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Two polaron flavors of the Bose-Einstein condensate impurity
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We show that repulsive neutral-atom impurities in a dilute gas Bose-Einstein condensate (BEC) can self-localize
in bubble polaron states formally analogous to electron bubbles in helium. The BEC is then the first impurity
host medium known to exhibit both Landau-Pekar polaron states akin to that of self-localized electrons in a
dielectric lattice and self-localized bubble polaron states. We find that the neutral BEC-impurity system is fully
characterized by only two dimensionless coupling constants and that a single BEC impurity can be steered
adiabatically from the Landau-Pekar to the bubble region. The adiabatic change is that of a crossover, not a
transition.
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I. INTRODUCTION

The polaron, a single distinguishable particle that interacts
with the self-consistent deformation of the medium that
contains it, is a paradigm of strong interaction physics in
condensed matter [1,2], chemistry [3], and biophysics [4].
Polaron physics can now be studied in cold-atom systems [5].
Polarons self-localize when sufficiently cold and strongly
coupled to the host medium. In nature, large [6] self-localized
polarons appear in two flavors: particles that hardly deform
the medium, such as electrons in dielectric lattices [7], and
particles that greatly distort the medium, such as electron
bubbles in condensed helium superfluids [8]. In the first class,
the particle is accompanied by a cloud of small-amplitude
collective excitations of the medium. We refer to this object
[9,10] as a Landau-Pekar polaron. In the bubble systems,
which occur in fluids and dense gases, the strongly repelling
particle can be described as residing in a self-created cavity—
the bubble—surrounded by fluid [11]. The effective mass
and mobility of bubble and Landau-Pekar polarons exhibit
quite different behaviors and so the two polaron flavors are
customarily viewed as distinct. It is known that dilute gas Bose-
Einstein condensates (BECs) [12,13] can localize impurities
in Landau-Pekar polaron states [14,15]. We show below that
impurities in a BEC can also form bubbles. This surprising
discovery identifies a BEC as the first medium known to self-
localize an impurity in both polaron flavors. Further, the system
phase diagram presented here shows how the BEC-impurity
polaron evolves continuously between the two regimes as
the interaction strengths and BEC density are varied. The
BEC-impurity system can then simulate large self-localized
polarons in a boson environment [16]. In addition to direct BEC
experiments, our bubble-crossover prediction can motivate a
search for Landau-Pekar polarons in condensed fluids (the
traditional hosts to bubbles) and may motivate a second look at
fermion polarons. For example, can self-localized cold-atom
fermion polarons [16] or self-localized protons in the dense
neutron environment [17] of neutron star cores cross over to
bubble states, thereby radically altering their properties?

II. SYSTEM

We consider a neutral impurity atom of mass mI immersed
in a homogeneous BEC of N boson particles of mass mB

contained in a macroscopic volume �, giving an average
density ρ = N/�. Bosons at positions r and r′ interact via
a repulsive short-range interaction of scattering length aBB ,
described by an effective potential VBB(r − r′) = λBBδ(r −
r′), where λBB = (4πh̄2/mB)aBB and aBB > 0. The boson
chemical potential μB = λBBρ sets the time scale h̄/μB and
the coherence length ξ = 1/

√
16πρaBB sets the length scale

on which the BEC can respond to a perturbation. The pertur-
bation here is provided by the impurity interacting with the
bosons via VIB(r − x) = λIBδ(r − x), where x is the impurity
position and the impurity-boson interaction strength λIB =
2πh̄2(m−1

I + m−1
B )aIB is proportional to the impurity-boson

scattering length aIB , taken to be Feshbach tuned [18] to a
large positive value [19]. We break the translational symmetry
of the BEC-impurity system ground state by fixing the impurity
center-of-mass position at r = 0 [20]. We write the BEC
density in the presence of the impurity as ρB(r) = ρ + δρB(r).
Self-localization occurs when the effective potential λIBδρB(r)
can trap the impurity.

