det M > 0, which is consistent with the stabil-
ity of the condensate with a singly charged vortex at its center.

III. EQUATIONS OF MOTION

Now we correct the Thomas-Fermi ansatz according to the
discussion in Sec. II. This leads to the following trial function:

ψ(r,t) =
√

N

Rρ(t)2Rz(t)A0[ξ (t)/Rρ(t)]

[
ρ2

ρ2 + ξ (t)2

] �
2

×
√

1 − ρ2

Rρ(t)2
− z2

Rz(t)2

× exp

[
i�ϕ + iBρ(t)

ρ2

2
+ iC(t)

ρ4

4
+ iBz(t)

z2

2

]
,

(10)

with

A0(α)

= 2π3/2(�)!

15α2�
(

3
2 + �

)
!

[
(3 + 2�α2)2F1

(
�,1 + �;

5

2
+ �; − 1

α2

)

− 2�(1 + α2)2F1

(
1 + �,1 + �;

5

2
+ �; − 1

α2

)]
, (11)

where, for simplicity, we define α(t) = ξ (t)/Rρ(t),
pFq(a1, . . . ,ap; b1, . . . ,bq ; x) are the hypergeometric func-
tions, ξ (t) is the size of the vortex core, Rρ(t) is the condensate
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size in radial direction (ρ̂), and Rz(t) is the condensate size in
axial direction (ẑ). The wave function (10) has an integration
domain defined by 1 − ρ2

R2
ρ

− z2

R2
z

� 0, where the wave function

is approximately an inverted parabola (TF shape), except

for the central vortex. The trapping potential shape sets the
condensate dimensions. To organize our calculations, we split
the Lagrangian so that it is a sum L = Ltime + Lkin + Lpot +
Lint of the following terms:

Ltime = ih̄

2

∫
d3r

[
ψ∗(r,t)

∂ψ(r,t)
∂t

− ψ(r,t)
∂ψ∗(r,t)

∂t

]
= −Nh̄

2

(
D1ḂρR

2
ρ + D2ḂzR

2
z + 1

2
D3ĊR4

ρ

)
, (12)

Lkin = − h̄2

2m

∫
d3r[∇ψ∗(r,t)][∇ψ(r,t)]

= −Nh̄2

2m

[
D1B

2
ρR

2
ρ + D2B

2
z R

2
z + 2D3BρCR4

ρ + �2R−2
ρ (D4 + D5) + D6C

2R6
ρ

]
, (13)

Lpot = −1

2
mω2

ρ

∫
d3r(ρ2 + λ2z2)ψ∗(r,t)ψ(r,t) = −N

2
mω2

ρ

(
D1R

2
ρ + λ2D2R

2
z

)
, (14)

Lint = −g

2

∫
d3r[ψ∗(r,t)ψ(r,t)]2 = −N2gD7

2R2
ρRz

, (15)

with the functions Di(α) given by

D1(α) = A0(α)−1 2π3/2(1 + �)!

21α2�
(

5
2 + �

)
!

[
(3 + 2�2)2F1

(
�,2 + �;

7

2
+ �; − 1

α2

)
− 2�(1 + α2)2F1

(
1 + �,2 + �;

7

2
+ �; − 1

α2

)]
,

(16)

D2(α) = A0(α)−1 π3/2(�)!

4α2�
(

7
2 + �

)
!

[
(7 + 2�)2F1

(
�,1 + �;

7

2
+ �; − 1

α2

)
− (5 + 2�)3F2

(
�,1 + �,

7

2
+ �;

5

2
+ �,

9

2
+ �; − 1

α2

)]
,

(17)

D3(α) = A0(α)−1 2π3/2(2 + �)!

27α2�
(

7
2 + �

)
!

[
(3 + 2�)2F1

(
�,3 + �;

9

2
+ �; − 1

α2

)
− 2�(1 + α2)2F1

(
1 + �,3 + �;

9

2
+ �; − 1

α2

)]
,

(18)

D4(α) = A0(α)−1 2π3/2(� − 1)!

3α2�
(

1
2 + �

)
!

[
(1 − 2�α2)2F1

(
�,2 + �;

3

2
+ �; − 1

α2

)
+ 2�(1 + α2)2F1

(
1 + �,2 + �;

3

2
+ �; − 1

α2

)]
,

(19)

D5(α) = A0(α)−1 2π3/2(� − 1)!

9α2�
(

1
2 + �

)
!

