
PHYSICAL REVIEW A 88, 053603 (2013)

Transport theory for a dilute Bose-Einstein condensate
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We obtain microscopic expressions for the six hydrodynamic modes of a dilute Bose-Einstein condensate:
two transverse (shear) modes and four longitudinal modes corresponding to the first sound (elastic waves) and
second sound (temperature waves). Our microscopic expressions include both the speed of the two types of sound
and the rate of relaxation of the sound waves. We obtain numerical values for the shear viscosity of a dilute
BEC composed of bosons which interact via a contact potential. Our values for the shear viscosity are obtained
using the eigenvalues and eigenvectors of the three types of collision operators that govern the relaxation of the
condensate.
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I. INTRODUCTION

In 1995, Bose-Einstein condensation of dilute Bose gases
was first observed in a gas of rubidium 87Rb atoms [1]
and then in a gas of sodium 23Na atoms [2]. Since those
first experiments, there have been a number of experiments
investigating properties of dilute Bose-Einstein condensates
(BECs), and it has been shown that the mean-field theory of
dilute BECs, first proposed by Bogoliubov [3], shows excellent
agreement with experiment for temperatures below about 60%
of the critical temperature [4–6]. An excellent review of the
mean field theory for dilute BECs can be found in [7].

Since the early work of Bogoliubov, there have also been a
number of works that have incorporated mean-field theory
into a kinetic theory that can describe the relaxation of
BECs to thermodynamic equilibrium. One of the earliest
efforts was due to Hohenberg and Martin [8], who related
two fluid hydrodynamics to a microscopic mean-field theory
using a Green’s function approach. This led to the later work
of Kirkpatrick and Dorfman [9], who derived expressions
for transport coefficients in a BEC using mean-field theory
and a Green’s function method. However, Kirkpatrick and
Dorfman do not give a unified microscopic theory for all
the hydrodynamic modes in the BEC and they obtain an
incomplete set of collision operators [10]. Contemporary to
Hohenberg and Martin was the work of Peletminksii and
Yatsenko [11,12], who derived a more traditional kinetic
equation that could incorporate a mean-field description of
relaxation processes in the superfluids. This approach to
superfluid kinetic theory has been used by a number of
authors to describe relaxation processes in superfluids [13–16],
although none of these references specifically deal with
dilute BECs. Gust and Reichl [10,17] have applied this
method to a spatially uniform nonequilibrium BEC and have
found collision operators describing processes not previously
included in BEC kinetic equations. For a noncondensed dilute
monatomic gas of bosons with temperatures higher than the
critical temperature Tc for Bose-Einstein condensation, five
slowly varying hydrodynamic variables govern the relaxation
to equilibrium. These five variables correspond to the five
quantities conserved during elastic collisions between the
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particles: the particle number, momentum (three components),
and kinetic energy of the particles. Above Tc, relaxation
is governed by three transport coefficients: shear viscosity,
thermal conductivity, and bulk viscosity (which is 0 for the
dilute gas [18]). Below the critical temperature Tc, the boson
gas has six hydrodynamic modes, but the microscopic collision
processes occur between Bogoliubov excitations (bogolons)
and only four quantities are conserved: bogolon momentum
and energy. The additional hydrodynamic modes are due to
particle number conservation and broken gauge symmetry.

Once a kinetic equation is derived there are two traditional
approaches to computing transport coefficients: the method
outlined by Chapman and Enskog [19] and a method due to
Resibois [20], which directly uses the microscopic hydrody-
namic modes of the system. In subsequent sections, we use
the Peletminksii and Yatsenko method to derive the kinetic
equation of a dilute BEC and the Resibois method to derive the
microscopic hydrodynamic modes of the BEC (microscopic
modes for a superconductor have been obtained [16] using
this method). We obtain microscopic expressions for the six
hydrodynamic modes of a dilute Bose-Einstein condensate:
two transverse (shear) modes and four longitudinal modes
corresponding to the first sound (density waves) and second
sound (temperature waves). Our microscopic expressions
include both the speed of the two types of sound and the rate of
relaxation of the sound waves. We also obtain a microscopic
expression for the shear viscosity of the BEC, and we compute
the shear viscosity of a dilute Bose-Einstein condensed gas
composed of sodium atoms for a variety of temperatures and
densities.

