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Conserving and gapless Hartree-Fock-Bogoliubov theory for the three-dimensional dilute Bose gas
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The excitation spectrum for the three-dimensional Bose gas in the Bose-Einstein condensation phase is
calculated nonperturbatively with the modified Hartree-Fock-Bogoliubov theory, which is both conserving and
gapless. From improved ®-derivable theory, the diagrams needed to preserve the Ward-Takahashi identity
are re-summed in a systematic and nonperturbative way. It is valid up to the critical temperature where the
dispersion relation of the low-energy excitation spectrum changes from linear to quadratic. Because including
the higher-order fluctuation, the results show significant improvement on the calculation of the shift of critical

temperature with other conserving and gapless theories.
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I. INTRODUCTION

Since Einstein and Bose’s first proposal of Bose-Einstein
condensation (BEC) and experimental realization of it with
alkali atoms [1-3], weakly interacting dilute Bose gas has
attracted significant attentions [4].

The description of BEC at zero temperature began from
Bogoliubov [5] and quantum loop corrections to energy
density were calculated up to two loops [6-11] at low
temperature. The self-consistent Hartree-Fock-Bogoliubov
(HFB) approximation was used but it gave a gapped spectrum
[12-14], violating the Hugenholtz-Pines theorem [8] or the
Goldstone theorem [15], which results from the spontaneous
symmetry breaking of U(1). Popov theory neglects the
anomalous average and gets a gapless spectrum [16,17]. But
the anomalous average is not negligible at the broken phase.
To correctly describe the BEC at high temperature, we need a
theory to be both conserving (consistent with the conservation
laws) and gapless [12,14,18]. The many-body 7 matrix has
been used to obtain a modified Popov approximation [19].
However, this approach yields the same critical temperature
as that of ideal gas and the Hugenholz-Pines theorem is
not always satisfied (as noted in [4]). An improved Popov
approximation based on a many-body 7 -matrix approxima-
tion was developed [20,21] but its main application is in
low-dimensional systems. Recently, conserving and gapless
approximation has been developed by Kita with a modified
Luttinger-Ward functional [22] and Cooper et al. with a
leading-order auxiliary field approximation [23]. Their results
coincides with the Bogoliubov theory at zero temperature with
weak coupling and predicts a second-order phase transition.

It is of significant importance to develop a conserving and
gapless theory beyond mean-field level to better calculate the
excitation spectrum and the critical temperature. First, the dis-
persion of elementary excitations relates to the critical velocity
of the superfluid according to Landau’s criterion [24]. Besides,
it has been shown that the critical temperature (7,) of weakly
interacting Bose gas in three dimensions is positively shifted
from that of ideal gas (7) proportional to the scattering length
a: T%OT" = cn'/3a [25-29]. The accurate determination of ¢
by lattice simulations [30,31] shows ¢ =~ 1.29, while Kita and
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Cooper’s theory from the broken phase gives ¢ = 2.33 [22,23].
A nonperturbative theory beyond mean-field level is needed to
correctly describe the broken phase near 7,.. And, when interac-
tion is strong, the exact result may differ from mean-field the-
ory even at low temperature due to strong fluctuation effects.

In this work we presents a modified Hartree-Fock-
Bogoliubov (MHFB) approximation which is conserving and
gapless and is beyond mean-field level. The method is based
on the two-particle irreducible (2PI) ®-derivable theory in
which the full propagator serves as an infinite set of varitional
parameters. It was first formulated by Luttinger and Ward
[32], and later shown by Baym [33] that ®-derivable theory
naturally obeys the conservation laws and later Cornwall,
Jackiw, and Tomboulis generalized it to relativistic field
theories [34]. However, the ®-derivable approximation does
not necessarily guarantee the Goldstone theorem when applied
to the Bosonic system with spontaneous symmetry breaking.
Indeed, within the 2PI truncated functional approach, the
solution of Eq. (4) is gapped. Reference [22] found a modified
functional with a gapless solution, however it contains some
terms which are not 2PI. Later, Van Hees and Knoll developed
an improved ®-derivable theory which preserve the Ward-
Takahashi identity (WTI) by approximating the 1PI functional
with the 2PI functional [35]. We take Van Hees and Knoll’s
method which is based on the 2PI functional approach to
systematically add the infinite series of diagrams needed to
preserve WTI and the same result can be equivalently obtained
from the Schwinger-Dyson equation approach [36-38].

The paper is organized as following. In Sec. II the ®-
derivable theory is introduced to develop the modified HFB
theory. Numerical results including the excitation spectrum
and the shift of 7, are given in Sec. III. Finally, we give
a summary. In the Appendix an alternative approach based
on the Schwinger-Dyson equation is provided which gets the
same result with the ®-derivable theory.