[
(3 + 2�α2)2F1

(
�,�;

3

2
+ �; −α2

)
− 2�(1 + α2)2F1

(
�,1 + �;

3

2
+ �; − 1

α2

)]
, (20)

D6(α) = A0(α)−1 2π3/2(3 + �)!

33α2�
(

9
2 + �

)
!

[
(3 + 2�α2)2F1

(
�,4 + �;

11

2
+ �; − 1

α2

)
− 2�(1 + α2)2F1

(
1 + �,4 + �;

11

2
+ �; − 1

α2

)]
,

(21)

D7(α) = A0(α)−2 2π3/2(2�)!

α4�
(

7
2 + �

)
!

2F1

(
2�,1 + 2�;

9

2
+ 2�; − 1

α2

)
. (22)

For simplicity we can scale the variational parameters of the Lagrangian as well as the time in order to make them dimensionless,

Rρ(t) → aoscrρ(t), Rz(t) → aoscrz(t), ξ (t) → aoscrξ (t), Bρ(t) → a−2
oscβρ(t),

Bz(t) → a−2
oscβz(t), C(t) → a−4

oscζ (t), t → ω−1
ρ τ,

where the harmonic-oscillator length is aosc = √
h̄/mωρ and the dimensionless interaction parameter is γ = Nas/aosc. Thus the

Lagrangian becomes

L = −Nh̄ωρ

2

[
D1r

2
ρ

(
β̇ρ + β2

ρ + 1
) + D2r

2
z

(
β̇z + β2

z + λ2
) + D3r

4
ρ

(
1

2
ζ̇ + 2βρζ

)
+ �2r−2

ρ (D4 + D5) + D6ζ
2r6

ρ + D7
4πγ

r2
ρrz

]
.

(23)
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The Euler-Lagrange equations,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

= 0, (24)

for each one of the six variational parameters from Lagrangian
(23) lead to the six differential equations:

βρ − ṙρ

rρ

− D′
1α̇

2D1
+ D3r

2
ρζ

D1
= 0, (25)

βz − ṙz

rz

− D′
2α̇

2D2
= 0, (26)

ζ − D3ṙρ

D6rρ

− D3α̇

4D6r2
ρ

+ D3βρ

D6r2
ρ

= 0, (27)

D1rρ(β̇ρ + β2
ρ + 1) + D3r

3
ρ(ζ̇ + 4βρζ )

−�2

r3
ρ

(D4 + D5) + 3D6ζ
2r5

ρ − D7
4πγ

r3
ρrz

= 0, (28)

D2rz

(
β̇z + β2

z + λ2
) − D7

2πγ

r2
ρr2

z

= 0, (29)

D′
1r

2
ρ(β̇ρ + β2

ρ + 1) + D′
2r

2
z

(
β̇z + β2

z + λ2
)

+D′
3r

4
ρ

(
1

2
ζ̇ + 2βρζ

)
+ �2

r2
ρ

(D′
4 + D′

5) + D′
6ζ

2r6
ρ

−D′
7

4πγ

r2
ρrz

= 0. (30)

Solving these equations for the parameters in the wave-
function phase, we have

βρ = ṙρ

rρ

+ F1α̇, (31)

βz = ṙz

rz

+ F2α̇, (32)

ζ = F3
α̇

r2
ρ

, (33)

where

F1 = D′
3D3 − 2D′

1D6

4
(
D2

3 − D1D6
) , (34)

F2 = D′
2

2D2
, (35)

F3 = 2D′
1D3 − D1D

′
3

4
(
D2

3 − D1D6
) . (36)

Replacing (31), (32), and (33) into Eqs. (28), (29), and (30),
we reduce our six coupled equations to only three, which are
given by

D1(r̈ρ + rρ) + G1rρα̈ + G2rρα̇
2 + G3ṙρ α̇

−G4
�2

r3
ρ

− D7
4πγ

r3
ρrz

= 0, (37)

D2(r̈z + λ2rz) + G5rzα̈ + G6rzα̇
2 + G7ṙzα̇ − D7

2πγ

r2
ρr2

z

= 0,

(38)

D′
1rρ(r̈ρ + rρ) + D′

2rz(r̈z + λ2rz) + (
G8r

2
ρ + G9r

2
z

)
α̈

+ (
G10r

2
ρ + G11r

2
z

)
α̇2 + (G12rρ ṙρ + G13rzṙz)α̇

+G14
�2

r2
ρ

+ D′
7

4πγ

r2
ρrz

= 0, (39)

with

G1 = D1F1 + D3F3, (40)