III. LANDAU-PEKAR POLARON

The impurity-boson repulsion can be simultaneously strong
enough to self-trap the impurity and weak enough to hardly
change the BEC density profile [Fig. 1(a)]. In this regime,
the Bogoliubov expansion and transformation that describes
the BEC fluctuations [21] can be carried out around the
homogeneous BEC [22]. The interaction of the dilute BEC
with an impurity of density ρI (r) = (2π )−3

∫
d3k eik·rρI,k

then gives a Fröhlich Hamiltonian [23], familiar from electron-
phonon interactions. Representing the quasiparticle annihi-
lation and creation operators of momentum k and energy
h̄ωk = h̄k

√
(1 + ξ 2k2)(μB/mB) by bk and b

†
k, respectively, the

impurity-boson interaction is described by

HIB = λIB

�

∑
k

ρI,−k ρB,k

≈ λIBρ + M√
�

∑
k

νkρI,−k(b†k + bk), (1)

where ρB,k is the operator associated with the boson density.
In Eq. (1), the impurity-phonon interaction matrix element
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FIG. 1. (Color) Numerical results for the normalized boson
density (blue shading) and un-normalized impurity wave function
(red dashed line). The parameter values [see Eqs. (3) and (8)] are
(a) β = 25 and α = 10−9, (b) β = 25 and α = 10−5, (c) β = 25 and
α = 101, and (d) β = 5 × 104 and α = 103.

M = λIB
√

ρ and νk = (ξ 2k2/[1 + ξ 2k2])1/4 is a structure fac-
tor arising from the Bogoliubov transformation. By showing
that the Fröhlich coupling HIB amounts to a displacement
of the k-mode oscillator coordinate φk = (b†k + b−k)/

√
2,

Landau and Pekar [10] integrated out the phonon modes. The
resulting energy reduction takes the form of a self-interaction
[22,24] E = −M2(2π )−3

∫
d3k ρI,−kρI,k(ν2

k /h̄ωk), which
in the strongly coupled regime overcomes the kinetic energy
cost of localizing the impurity. Here the self-interaction
potential is an attractive Yukawa potential of range ξ . It can
cause self-localization when ξ exceeds the impurity extent,
which is comparable to [14]

Ro = [
4πρa2

IB (1 + mI/mB)(1 + mB/mI )
]−1

. (2)

Specifically, when the ratio of the boson healing length ξ to
the self-localization length Ro

β = ξ

Ro

=
√

πρ
a4

IB

aBB

(
1 + mI

mB

) (
1 + mB

mI

)
� 5, (3)

the above description predicts self-localization [14]. The
binding energy, proportional to

Eo = h̄2

2mIR2
o

= 2

(
mB

mI

)
β2μB, (4)

then significantly exceeds μB . When scaled by Eo and Ro,
impurity observables in the Landau-Pekar regime depend only
on the dimensionless coupling strength β [14].

IV. BUBBLE POLARON

When aIB grows sufficiently, numerical simulations dis-
cussed below show that the BEC is expelled from the
impurity’s vicinity [Figs. 1(c) and 1(d)]. We use Kuper’s model

of electron bubbles in helium [11] as the basis of a simple
analytical treatment. The numerical results will show that this
grossly simplified model works surprisingly well over a wide
parameter range and also how it breaks down. With complete
BEC and impurity separation [Fig. 1(d)] the impurity, trapped
in a self-created spherical cavity of radius Rc and volume
Vc, has wave function χ (r) = (

√
πRc)−1 sin(πr/Rc)/r . Ne-

glecting surface tension, the system energy difference Ec

with and without impurity is the impurity kinetic energy
π2h̄2/2mIR

2
c plus the energy cost of making the cavity PVc,

where P = λBBρ2/2 is the BEC pressure. Hence

Ec(Rc) = π2h̄2

2mIR2
c

+ 8π2

3

h̄2aBB

mB

ρ2R3
c . (5)

The minimization ∂Ec/∂Rc = 0 yields a stable bubble
polaron state with cavity radius Rc = [8(mI/mB)ρ2aBB]−1/5

and impurity energy Ec = (5/3)(π2h̄2/2mIR
2
c ) =

(5π/3)2−9/5(mB/mI )3/5μB/(
√

ρa3
BB )2/5.