We begin in Sec. II, with an outline of the derivation of
the kinetic equation for a dilute gas of neutral particles that
interact via a contact potential and have undergone Bose-
Einstein condensation. Our derived kinetic equations contain
the macroscopic phase of the condensate and the superfluid
velocity. In Sec. III, we specialize the kinetic equations to the
hydrodynamic regime where all quantities are slowly varying
in space, and in Sec. IV, we linearize the kinetic equations
about absolute equilibrium. In Sec. V, we show that our derived
kinetic equations conserve the total particle number. In Sec. VI,
we transform the particle kinetic equations to kinetic equations
describing the dynamics of Bogoliubov excitations (bogolons)
in the presence of the condensate and we determine the closure
relation that connects the macroscopic phase to the bogolon
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dynamics. The microscopic hydrodynamic modes are derived
in Sec, VII and the speeds of the first and second sound are
plotted. By matching the frequency of the microscopic and
macroscopic transverse hydrodynamic modes we can obtain a
microscopic expression for the shear viscosity. This is done in
Sec. VIII, where we also plot the shear viscosity of the dilute
BEC gas for temperatures 0 < T < 0.6Tc. Finally, in Sec. IX
we make some concluding remarks.

II. KINETIC THEORY

The derivation of the kinetic equation for a spatially
uniform, nonequilibrium BEC was discussed in [21]. We
outline the key steps here for a spatially nonuniform gas. The
Hamiltonian for N bosons of mass m, in a cubic box with very
large volume V , can be written in the form

Ĥ =
∫

dr�̂†(r)

(
− h̄2

2m
∇2

r

)
�̂(r) + 1

2

∫ ∫
dr1dr2

×V (|r1 − r2|)�̂†(r1)�̂†(r2)�̂(r2)�̂(r1), (1)

where �̂†(r) [�̂(r)] creates (removes) a particle at point r, and
the integration is over the entire volume V . These operators
satisfy the boson commutation relations [�̂(r1),�̂†(r2)] =
δ(r1 − r2). We assume that the interaction between particles
is given by the contact potential V (|r1 − r2|) = gδ(r1 − r2).
The probability density operator ρ̂ for this system satisfies the
Liouville equation

∂ρ̂(t)

∂t
= − i

h̄
[Ĥ ,ρ̂(t)]. (2)

Equations (1) and (2) give the exact behavior of the BEC gas.
Below the critical temperature for Bose-Einstein condensa-

tion, the gauge symmetry of the fluid is broken. To accurately
describe the behavior of the BEC this broken symmetry
needs to be incorporated into the dynamics. We introduce the
one-body reduced density operator

ˆ̄�(r1,r2) =
(

�̂†(r1)�̂(r2) �̂†(r1)�̂†(r2)
�̂(r1)�̂(r2) �̂(r1)�̂†(r2)

)
. (3)

We also introduce the one-body reduced density matrix

F̄(r1,r2,t) = Tr [ρ̂(t) ˆ̄�(r1,r2)]

=
(
F1,1(r1,r2,t) F1,2(r1,r2,t)
F2,1(r1,r2,t) F2,2(r1,r2,t)

)

=
(〈�̂†(r1)�̂(r2)〉 〈�̂†(r1)�̂†(r2)〉

〈�̂(r1)�̂(r2)〉 〈�̂(r1)�̂†(r2)〉
)

. (4)

The one-body reduced density matrix evolves in time as

−ih̄
∂F̄(r1,r2,t)

∂t
= Tr{ρ̂(t)[Ĥ , ˆ̄�(r1,r2)]}. (5)

According to the Bogoliubov assumption, after a very short
time t the density operator ρ̂(t) will be a functional of the
single-particle reduced density operator F̄(r1,r2,t) [11,12].
The density operator then can be written

ρ̂(t) = ρ̂(F̃(t)), (6)

where F̃(t) denotes a vector containing F̄(r1,r2,t) for
all values of (r1,r2). The average F̄(r1,r2,t) is defined

self-consistently so that

F̄(r1,r2,t) = Tr [ρ̂(F̃(t)) ˆ̄�(r1,r2)]. (7)

We make the existence of the broken symmetry explicit
by introducing a mean-field Hamiltonian. We rewrite the total
Hamiltonian in the form Ĥ = Ĥ0 + Ĥ1, where

Ĥ0 =
∫

dr�̂†(r)

(
− h̄2

2m
∇2

r − μ

)
�̂(r) + Û , (8)

Ĥ1 = 1

2

∫ ∫
dr1dr2V(|r1 − r2|)�̂†(r1)

× �̂†(r2)�̂(r2)�̂(r1) − Û , (9)

Û = 1

2

∫
dr1[ν(r1)�̂†(r1)�̂(r1) + ν(r1)�̂(r1)�̂†(r1)]

+ 1

2

∫
dr1�

†(r1)�̂(r1)�̂(r1)

+ 1

2

∫
dr1�(r1)�̂†(r1)�̂†(r1), (10)

where ν(r1) = 2g〈�̂†(r1)�̂(r1)〉, �(r1) = g〈�̂(r1)�̂(r1)〉,
�†(r1) = g〈�̂†(r1)�̂†(r1)〉, and μ is the equilibrium chemical
potential.