G2 = D1
(
F 2

1 + F ′
1

) + D3(4F1F3 + F ′
3) + 3D6F

2
3 , (41)

G3 = 2(D1F1 + D3F3) = 2G1, (42)

G4 = D4 + D5, (43)

G5 = D2F2, (44)

G6 = D2
(
F 2

2 + F ′
2

)
, (45)

G7 = 2D2F2 = 2G5, (46)

G8 = D′
1F1 + 1

2D′
3F3, (47)

G9 = D′
2F2, (48)

G10 = D′
1

(
F 2

1 + F ′
1

) + D′
3

(
1
2F ′

3 + 2F1F3
) + D′

6F
2
3 , (49)

G11 = D′
2

(
F 2

2 + F ′
2

)
, (50)

G12 = 2D′
1F1 + D′

3F3, (51)

G13 = 2D′
2F2 = 2G9, (52)

G14 = D′
4 + D′

5. (53)

The terms D1rρ , D2λ
2rz, D′

1r
2
ρ , and D′

2r
2
z come from the trap-

ping term Lpot, which can be neglected in the case of a freely
expanding condensate. The parameter γ indicates the terms
generated by the atomic interaction potential, while the frac-
tions proportional to r−2

ρ and r−3
ρ come from the kinetic-energy

contribution due to the presence of the vortex with charge �.
The remaining factors represent the coupling between the outer
dimensions of the condensate and the vortex core.

Making the velocities (ṙρ , ṙz,α̇) and accelerations (r̈ρ , r̈z, α̈)
equal to zero leads to the equations for the stationary solution:

D1rρ0 = G4
�2

r3
ρ0

+ D7
4πγ

r3
ρ0rz0

, (54)

D2λ
2rz0 = D7

2πγ

r2
ρ0r

2
z0

, (55)

D′
1r

2
ρ0 + D′

2λ
2r2

z0 = −G14
�2

r2
ρ0

− D′
7

4πγ

r2
ρ0rz0

, (56)

where rρ , rz, and rξ take their respective equilibrium values
rρ0, rz0, and rξ0. We apply Newton’s method to solve the
coupled stationary equations (54)–(56). The value of the
atomic interaction parameter used from now on in this paper
is γ = 800, which is close to the value used in rubidium
experiments [25].

IV. COLLECTIVE EXCITATIONS

For small deviations from the equilibrium configura-
tion, we assume rρ(t) → rρ0 + δρ(t), rz(t) → rz0 + δz(t),
and α(t) → α0 + δα(t), and neglect all terms of order 2
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or higher in (37)–(39). This leads to the linearized matrix equation⎛
⎜⎝

D1 0 G1rρ0

0 D2 G5rz0

D′
1rρ0 D′

2rz0 G8r
2
ρ0 + G9r

2
z0

⎞
⎟⎠

⎛
⎜⎝

δ̈ρ

δ̈z

¨δα

⎞
⎟⎠

+

⎛
⎜⎜⎝

D1 + 3G4
�2

r4
ρ0

+ D7
12πγ

r4
ρ0rz0

D7
4πγ

r3
ρ0r

2
z0

D′
1rρ0 − G′

4
�2

r3
ρ0

− D′
7

4πγ

r3
ρ0rz0

D7
4πγ

r3
ρ0r

2
z0

D2λ
2 + D7

4πγ

r2
ρ0r

3
z0

D′
2λ

2rz0 − D′
7

2πγ

r2
ρ0r

2
z0

2D′
1rρ0 − 2G14

�2

r3
ρ0

− D′
7

8πγ

r3
ρ0rz0

2D′
2λ

2rz0 − D′
7

4πγ

r2
ρ0r

2
z0

D′′
1 r2

ρ0 + D′′
2λ2r2

z0 + G′
14

�2

r2
ρ0

+ D′′
7

4πγ

r2
ρ0rz0

⎞
⎟⎟⎠

⎛
⎜⎝

δρ

δz

δα

⎞
⎟⎠ = 0, (57)

which defines the matrices M and V , appearing in Eq. (2).
Solving the characteristic equation,

det(M−1V − � 2I ) = 0, (58)