V. THE BEC PERMEABILITY

The qualitatively different BEC-impurity overlaps in
Figs. 1(a) and 1(d) are caused by the difference in the relative
importance of BEC “stiffness”. In Fig. 1(a) the energy cost
Ex of removing N = | ∫ d3r[ρB(r) − ρ]| bosons from the
impurity’s vicinity exceeds the reduction in impurity-boson
interaction energy, estimated as Eo in the Landau-Pekar
regime, whereas it is overwhelmed by Eo in Fig. 1(d). Using
Ex = NμB and estimating N = |λIB/λBB | (see [25])
(valid in the Landau-Pekar and crossover regimes but not in
the bubble regime), we introduce the ratio

σ = Ex

Eo

=
[

4πρa3
IB

(
1 + mI

mB

)3(
mB

mI

)2]−1

(6)

quantifying the relative importance of the displacement energy
cost to the overlap energy gain of self-localization. We
call this useful parameter the BEC-impurity permeability.
In the Landau-Pekar regime, a direct analytical evaluation
yields |δρB(r = 0)/ρ| = (4

√
2/3

√
π)σ−1 = 1.064σ−1. Thus

σ � 1 implies Landau-Pekar conditions where the repulsion
is insufficient to overcome the BEC stiffness and displace the
bosons noticeably [Fig. 1(a)]. A gradual increase in aIB then
expels the bosons significantly when σ ∼ 1 [Fig. 1(b)] and
enters the large-depletion bubble limit [Figs. 1(c) and 1(d)]
when σ � 1.

VI. GENERAL CASE

A more general ground-state treatment, encompassing the
Landau-Pekar and bubble regimes as limits, is based on the
strong-coupling approximation of a many-body product state.
Minimizing the energy while requiring the respective boson
and impurity wave functions ψ(r) and χ (r) to be normalized
gives two coupled Gross-Pitaevskii equations

μBψ(r) = −h̄2∇2

2mB

ψ(r) + λBB |ψ(r)|2ψ(r) + λIB |χ (r)|2ψ(r),
(7)

εIχ (r) = −h̄2∇2

2mI

χ (r) + λIB |ψ(r)|2χ (r),

053610-2



TWO POLARON FLAVORS OF THE BOSE-EINSTEIN . . . PHYSICAL REVIEW A 88, 053610 (2013)

where limr→∞ ψ(r) = √
ρ and μB and εI represent the

Lagrange multipliers ensuring normalization
∫

d3r|ψ(r)|2 =
N and

∫
d3r|χ (r)|2 = 1.

The BEC-impurity system has five physical parameters mB ,
mI , ρ, aBB , and aIB , but we find that the proper dimensional
scaling of energies, density, and distances reveals a minimal
dependence on just two coupling constants. The first is the
length scale ratio β = ξ/Ro. The second is the mass-scaled
boson gas parameter

α =
(

mB

mI

)√
ρa3

BB. (8)

All properly scaled observables can be cast in terms of α and β

[26]. For example, the permeability parameter σ takes the form
σ (α,β) = 1/4π1/4

√
αβ3 and in the bubble limit the energy

and cavity radius are given by Ec = Eo(5π/24)β2(4/α)2/5

and Rc = Ro4π1/2βα1/5, respectively. To prove the minimal
dependence, we substitute (real-valued) scaled dimensionless
boson p and impurity g wave functions

ψ(r) = √
ρp(x = r/ξ ), χ (r) = R−3/2

o g(y = r/Ro) (9)

into the coupled equations (7), scaling the energies and lengths
to obtain the dimensionless form(

∇2
x + 1 − p2(x)