II. MODIFIED HFB THEORY

For Bose gas, the grand-canonical partition function can be
written with imaginary time path integral [4]

Z[J.B] = / DI, ]eSW VIS dditi—1 [ dOD B
(D
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where the action (in dimensionless units) is

S[yr,yr*]
B
= / d‘[/ddx<lﬂ*[af —n+ VY + %w*w*w)
0
2
and g = 8ma, where a is the scattering length. § = % v, Y

represent ¢*, . d(1) means d td% and J;, B;; are auxiliary
sources which will be set to zero at last.

The 2PI (two-particle irreducible) functional I'[¢,G] is
defined by the double Legendre transformation and can be
written in the form

[lg,G] = Slgi] + sTe{D~Y(G — D)} + 4 TrIn G~!
+ Ole,G], €)]

where Dl.;l = 585[‘/" and ¢; = (;). G;; is the Green function
Gij = (‘”i‘”])c = (1/f11/f1> - (Vh)(lﬁ]) ®[p,G] is the sum of
all 2PI vacuum diagrams.

®[¢p,G] can be expanded to the n loop and we get an n loop
d-derivable approximation. Then we can get the truncated ¢

and G" by solving
5T[p,G"] 3T [p,G"]
Sei . 8GT
Including the simplest diagrams (Hartree-Fock approxima-
tion)

—0. @)

@l.G1 = & / d(D[G 11 (x,6) G (x,3)

+2G12(x,x)Go1(x,x)]. &)

For homogeneous gas we define v = ¢; = ¢,. Then

G;j(x,y) = G;j(x — y). x means (t,X).
Then from (4) we get the shift equation and gap equation:
= gv* +gGY(0) + 28G1(0), 6)
r<2>=( =i —iw, —pn+ Z +k2).
" —u+ 2 4K oS
(N

The equation is written after Fourier transforma-
tion Gij(x — y) = VLﬂ Zw,,.k Gij(a)n,k)e_iw;x‘f+ik-(x—}'); Ft(rz) —
G" ! w, is the Matsubara frequency w, = 2’”’ . And we define
oY = gv? + gG} ,(O) o =2gv* + 2gG (O) Due to the
symmetry we have G{,(0) = G4,(0), GY,(0) = G5,(0).

We define ugr = pn — X},. g, X} can be solved self-
consistently with G which is the inverse of I'"':

G = 1 < i iwy =k + MR>
(ion)? — 0} \ —iw, — k> + g =i
(®)
o)
Etr
s + 8 I N
ne ey Z « (i) —
©))
Ur = —2gv* + =1,
where w = /(kZ — )2 — (Z1)2.
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i i =L 1 _1
In three dimensions o = 7 Zw,,,k o=l =7V s
11

o T T ﬁ) has the ultraviolet divergence due to the
double counting problem, which arises because we use the
pseudopotential. The pseudopotential has already effectively
incorporated in the first term of the Born series the information
of the higher-order terms [39]. To avoid this problem, the
vacuum terms should be subtracted: ar = ay + % Zk #
Equation (9) after renormalization is

»u 1 1
T — o2 11 = — .
! % wy ePor — 1 + 20 2k?
(10)
The density n = —ﬁLV % can be calculated from (3):
n = v*+ G(0) (11)
and
1 iw, — k* + HUR
Gtr 0 _ _n - R
12(0) VB wZ]; ion)? —
1 K —pg 1 k* — g — wk
_VXk:( wy eﬁ"’k—1+ 2wy >
(12)

We can get v and G" from 1, a, and T with Egs. (9)—(12).

WTI is not necessarily preserved by ®-derivable approx-
imations when truncation is made and the solution of (4) is
not gapless. An improved ®-derivable theory was developed
to systematically add the necessary diagrams to preserve WTI
and thus satisfy the Goldstone theorem. We use I'[p,G"] to
approximate the 1PI effective action:

Tl = Tlp,G"(p)], 13)
with G"(¢) defined by ‘Srggf } = 0. The equivalence of the
2PI functional and the 1PI functlonal at the exact level was
shown in Ref. [34].

Because I'[¢,G"(¢)] conserves the symmetry [as in (3)],
the IPI effective action remains unchanged under the transfor-
mation of U(1) symmetry. The Green function defined by the
inverse of

o STl (14)
8¢idp;

will be gapless. It is easy to show that

8°I[p.G"] 8GY,
(15)
8¢i(x)8GY,, 8¢;(»)

=1

;f/(”)”) can be obtained by taking the derivative of

/ d@riLGY, =8 (16)
2)
By defining A, = ‘5;;/’;, Fgl)n = 5.0 we get
AY, = / d(’,.2Hre), GY.GY, (17)
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Fl(f,:q can be gotten by taking the derivative of (7). These
equations are actually the Bethe-Salpeter equation to solve
AY. .