results in the frequencies of the collective modes of oscillation.
Now the determinants det M and det V are both positive for
� = 1. This means that a trapped condensate with a central
singly charged vortex is described by a stable state. Since (58)
is a cubic equation of � 2, we have three pairs of frequencies
±�n (n = z,ρ,ξ ). There are three frequencies �n and four
modes of oscillation in total, of which only three modes
can be simultaneously observed depending on the anisotropy
λ of harmonic potential as shown in Fig. 2. Among these
four modes, two of them represent monopole oscillations,
while the other two represent quadrupole oscillations of the
atomic cloud. The B1 mode [Fig. 3(a)] is characterized by
having all condensate components ri (i = z,ρ,ξ ) oscillating
in phase; however, B2 mode [Fig. 3(c)] presents rξ oscillating
out of phase with rρ and rz. The Q1 mode [Fig. 3(b)]
shows that rz oscillation is out of phase with rξ and rρ ,
which are in phase with each other. However, in Q2 mode
[Fig. 3(d)] the oscillations of rz and rξ are in phase with
each other, with the rρ oscillation being out of phase with
them. Extrapolating to an ideal situation where γ = 0, the
equations of motion (37)–(39) can be decoupled. This way,
the �z (lower frequency) represents only a rz oscillation, �ρ

(middle frequency) represents only a rρ oscillation, and �ξ

(upper frequency) represents only a rξ oscillation.

In order to validate our results (Fig. 4), numerical sim-
ulations were performed using a direct simulation of GPE
based on the Fourier spectral method, where the Fourier
components of ψ(r,t) were computed using fast Fourier
transformations [26]. As the initial condition, we considered a
small perturbation to the equilibrium configuration. By Fourier
transforming the expectation value 〈ρ2〉, it was possible to
reproduce the excitation spectrum. Frequency values �n in
the variational calculations differ from numerical values by
less than 1%.

In Fig. 2(a), for 0.1 � λ � 1, there exist two Q2-like modes.
The difference between them comes from the fact that vortex-
core oscillation amplitude is two orders of magnitude lower
at the less energetic mode. The same happens when � = 2
[Fig. 2(b)], i.e., the vortex core is almost still for the lower
frequency in the same interval of λ.

The solid lines in Fig. 2 correspond to the mode with largest
amplitude for the vortex-core oscillations. As can be seen, the
excitation frequency �ξ of this mode lowers as the vortex
circulation increases. It means that the energy necessary to
excite it will be lower if � is increased. However, we must point
out that our results apply only for the cases where rξ � rρ .

V. SCATTERING-LENGTH MODULATION

One of the mechanisms used for exciting collective modes is
via modulation of the s-wave scattering length. This technique
has been already applied to excite the lowest-lying quadrupole
mode in a lithium experiment [1]. Therefore, we consider the
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FIG. 2. (Color online) Oscillation frequencies as a function of trap anisotropy in a condensate containing a singly (a) and doubly (b) charged
vortex at its center. Solid (black) line is �ξ , dashed (red) line is �ρ , and dotted (blue) line is �z.
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(a ) B1 (b) Q1

(c) B2 (d) Q2

FIG. 3. (Color online) Schematic representation of collective
modes. B1 mode has all components oscillating in phase. B2 mode has
rξ oscillating out of phase with rρ and rz. Q1 mode has rz oscillation
out of phase with rξ and rρ . Q2 mode has rρ oscillation out of phase
with rξ and rz.

time-dependent scattering length:

as(t) = a0 + δa cos(�t). (59)

This is equivalent to making γ → γ (τ ), thus giving

γ (τ ) = γ0 + δγ cos(�τ ), (60)

where γ0 is the average value of the interaction parameter
γ (τ ), δγ is the modulation amplitude, and � is the excitation
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FIG. 4. (Color online) Fourier-transformed temporal evolution of
〈ρ2〉 obtained from a numerical simulation of the GPE. We set γ =
800, � = 1, μ̃ = 20.74, and λ = 0.9. �n are the frequencies of the
oscillation modes from less energetic (�z) to more energetic (�ξ ).
The analytical values are �z = 1.317, �ρ = 2.166, and �ξ = 8.874.

frequency. Substituting (60) into (57) and keeping only first-
order terms (δρ, δz, δα, and δγ ), we obtain a nonhomogeneous
linear equation,

Mδ̈ + V δ = P cos(�τ ), (61)

with

P = 2πδγ

⎛
⎜⎜⎝

2D7

r3
ρ0rz0
D7

r2
ρ0r

2
z0

D′
7

r2
ρ0rz0

⎞
⎟⎟⎠. (62)

A particular solution of (61) is

δγ (τ ) = (M−1V − �2)−1M−1P cos(�τ ). (63)

Projecting the vector δγ (τ ) in the base δn (n = z,ρ,ξ ) of
the eigenvectors of the homogenous equation associated to
Eq. (61), we obtain