2

)
p(x) = −4πβ2

σ (α,β)
g2(y = xβ)p(x),

(10)(∇2
y + eI

)
g(y) = −σ (α,β)p2(x = y/β)g(y),

where eI = εI /Eo and the g and p solutions have to satisfy
the normalization

∫
d3y g2(y) = 1 and boundary condition

limx→∞ p(x) = 1.
To provide a rigorous test of the Landau-Pekar and bubble

limiting behaviors and to study the intermediate regime for
which there is no analytical treatment, we developed an
algorithm to solve the coupled equations (7) numerically [27].
It yields the α and β dependences of the relevant observables.
For example, in Fig. 2 we plot the root-mean-square impurity
extent Rrms =

√∫
d3r r2ρI (r). On the left, the α independence

of the Landau-Pekar impurity properties is confirmed by

FIG. 2. (Color) Dependence on gas parameter α of the rms width
of the impurity density (in units of scaled length R0), for several
values of the impurity-BEC interaction parameter β. For each β

arrows indicate the values of α for which permeability σ = 1.

FIG. 3. (Color) Dependence on gas parameter α of the relative
decrease in BEC density at the impurity location, for several values of
the impurity-BEC interaction parameter β. For each β arrows indicate
the values of α for which permeability σ = 1.

the zero slope of the curves, which also show the expected
convergence to Rrms ≈ 4.6R0 for β � 20 [14]. On the right,
the straight lines of slope 1/5 confirm the expected bubble
scaling Rrms/Ro ∝ βα1/5. The smooth change between these
limits indicates a crossover, rather than a transition, between
Landau-Pekar and bubble regimes.

Likewise, the relative BEC density change at the impurity
position |δρB(r = 0)/ρ|, plotted in Fig. 3, shows the σ−1 ∝
α1/2 scaling of the Landau-Pekar polaron on the left side.
Before crossing the line of unit relative density response, the
curves level off and approach the bubble limit of maximal
BEC depletion asymptotically. As in Fig. 2, the arrows on
Fig. 3 illustrate that the crossovers occur near σ = 1. Figure 4
is the two-dimensional phase diagram for the system, produced
by plotting |δρB(r = 0)/ρ| in the (α,β) plane, colored to show
the polaron regimes and the region where the impurity-BEC

FIG. 4. (Color) Phase diagram of the BEC-impurity system
obtained as a plot of |δρB (r = 0)/ρ|. The dots in the Landau-Pekar,
crossover, and bubble regions correspond to the BEC density profiles
in Figs. 1(a), 1(b), and 1(c), respectively. The blue line is a trajectory
that tunes the system continuously from the Landau-Pekar limit to
the bubble limit (off the top of the plot).
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interaction is not strong enough to cause self-localization. The
red σ = 1 line lies, as expected, on top of the crossover region.

VII. EXPERIMENTAL REALIZATION

The remarkable ability of a BEC to self-localize impurities
both in Landau-Pekar and in bubble states could be strikingly
illustrated by an experiment that adiabatically Feshbach-tunes
the same BEC-impurity system from one limit to the other. For
typical densities (1011 cm−3 < ρ < 1014 cm−3) and realistic
ranges for aBB and mB/mI , we find that cold-atom α values
may range from 10−7 to 10−1. Increasing aIB by Feshbach
tuning could achieve self-localization at β ∼ 5 (see Fig. 4).
Using Eq. (3) and scaling scattering lengths and densities by
the typical values of 1 nm and ρ = 1013 cm−3, this corresponds
to aIB = aSL

IB , where

aSL
IB = 168 nm√(

1 + mB

mI

)(
1 + mI

mB

)
(

aBB/nm

ρ/ρ

)1/4

. (11)

This self-localization near β ∼ 5 results in a Landau-Pekar
polaron if σ = (4π1/4

√
125α)−1 � 1, requiring

aBB � 2.00 nm (ρ/ρ)−1/3(mB/mI )−2/3 . (12)

A further increase in aIB and/or ρ can lower the permeability
and effect a cross over to the bubble regime when aIB ∼ across

IB ,
where from Eq. (6)

across
IB = 200 nm

(ρ/ρ)−1/3(mB/mI )−2/3

(1 + mI/mB)
. (13)

Throughout, the permeability parameter varies as

σ = 1.68(
aIB/aSL

IB

)3

1

(ρ/ρ)1/4

1

(aBB/1 nm)3/4

(
mB

mI

)−1/2

, (14)

where aSL
IB denotes the scattering length of Eq. (11) at standard

density ρ = ρ. The adiabatic (aIB,ρ) variation traces out a
trajectory on the phase diagram (e.g., blue line on Fig. 4) that
starts in the low-α, cyan-colored, Landau-Pekar region. An
increase in BEC density and a Feshbach increase in aIB can
then, eventually, steer the BEC-impurity across the crossover
regime into the yellow-colored bubble region.