Kinetic equation

As discussed in [21], the kinetic equation describing the
dynamic evolution of the one-body density matrix is given by

−ih̄
∂F̄(r1,r2,t)

∂t

= Tr {ρ̂(F̃)[Ĥ0,
ˆ̄�(r1,r2)]} + Tr {ρ̂(F̃)[Ĥ1,

ˆ̄�(r1,r2)]}

+ i

h̄

∫ 0

−∞
dsTr {ρ̂(F̃(t)[Ĥ1,Û

0,†(0,s)

× [ ˆ̄�(r1,r2),Ĥ1]Û 0(0,s)}, (11)

where

Û 0(s1,s2) = e−Ĥ0(s1−s2)/h̄. (12)

The form of the mean-field Hamiltonian Ĥ0, defined in Eq. (8),
has been chosen so that

Tr {ρ̂(F̃)[Ĥ1,
ˆ̄�(r1,r2)]} = 0. (13)

This removes secular terms from the kinetic equation (at least
to lowest order in the coupling constant). The kinetic equation
takes the form of four coupled equations,

−ih̄
∂〈�̂†

1�̂2〉
∂t

= (Ê1 − Ê2)〈�̂†
1�̂2〉 − �2〈�̂†

1�̂
†
2〉

+�
†
1〈�̂1�̂2〉 + I11,

−ih̄
∂〈�̂†

1�̂
†
2〉

∂t
= (Ê1 + Ê2)〈�̂†

1�̂
†
2〉 + �

†
2〈�̂†

1�̂2〉
+�

†
1〈�̂1�̂

†
2〉 + I12,

−ih̄
∂〈�̂1�̂2〉

∂t
= (−Ê1 − Ê2)〈�̂1�̂2〉 − �2〈�̂1�̂

†
2〉

−�1〈�̂†
1�̂2〉 + I21,
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−ih̄
∂〈�̂1�̂

†
2〉

∂t
= (−Ê1 + Ê2)〈�̂1�̂

†
2〉 + �

†
2〈�̂1�̂2〉

−�1〈�̂†
1�̂

†
2〉 + I22, (14)

where �̂1 = �̂(r1), �̂
†
1 = �̂†(r1), Êi = − h̄2

2m
∇2

i + νi − μ for
i = 1,2, and the quantities(

I1,1 I1,2
I2,1 I2,2

)
= i

h̄

∫ 0

−∞
dsTr {ρ̂(F̃(t)[Ĥ1,Û

0,†(0,s)

× [ ˆ̄�(r1,r2),Ĥ1]Û 0(0,s)]} (15)

are the collision integrals which govern the relaxation pro-
cesses in the BEC gas. The next step is to transform these
equations to the superfluid rest frame.

Superfluid velocity

The field operators �̂†(r) and �̂(r) describe motion in the
laboratory frame. We introduce the unitary transformation to
the reference frame moving with the superfluid (superfluid rest
frame) [9,22]. It is given by

Û (t) = exp

[
−i

∫
drφ(r,t)�̂†(r)�̂(r)

]
, (16)

where φ(r,t) is the macroscopic phase of the condensate wave
function. We let ψ̂†(r) and ψ̂(r) denote particle creation and
annihilation operators in the superfluid rest frame. Then

Û †(t)�̂(r)Û (t) = e−iφ(r,t)�̂(r) = ψ̂(r), (17)

where ψ̂(r) [ψ̂†(r)] removes (creates) a particle in the
superfluid rest frame. Thus we find

�̂(r) = eiφ(r,t)ψ̂(r) and �̂†(r) = e−iφ(r,t)ψ̂†(r). (18)

The one-body reduced density matrix now takes the form

ˆ̄�(r1,r2) = T̂ (r1) · ˆ̄θ(r1,r2) · T̂ ∗(r2), (19)

where

ˆ̄θ(r1,r2) =
(

ψ̂†(r1)ψ̂(r2) ψ̂†(r1)ψ̂†(r2)
ψ̂(r1)ψ̂(r2) ψ̂(r1)ψ̂†(r2)

)

and ˆ̄T (r1) =
(

eiφ1 0
0 e−iφ1

)
. (20)

ˆ̄θ(r1,r2) is the one-body density operator in the superfluid rest
frame and φi = φ(ri ,t).

The kinetic equations can now be written

−ih̄
∂

∂t
〈ψ̂†

1ψ̂2〉 = (ê(+)
1 − ê

(−)
2 )〈ψ̂†

1ψ̂2〉 − �2〈ψ̂†
1ψ̂

†
2〉

+�
†
1〈ψ̂1ψ̂2〉 + I11,

−ih̄
∂

∂t
〈ψ̂†

1ψ̂
†
2〉 = (ê(+)

2 + ê
(+)
1 )〈ψ̂†

1ψ̂
†
2〉 + �

†
2〈ψ̂†

1ψ̂2〉
+�

†
1〈ψ̂1ψ̂

†
2〉 + I12,

−ih̄
∂

∂t
〈ψ̂1ψ̂2〉 = −(ê(−)