J'jm

In the level of HFB, we can get the modified HFB
approximation:

F'Pk) = =% + guAL, (k) + 2guA, (k)

k) = —iw, — g + k% + guAL, (k) + 2gu At (k),

P50(k) = iwy — g + K + guAT) (k) + 2gu ATy, (k),

Ir2k) = B + guAT,(k) + 25U A%, (k), (18)

tr

where Al (k) is the Fourier transformation of A  (x,x,y) =

mnl
tr
%. The latter can be solved by the Bethe-Salpeter

equation (17):
A (®) = A5y (R L (k) + Ay (k) Dy 1 (k)
+ Ay 2Ly n (k) + 217,10 (K)]
+ 20 L 10 (k) + Lpp 10 (k) + Lup 12 ()], (19)
where [ is defined as §;; = 0 and
Do) = = X Gl + 6L k. @O

Again due to the double counting, /122 and I»; 1, have
ultraviolet divergences. They should be renormalized by
subtracting vacuum diagrams:

1
Ify 5 = _|:V_,B Z GY, (ki 4+ k)G, (ki) — Vac],

wy1,ky
1 1
Vac = Vzk:ﬁ. 1)

Solve these linear equations and we can get the corrections
to the self-energy. The corrections are the re-summation of the
infinite series of diagrams (as shown in Fig. 1).

The Green function is the inverse of I'®. By analytic
continuation iw, — Q + i¢, the retarded Green function G®
is gotten and the spectral weight function is

ok, Q) = —2Im GR(k,Q). (22)

III. NUMERICAL RESULTS

We solve the gap equation numerically and the result is
shown in Fig. 2. The equation ceases to have a solution at 7,
which is the end point of the broken phase and is actually
the critical point of a second-order phase transition. v? is

FIG. 1. The corrections to the self-energy is the re-summation of
the infinite series of diagrams. The propagator in the diagrams are
the gapped HFB ones but the final propagator after re-summation is
gapless.
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FIG. 2. v2>-T for HFB theory when n =25,a =0.005,
Ty = 193716, T. = 19.635. At T, v* = 0.086.

not exactly equal to the condensation number ny and needs
corrections to get the exact ng just like G needs corrections
to get the exact Green function.

The spectral weight of quasiparticle is plotted in Fig. 3. The
quasiparticle peak is broadened and the quasiparticle has finite
lift time caused by the fluctuation effect.

At low temperature, the result of the modified HFB shows
discrepancy with Popov theory and Cooper and Kita theory
when interaction is strong, though it coincides with those
theories at the weakly interacting limit at low temperature.
It has been shown that in one dimension, as the interaction
becomes large, the MHFB shows significant difference with
Bogoliubov theory and is in very good agreement with the
exact result at zero temperature [37]. So we expect systems
in three dimensions which are less fluctuated than in one
dimension, MHFB will also give quite an accurate result.
From Fig. 4 it is obvious that at low temperature MHFB
gives modifications to Popov theory while Kita and Cooper’s
theories are close to Popov theory, which can be tested in
further experiments with strong interaction.

T. is the end of the broken phase and actually at this point
the linear dispersion of phonon spectrum disappears and the
excitation spectrum becomes @ = k2, which indicates that this
is the critical point of a second-order phase transition. By linear
fit we show that 7, has a positive shift in comparison with the

150
100
)
4 [
0 K=0.6 ‘\
K=0.3 } \\
] \
0 —
0.0 0.5 1.0 1.5 2.0
w

FIG. 3. (Color online) The spectral weight for £ = 0.3, 0.6, 1
when n =5, a = 0.005, T = 10. It is clear there is damping of the
quasiparticle.
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FIG. 4. (Color online) The excitation spectrum by Popov theory,
Cooper-Kita theory, and modified HFB when n =35, a = 0.005
for different temperatures; Tp = 19.3716, T, = 19.635. Kita and
Cooper’s theories get the same excitation spectrum. At 7 = 1, Cooper
and Kita theory is very close to Popov theory.

ideal gas with coefficient ¢ = 1.59 as shown in Fig. 5, while
Kita and Cooper theory get ¢ = 2.33.

IV. CONCLUSION

In conclusion, we calculate the excitation spectrum of BEC
nonperturbatively with modified Hartree-Fock-Bogoliubov
theory, which is developed by both the ®-derivable theory and
the Dyson-Schwinger theory. Our method is both conserving
and gapless and is valid at the whole temperature regime
up to critical temperature. Our theory predicts a second-
order phase transition with a increased critical temperature
compared with ideal gas T“;O % — 1.59n'3a. 1tis different from
Popov and Kita and Cooper theory at low temperature when
interaction is strong and it significantly differs from Kita and
Cooper theory near 7. . The damping of the quasiparticle
is obtained in our theory while the quasiparticle in Popov,
Kita, and Cooper theory has infinite lifetime because of
the missing of the higher order diagrams. Modified HFB
is the simplest improved ®-derivable theory. However, the
improved ®-derivable theory can be generalized to higher
order.