〈δn|δγ (τ )〉 = 〈δn|M−1P 〉
� 2

n − �2
cos(�τ ). (64)

Since the scalar product |〈δn|M−1P 〉| is always positive, it
shows that specific collective modes can be excited using
a scattering-length modulation with small amplitude δγ and
frequency � close to the one of the resonance frequency �n.
In Fig. 5, we see the results from a numerical solution of

Ξ

(d)
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FIG. 5. (Color online) Numerical solution of Eqs. (37)–(39) with
a time-dependent interaction γ (τ ) (a), (b), and (c). (d) The excitation
spectrum obtained from variational calculation, where �ξ ≈ 6.13 is
close to the value calculated in Eq. (58). We excited the collective
mode Q2 (�ξ = 6.21) of a condensate with a cigar shape (λ = 0.1,
γ0 = 800) via scattering-length modulation with amplitude δγ = 0.4
and frequency � = 6.
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FIG. 6. (Color online) Ratio between vortex-core size and radial cloud size for different trap anisotropies while in free expansion. The solid
(black) line corresponds to a prolate condensate (λ = 0.1), the dashed (blue) line to the isotropic case (λ = 1), and the dotted (red) line to an
oblate condensate (λ = 8).

Eqs. (37)–(39) considering a time-dependent interaction γ (τ )
according to Eq. (60). There we can see the beat behavior
corresponding to a superposition of the frequencies � = 6
and �ξ = 6.13.

VI. FREE EXPANSION

The time-of-flight pictures constitute the most common
method to measure vortices in BEC. This method consists in
switching off the magneto-optical trap and letting the atomic
cloud expand freely for some time, typically ten milliseconds,
and then taking a picture of the expanded cloud [5,27–31].
For this purpose, we use the equations of motion (37)–
(39) without the terms arising from the harmonic potential,
i.e.,

D1r̈ρ + G1rρα̈ + G2rρα̇
2 + G3ṙρ α̇ − G4

�2

r3
ρ

− 4D7γ

r3
ρrz

= 0,

(65)

D2r̈z + G5rzα̈ + G6rzα̇
2 + G7ṙzα̇ − 2D7γ

r2
ρr2

z

= 0, (66)

D′
1rρ r̈ρ + D′

2rzr̈z + (
G8r

2
ρ + G9r

2
z

)
α̈

+ (
G10r

2
ρ + G11r

2
z

)
α̇2 + (G12rρ ṙρ + G13rzṙz)α̇

+G14
�2

r2
ρ

+ 4D′
7γ

r2
ρrz

= 0, (67)

whose initial conditions are given by the stationary equations
(54)–(56).

In Fig. 6, we have the ratio between vortex-core size (rξ )
and radial cloud size (rρ) during free expansion for three
different initial trap configurations. In general, the vortex core
expands faster than the condensate at early times, going to the
same rate of expansion at large times. The prolate condensate
(λ = 0.1) has an almost constant ratio rξ /rρ during the entire
expansion. For the isotropic (λ = 1) and oblate (λ = 10) cases,
this ratio increases rapidly in the initial stage of the expansion
until it converges to a constant value. These results agree

with our previous work [24], where Fig. 6(b) could not be
calculated since the authors considered the healing length
as an approximation to the vortex-core radius which is only
valid for � = 1. Such an agreement indicates the fact that,
indeed, the vortex-core size is always close to the instantaneous
healing length during the expansion. Moreover, since the radial
component of the velocity field always points outwards from
the cloud, the extra ρ4 term in the wave-function phase is not
necessary for a consistent description of the system.

VII. CONCLUSIONS

In this paper, we proposed a modification in the wave-
function phase commonly used with the variational method
which corrects the imaginary frequencies of collective modes
when we have a parameter describing nonphysical vortex-core
dynamics with � = 1.

Here we consider variational phase parameters correspond-
ing to each parameter in wave-function amplitude, respec-
tively. This way, we were able to describe the dynamics of both
vortex core and the external dimensions of the condensate,
which agrees with the numerical simulations of the GPE.
Although we observe four modes of oscillation in total, only
three of them can be simultaneously observed depending
on the trap anisotropy. We also demonstrate that these
oscillation modes can be excited by modulating the s-wave
scattering length using the same experimental techniques as
in Ref. [1].

Finally, we analyzed the time-of-flight dynamics of the
vortex core with different circulations in order to complement
the results in Ref. [24].
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