2 + ê
(−)
1 )〈ψ̂1ψ̂2〉 − �1〈ψ̂†

1ψ̂2〉
−�2〈ψ̂1ψ̂

†
2〉 + I21,

−ih̄
∂

∂t
〈ψ̂1ψ̂

†
2〉 = (ê(+)

2 − ê
(−)
1 )〈ψ̂1ψ̂

†
2〉 − �1〈ψ̂†

1ψ̂
†
2〉

+�
†
2〈ψ̂1ψ̂2〉 + I22, (21)

where

ê
(±)
j = εj±i

h̄

2
[∇j · vs(j )] + m

2
v2

s (j )

± ih̄vs(j ) · ∇j + h̄
∂φj

∂t
, (22)

with

εj = − h̄2

2m
∇2

j + νj − μ, vs(j ) = h̄

m
∇jφ,

(23)
νj = 2g〈ψ̂†

j ψ̂j 〉, �j = g〈ψ̂j ψ̂j 〉, �
†
j = g〈ψ̂†

j ψ̂
†
j 〉.

The coupled kinetic equations contain the full quantum
dynamics of the BEC gas (to second order in the coupling Ĥ1).
We now can specialize these equations to the hydrodynamic
regime where all macroscopic quantities are slowly varying
in space and time. This can best be achieved by writing the
kinetic equations in terms of Wigner functions.

III. KINETIC EQUATIONS IN TERMS
OF WIGNER FUNCTIONS

Wigner functions [23] provide a means to describe the
behavior of a quantum system in phase space and are defined in
Appendix A. The one-body density matrix, in terms of Wigner
functions, can be written(

F11(K,R) F12(K,R)
F21(K,R) F22(K,R)

)

= 1

V

∫
r
dre+iK·r

(
〈ψ̂†

1ψ̂2〉 〈ψ̂†
1ψ̂

†
2〉

〈ψ̂1ψ̂2〉 〈ψ̂1ψ̂
†
2〉

)
, (24)

where h̄K is the momentum of particles in the gas and R is
their position. We now specialize the kinetic equations to the
hydrodynamic regime, where all macroscopic quantities are
slowly varying in space. We therefore keep only the lowest
order derivatives with respect to R in the kinetic equations.
The superfluid velocities, vs(r1) = vs(R + 1

2 r) and vs(r2) =
vs(R − 1

2 r) can be written

vs

(
R± 1

2 r
) = vs(R)± 1

2 r · ∇Rvs(R)

+ 1
8 (r · ∇R)2vs(R) + · · · . (25)

We note that δν(rj ), �†(rj ), and �(rj ) are also slowly varying
functions of R in the hydrodynamic limit. Thus, we again
neglect higher order derivatives with respect to R, write

δν
(
R± 1

2 r
) = δν(R)± 1

2 r · ∇Rδν(R) + · · · , (26)

and write similar expansions for �
(
R ± 1

2 r
)

and �† (
R ± 1

2 r
)
.

We also note that
1

V

∫
dreiK·rrFα,β (R,r) = −i∇KFα,β(R,K). (27)

At this point, it is useful to separate ν(ri) into its equilibrium
part ν0 and a deviation from equilibrium δν(ri), so that ν(ri) =
ν0 + δν(ri). Then define

ε̃
(±)
R,r = − h̄2

2m

(
1

2
∇R±∇r

)
·
(

1

2
∇R±∇r

)
+ ν0 − μ. (28)

This decomposition into an equilibrium component and a
deviation from equilibrium assumes that we have decomposed
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the density operator ρ̂(F̃(t)) in terms of a density operator
describing the equilibrium state of the gas and a correction
describing deviations from equilibrium.

The kinetic equations now take the form

−ih̄
∂F11(K,R)

∂t

= (ε̃(+)
K,R − ε̃

(−)
R,K)F11(K,R) + V̂R,KF11(K,R)

− i [∇R�(R)] · ∇KF11(K,R) − �̂(+)(K,R)F12(K,R)

+ �̂
†
(+)(K,R)F21(K,R) + I11(K,R), (29)

−ih̄
∂F12(K,R)

∂t
= (ε̃(+)

K,R + ε̃
(−)
K,R)F12(K,R) + V̂R,KF12(K,R)

+ 2�(R)F12(K,R) + �̂
†
(−)(K,R)F11(K,R)

+ �̂
†
(+)(K,R)F22(K,R) + I12(K,R), (30)

−ih̄
∂F21(K,R)

∂t

= −(ε̃(+)
K,R + ε̃

(−)
K,R)F21(K,R) + V̂R,KF21(K,R)

− 2�(R)F21(K,R) − �̂(−)(K,R)F11(K,R)

− �̂(+)(K,R)F22(K,R) + I21(K,R), (31)

−ih̄
∂F22(K,R)

∂t
= −(ε̃(+)