0.040

0,035 n=5,a=0.005 00141 5T/Tg=1.59n1/3a

0.0124
0.0304

.0104
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0.0204 o 0-008
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0.0104 0.004+
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"19.3519.4019.45 19.50 19.55 19.60 19.65
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0.000 T T T T
0.000 0.002 0.004, 0.006 0.008 0.010
ni3a

FIG. 5. (a) The X-T where ¥ is fitted by w = ~/k* +2Xk2. It
is clear that the dispersion of energy spectrum changes to quadratic
atT.,n =5, a = 0.005. (b) The linear fit of Z=10 = cn'a. We get
¢ = 1.59 with R? = 0.99998.
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APPENDIX

1. Dyson-Schwinger approach

At the level of HFB, the same result can be obtained with the
1PI Dyson-Schwinger approach instead of the 2PI ®-derivable
theory.

The generating functional is defined as

W[J*,J1=—-InZ[J*J], (AD)

where
200 = / DIy yrle S VIRV ()

By the derivatives of the generating functional
SWIJ*,J]

m ’ = . A3
@m(X,7) 57, (x.7) (A3)
Successive derivatives generate Green function
82w
Gmn(-xvy) = T 7 e " (A4)
8Jm(x)8Jn(y)

The 1PI effective action is defined by the Legendre
transformation

Fle*pl = W J]1 = T — J¢™. (AS5)
Then
ST [p*,
Mlenel _ ) o). (A6)
Sm(X,7)
It is easily proven that
> [ dzGitx 2Ttz ) = dmdle =) (AT
8*Tlg*,¢]
Lin(z.y) = —————. (A8)
5%5%(& T)
The following identity:
8 . . .
Dly*, ¥ e~ STV IV _ ) (A9)
/ 8i(x)
leads to Dyson-Schwinger equations:
(B = VZ = w2 + (Y1y212) + 11 =0,
(A10)

(=3, — V2 — w1 + (Y1v1va) + L, = 0,

(Y1) = (Y1vnyn)e + 202 (V1) + @1 {(Yay).
+ 9193, (A11)

where (- - ). means connected correlation functions. Preserv-
ing only up to two-point correlation functions yields

(3 — V2 = s + 0193 + 01GY, + 202G, + J; = 0,
(=3, — V? — W1 + ¢1es + ¢2GYy + 201G, + Jo = 0.
(A12)
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By

I s (o
R R

3J;(x)
S9;(y)

and do not consider the dependence of G on ¢, we get

T (x,y) = (93 + G%)8(x — ),

(A13)

Fzz(x y) = ( t1r1)5(x =¥
Th(y) = (9 — Vi — w+ 20100 + 2G)8(x — y),
IY () = (— 3 — Vi — 11+ 20192 + 2G1,)8(x — y).

(Al4)

These are equivalent to (4) and form the HFB approxima-
tion.

By keeping source terms here and keeping the derivative of
G"(¢) by ¢, MHFB is obtained:

Cii(x,y) = TGy + @1 A (e, ) + 202 A (x, ),

o(x,y) = ThH(x,y) + @2 A0, ) + 201 A, (x,y),

Li(w,,k) =
wn1,ky

1 =1
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Cp(x,y) = (x )+ (plAzzg(x y)+ 2(»021\122()57}7)9
Toi(x,y) = D5 (x, ) + @2 ATy (x,y) + 201 A (x,p),
(A15)
where
5Gtr ,
AT (ry) = 2Gm Y (A16)
Soi(y)

and in the end we shall take J;(x) = 0. It is obvious that at
homogeneous condition, (A15) is equivalent to (18) developed
with the ®-derivable approach.

2. Detailed calculations

To get the corrections of the MHFB, we must calculate
Lunmw (k) = =55 3, &, Gkt + k)G, (k). This can be
done by the standard method of the summation of Matsubara
frequencies.

For example, G" can be written in the form

r_ 1 ( E%r] wy — kz + MR)

(iw)? — 0} \ —iw, — k> + ur =i

and then

1
—75 2 Gk +0GY (k)

tr
le

VB = lion + iwp)? — wpp () — wf

_ iﬁzz 1
4v o Ok O L\ 10,

1 1 >
— W — O lop T+ op

n 1 1
ePov — 1 \iw, + wp —

: )
Dy pr lw, + wp + Wi

1
eP% v — 1 \iw, + O

1
B iw, + wp + a)k+k,>i|'

— Wy

The other 1, ,vn (k) can be calculated in a similar way. And the summation of w), is crucial for analytical continuation.
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