We now consider two potential issues facing such
an experiment. The first is the lifetime of the impu-
rity against three-body recombination. An increase in aIB

is generally [but not always (see below)] accompanied
by a decrease in lifetime [28]. Estimating the three-
body limited impurity lifetime τI as in [29], we ex-
pect τ est

I ∼ (
√

3/3.9)[
√

1 + 2(mB/mI )(h̄/mB)a4
IBρ2]−1. As

the time scale of the BEC response (and the slowest time scale
in the system), we expect τB = h̄/μB to set the scale of the
self-localization dynamics. The estimated impurity lifetime

with full overlap can then significantly exceed τB as long as β

is not too large,

τ est
I = τB

4π2

β2

√
3

3.9

(1 + mI/mB)2(1 + mB/mI )2

√
1 + 2mB/mI

. (15)

A more careful study of the three-body loss [30] found
that τ est

I should be divided by an oscillating Stuckelberg
factor related to three-body Efimov physics [31]. Near the
nodes of the Stuckelberg factor the lifetime greatly increases.
Further, the nearly complete separation of the impurity and
the BEC in the bubble limit implies a significant increase
in impurity lifetime for sufficiently large aIB because the
three-body recombination loss rate is proportional to the
overlap

∫
d3r ρ2

B (r)ρI (r). We note that in condensed helium,
the increased lifetime of positronium [32,33] has been used as
a signal of self-localization [34].

The second challenge faced by a bubble polaron ex-
periment may be the buoyancy force F = −∇Ec(ρ) =
−(4/5)Ec(∇ρ)/ρ attempting to expel the impurity from the
high-density region in an inhomogeneous BEC. A two-color
trap or a species specific potential [35,36] may be necessary
to keep the impurity bubble in place. We note that while the
bubble polaron always seeks low BEC density, the Landau-
Pekar polaron can be high-density seeking.

VIII. CONCLUSION

We have shown that a distinguishable neutral atom em-
bedded in a dilute BEC can, if the BEC-impurity repulsion
is strong enough, self-localize in a bubble polaron state in
which the impurity is impermeable to the condensate. The
BEC is therefore the first host medium known that can localize
impurities as both Landau-Pekar and bubble polarons. We
introduced a single parameter σ , called the permeability, that
characterizes the overlap of the self-localized impurity with the
host fluid: Its value ranges from σ � 1 in the Landau-Pekar
limit to σ � 1 in the bubble limit. We have shown that
the BEC-impurity system is fully characterized by just two
dimensionless coupling constants. In the corresponding phase
diagram, the bubble and Landau-Pekar states correspond to
broad regions that are separated by a smooth crossover region
near σ ∼ 1. Finally, we pointed out that a single impurity-BEC
system can be experimentally steered from one regime to the
other.
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[17] M. Kutschera and W. Wójcik, Phys. Rev. C 47, 1077 (1993).
[18] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.

Phys. 82, 1225 (2010).
[19] Feshbach tuning to aIB � 0 gives metastable polaron states; see

M. Bruderer, W. Bao, and D. Jaksch, Europhys. Lett. 82, 30004
(2008).

[20] The true ground state preserves the translational symmetry, but
the symmetry-breaking energy cost is negligible in the strong-
coupling limit.

[21] N. Bogoliubov, J. Phys. U.S.S.R. 11, 23 (1947).
[22] D. H. Santamore and E. Timmermans, New J. Phys. 13, 103029

(2011).
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