K,R − ε̃
(−)
R,K)F22(K,R) + V̂R,KF22(K,R)

+ i[∇R�(R)] · ∇KF22(K,R)

− �̂(−)(K,R)F12(K,R)

+ �̂
†
(−)(K,R)F21(K,R) + I11(K,R), (32)

where

V̂R,K = +ih̄∇R · vs(R) + ih̄vs(R) · ∇R

− ih̄[∇R(K·vs(R)] · ∇K, (33)

�̂(±)(K,R) = �(R)± i

2
[∇R�(R)] · ∇K, (34)

�(R) = h̄
∂φ(R)

∂t
+ δν(R), (35)

ε̃
(±)
R,K = − h̄2

2m

(
1

2
∇R∓iK

)
·
(

1

2
∇R∓iK

)
+ ν0 − μ. (36)

It is easy to show that the Wigner functions satisfy the condi-
tions F11(K,R) = F ∗

22(−K,R) and F12(K,R) = F ∗
21(−K,R).

Expressions for transport coefficients can be determined
from kinetic equations that are linearized about absolute
equilibrium. Therefore, in the next section we describe the
process of linearizing these kinetic equations.

IV. LINEARIZED KINETIC EQUATIONS

We now write the hydrodynamic variables in terms of
their equilibrium values plus small deviations from their
equilibrium values,

Fi,j (K,R) = F
eq
i,j (K) + δFi,j (K,R), vs(R) = v0

s + δvs(R),

�(R) = � + δ�(R), �†(R) = � + δ�†(R), (37)

where F
eq
i,j (K), v0

s , and � denote the equilibrium values of
the various quantities. Furthermore, we evaluate the transport

properties of the BEC at temperatures below about 60% of
the BEC critical temperature Tc. For these low temperatures,
the “Popov” approximation to equilibrium quantities has
been shown to give good agreement with experiment [4–6].
In this approximation F

eq
11 (0) ≈ F

eq
12 (0) ≈ F

eq
21 (0) ≈ F

eq
22 (0) ≈

Neq
0 , where Neq

0 is the number density of particles in the
condensate at equilibrium.

We next Fourier transform the space dependence of the
kinetic equations and write the linearized kinetic equations
in terms of the component of the spatial variation with wave
vector q (see Appendix A):

Fij (K,R) = 1

V

∑
q

e−iq·RFij (K,q). (38)

Since the kinetic equations are linearized, each wave-vector
component evolves independently. We also introduce the
notation

e
(±)
K,q = h̄2

2m

∣∣∣∣K±1

2
q

∣∣∣∣
2

+ ν0 − μ. (39)

The resulting linearized kinetic equations can be written in
matrix form,

−ih̄
∂δF̄

∂t
= {ε̄(+)

K,qδF̄ − δF̄ ε̄
(−)
K,q} + h̄q·vs(q)F̄ eq

− h̄K·vs(q)q·∇KF̄ eq + {B̄F̄ eq − F̄ eqB̄ ′}
+ q·∇K{D̄F̄ eq − F̄ eqD̄′} + δĪ, (40)

where

δF̄ =
(

δF11(K,q,t) δF12(K,q,t)

δF21(K,q,t) δF22(K,q,t)

)
,

F̄ eq =
(

F
eq
11 (K) F

eq
12 (K)

F
eq
21 (K) F

eq
22 (K)

)
, (41)

ε̄
(+)
K,q =

(
e

(+)
K,q �

−� −e
(+)
K,q

)
, ε̄

(−)
K,q =

(
e

(−)
K,q −�

� −e
(−)
K,q

)
, (42)

B̄ =
(

�(q) δ�†(q)
−δ�(q) −�(q)

)
, B̄ ′ =

(
�(q) −δ�†(q)
δ�(q) −�(q)

)
,

(43)

D̄ =
(

− 1
2�(q) − 1

2δ�†(q)
1
2δ�(q) 1

2�(q)

)
,

(44)

D̄′ =
(

1
2�(q) − 1

2δ�†(q)
1
2δ�(q) − 1

2�(q)

)
,

δĪ =
(

δI11(K,q,t) δI12(K,q,t)

δI21(K,q,t) δI22(K,q,t)

)
. (45)

In these matrices �(q) = h̄
∂φ(q)

∂t
+ δν(q) and δIij(K,q,t)

are the linearized collision integrals for the particle kinetic
equations. The collision integrals are discussed in [21] and
δI11(K,q,t) given in Appendix B. [For simplicity and without
loss of generality, we have set v0

s = 0 (superfluid velocity at
equilibrium), although the space and time derivatives of v0

s

are not 0.]
The particle kinetic equations are now in a form that allows

us to transform them into kinetic equations for Bogoliubov
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excitations (bogolons) in the gas. But first we demonstrate
that the linearized particle kinetic equations conserve the
particle number.

V. PARTICLE NUMBER CONSERVATION

The total particle number density in the interval q → q +
dq at time t is

δN(q,t) = 1

V

∑
K

δF11(K,q,t). (46)

From Eq. (40) we can write

−ih̄
∂δF11(K,q,t)

∂t

= (ε̃(+)
K,q − ε̃

(−)
K,q)δF11(K,q,t)

+ h̄q·vs(q,t)Neq
K + h̄q·vs(q,t)q·∇KNeq

K

−�δF12(K,q,t) − δ�(q,t)F eq
12 (K) + �δF21(K,q,t)

+ δ�†(q,t)F eq
21 (K) + δI11(K,q,t). (47)

Note that

� = g

V

∑
K

F
eq
12 (K) = g

V

∑
K

F
eq
12 (K),

δ�(q,t) = g

V

∑
K

δF21(K,q,t), (48)

δ�†(q,t) = g

V

∑
K

δF12(K,q,t).

Let us now sum over all momentum states in Eq. (47). The
terms that depend on � cancel. One can also check that
the third term on the right-hand side of Eq. (47) gives a
negligible contribution, compared to the second term, when
one integrates over K (see Appendix C), so we neglect this
term in all subsequent calculations involving the particle
conservation equation. Equation (47) reduces to

−ih̄
∂δN(q,t)

∂t
= h̄2

m

1

V

∑
K

K · qδF11(K,q,t)

+ h̄q · vs(q,t)Neq + 1

V

∑
K

δI11(K,q), (49)

where Neq is the total particle number density. The linearized
collision integral δI11(K,q) is given in Appendix B.

From the definitions of the collision integrals linearized
about equilibrium in Appendix B, it is straightforward to show
that

∑
K �=0δI11(K,q) = −δI11(0,q). Therefore,

−ih̄
∂δN(q,t)

∂t
= h̄2

m

1

V

∑
K

K · qδF11(K,q,t)

+ h̄q · vs(q,t)Neq, (50)

and we obtain the continuity equation for the total particle
number density.

VI. BOGOLON KINETIC EQUATION

The hydrodynamic relaxation of the BEC is governed by the
dynamics of the Bogoliubov excitations (bogolons). The colli-
sion operators that appear in the kinetic equation conserve bo-

golon momentum and energy. Therefore, in order to determine
the hydrodynamic behavior of the BEC, we need to transform
the particle kinetic equations to bogolon kinetic equations.

The Bogoliubov transformation from particle creation and
annihilation operators, â

†
1 = â

†
k1

and â1 = âk1 , respectively,

to bogolon creation and annihilation operators, b̂
†
1 = b̂

†
k1

and
b̂1 = b̂k1 , respectively, can be written(

â
†
1â2 â

†
1â

†
−2

â−1â2 â−1â
†
−2

)
= Ū1 ·

(
b̂
†
1b̂2 b̂

†
1b̂

†
−2

b̂−1b̂2 b̂−1b̂
†
−2

)
· Ū2, (51)

where

Ū1 =
(

u1 −v1

−v1 u1

)
and Ū−1

1 =
(

u1 v1

v1 u1

)
. (52)

Since we are linearizing the kinetic equations about absolute
equilibrium, it is sufficient to express the parameters u1 and
v1 in terms of equilibrium quantities. When the BEC is at
equilibrium, the mean-field Hamiltonian (in the superfluid rest
frame) takes the form [21]

Ĥ0 =
∑

i

[
(εi − �)â†

i âi + �

2
(â†

i âi + â
†
i âi)

]

= g

2
N2

0 +
∑

i

Ei b̂
†
i b̂i , (53)

where

E1 =
√

e2
1 − �2 with e1 = h̄2k2

1

2m
+ ν0 − μ= h̄2k2

1

2m
+ �,

(54)

and we have used the Hugenholtz-Pines relation μ = ν0 − �

[24]. In terms of these equilibrium quantities, the Bogoliubov
transformation parameters take the form

u1 = 1√
2

√
1 + e1

E1
, v1 = 1√

2

√
e1

E1
− 1. (55)

Note also that

u2
1 − v2

1 = 1,

�
(
u2

1 + v2
1

) − 2e1u1v1 = 0, (56)

e1
(
u2

1 + v2
1

) − 2�u1v1 = E1.

This transformation has the property that

Ū−1
1 ·

(
e1 �

−� −e1

)
· Ū1

= Ū1 ·
(

e1 −�

� −e1

)
· Ū−1

1 =
(

E1 0
0 −E1

)
. (57)

Particles in a BEC form a condensate, but excitations
(the bogolons) do not form a condensate. Therefore, we
require that 〈b̂†1b̂†−1〉 = 0 and 〈b̂−1b̂1〉 = 0. Also, since we
linearize the kinetic equations about absolute equilibrium,
we can use the equilibrium expressions for the Bogoliubov
transformation. Then(

N eq
K 0

0 F eq
K

)
=

(
〈b̂†Kb̂K〉eq 0

0 〈b̂−Kb̂
†
−K〉eq

)

= Ū−1
K · F̄ eq

K · Ū−1
K , (58)
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where N eq
K = [exp(βEK ) − 1]−1 is the Bose-Einstein

distribution for bogolons and F eq
K = N eq

K + 1. We also require
(because of the structure of the nonequilibrium density
operator) that(

δNK,q 0
0 δFK,q

)
=

(
δ〈b̂†k1

b̂k2〉 0
0 δ〈b̂−k1 b̂

†
−k2

〉

)

= Ū−1
k1

· δF̄ ·Ū−1
k2

, (59)

where k1 = K + 1
2 q and k2 = K − 1

2 q.
We can now expand the particle number distribution in

terms of bogolon distributions. We obtain

δF11(K,q,t) = u2
KδN (K,q,t) + v2

KδN (−K,q,t) (60)

and

δN(q,t) = 1

V

∑
K

(
u2

K + v2
K

)
δN (K,q,t). (61)

We can also expand the particle current in terms of bogolon
currents∑

K

KδF11(K,q,t) =
∑

K

K
[
u2

KδN (K,q,t) + v2
KδN (−K,q,t)

]
=

∑
K

KδN (K,q,t), (62)

since u2
K − v2

K = 1. Thus, we obtain the very useful result
that the bogolon momentum density is equal to the particle
momentum density.

We can now obtain the bogolon kinetic equation. If we
multiply Eq. (40) on the left by the Bogoliubov transformation
matrix Ū−1

1 = Ū−1
k1

and on the right by Ū−1
2 = Ū−1

k2
, we obtain

−ih̄
∂δN̄
∂t

= {
Ū−1

1 ε̄1Ū1δN̄ − δN̄ Ū2ε̄
T
2 Ū−1

2

}
+ {

Ū−1
K B̄ŪKN̄ eq − N̄ eqŪKB̄ ′Ū−1

K

}
+ h̄qvs(q)N̄ eq − h̄K·vs(q)q · [

Ū−1
K ∇KF̄ eqŪ−1

K

]
+ {

Ū−1
K D̄ŪKq · [

Ū−1
K ∇KF̄ eqŪ−1

K

]
− q · [

Ū−1
K ∇KF̄ eqŪ−1

K

]
ŪKD̄′Ū−1

K

}
+ Ū−1

1 δĪŪ−1
2 , (63)

where ε̄T denotes the transpose of matrix ε̄, and we have made
the approximation Ū1 ≈ ŪK and Ū2 ≈ ŪK in the third to fifth
terms on the right-hand side (neglect higher order terms in q),
and

Ū−1
1 ε̄1Ū1 =

(
E1 0
0 −E1

)
, Ū2ε̄

T
2 Ū−1

2 =
(

E2 0
0 −E2

)
.

(64)

Before simplifying Eq. (63), it is useful to write again the
Hugenholtz-Pines equation [24] for the BEC. As discussed
in [23], the time derivative of the macroscopic phase φ(R,t) is
proportional to the chemical potential μ = −h̄

∂φ

∂t
. Therefore,

in the hydrodynamic regime, where we can assume that the
system is locally in equilibrium, we can write the Hugenholtz-
Pines equation in the form

h̄
∂φ(R,t)

∂t
+ δν(R,t) − δ�̃(R,t) = 0, (65)

where δμ(R,T ) = −h̄
∂φ(R,t)

∂t
is the spatially varying chemical

potential,

δν(R,t) = 2g
∑

K

δF11(K,R) = 2gδN(R,t), (66)

where δN(R,t) denotes deviations in the particle number
density, and

δ�̃(R,t) = g

2

∑
K

(δF12(K,R,t) + δF21(K,R,t))

= 1

2
(δ�†(R,t) + δ�(R,t)) (67)

is a real function of R and t .
In subsequent sections, we combine Eq. (50) for particle

conservation with the Hugenholtz-Pines equation in order to
obtain closure of the kinetic equations. This can be done using
a “Bogoliubov-like” approximation for the nonequilibrium
order parameter, δ�̃(R,t) = gδN(R,t) (this approximation is
also used in [9]). As we see, this approximation only affects
the longitudinal modes and allows us to write a microscopic
expression for longitudinal modes that yields the correct speed
of second sound at T = 0 K. In addition, it maintains the real
nature of the nonequilibrium extension of the Hugenholtz-
Pines equation. The Hugenholtz-Pines equation can now be
written in the form

h̄
∂φ(R,t)

∂t
+ gδN(R,t) = 0. (68)

This approximation limits us to very dilute gases, and we
expect that it limits the accuracy of our results for the
longitudinal modes to the temperature range 0 � T � 0.3Tc.

Equation (68) gives a closure condition for the hydrody-
namic equations. We analyze Eq. (63) in Appendix C using the
closure condition in Eq. (68). Without loss of generality we can
choose q to lie along the z axis so q = qêz, vs(q) = vs(q)êz,
and êz is a unit vector along the z direction. We obtain the
following expression for the bogolon kinetic equation:

∂δN (K,q,t)

∂t
= i

h̄

m
Kzq

(εK + �)

EK

δN (K,q,t) + iqvs(q,t)�eq
K

+ iqKz�
eq
K δN(q,t) + i

h̄
δG11(1,2), (69)

where εK = h̄2K2

2m
,

�
eq
K = N eq

K + h̄2

2mkBT
K2

z

2εK

Ek

N eq
K F eq

K , (70)

and

�
eq
K = −g

h̄

2m

2uKvK

Ek

(uK − vK )2
(
u2

K + v2
K

)(
2N eq

K

)
+ g

h̄

2mkBT

2εK

Ek

(uK − vK )2(u2
K + v2

K

)
N eq

K F eq
K . (71)

Note that our expression for �
eq
K is consistent with the “Popov”

approximation used to evaluate properties of the equilibrium
BEC.
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Let us now take the time derivative of Eq. (68) and use
Eq. (50) for particle number conservation. The combined
equations take the form

∂2φ(q,t)

∂t2
= −gqi

∑
K

[
1

m
KzδN (K,q,t)

]
− igq · vs(q,t)Neq,

(72)

where Neq is the total particle number density.
In order to prepare for analysis of the sound modes, we

consider one Fourier component of the kinetic equations. Since
the equations are linear, each Fourier component propagates
independently. Thus, we write

δN (K,q,t) ∼ eiωt δN (K,q,ω). (73)

Then the bogolon kinetic equation, (69), takes the form

ωδN (K,q,ω)

= (εK + �)

EK

h̄qKz

m
δN (K,q,ω) − qKz�

eq
K δN(q,ω)

− i�
eq
K

h̄

m
q2φ(q,ω) − i

h̄
G11(K,q,ω), (74)

where we have used the fact that vs(q,t) = −i h̄
m

qφ(q,t) and
have retained terms to order q2 on the right-hand side of these
equations, and Eq. (72) takes the form

ω2φ(q,ω) = gqi
∑
K �=0

[
1

m
KzδN (K,q,ω)

]
+ gq2 1

m
φ(q,ω)Neq.

(75)

Equations (74) and (75) are the bogolon kinetic equations
that describe the hydrodynamic behavior of a dilute BEC.
We now investigate the consequences of these equations.
The first step is to obtain microscopic expressions for the
hydrodynamic oscillations in the condensate. We then connect
these to macroscopic quantities.

VII. MICROSCOPIC HYDRODYNAMIC MODES

For simplicity (and without loss of generality) let us assume
that q = qêz. Also, write the bogolon distribution as

δN (K,q,ω) = N eq
K F eq

K h(K,q,ω), (76)

where h(K,q,ω) is a small deviation from equilibrium.
Equation (75) can be written in the form

φ(q,ω) = iq

ω2 − Aq2
J 1

V

∑
K

KzN eq
K F eq

K h(K,q,ω), (77)

where

A = g
1

m
Neq and J = g

m
= A/Neq. (78)

If we now use Eq. (77), Eq. (74) for the bogolon distribution
can be written

ωN eq
K F eq

K h(K,q,ω) = qBKKzN eq
K F eq

K h(K,q,ω)

+ q3

ω2 − Aq2

h̄

m
�

eq
K J 1

V

∑
K′

′
K ′

zN
eq
K ′F eq

K ′h(K′,q,ω)

− qKz�
eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)
N eq

K ′F eq
K ′h(K′,q,ω)

− i

h̄
N eq

K F eq
K Ĝ11h(K,q,ω), (79)

where Ĝ11 is the linearized collision operator and

BK = h̄

m

(eK + �)

EK

. (80)

There are four microscopic hydrodynamic modes corre-
sponding to the four conserved quantities, ψ

(0)
1 (K) = C1Kx ,

ψ
(0)
2 (K) = C2Ky , ψ

(0)
3 (K) = C3Kz, and ψ

(0)
4 (K) = C4EK ,

where Ci (i = 1, . . . ,4) are normalization constants. Given the
form of Eq. (79), these modes naturally separate into transverse
modes ψ

(0)
1 and ψ

(0)
2 and longitudinal modes ψ

(0)
3 and ψ

(0)
4 .

Below, first we find the frequencies associated with the
transverse modes and then we consider the longitudinal modes.
For both cases we need to expand the frequencies ω and the
deviations from equilibrium in powers of q, which is the wave
vector of the hydrodynamic modes. We let

ωn = ω(0)
n + qω(1)

n + q2ω(2)
n + O(q3) (81)

and

h(K,q,ω) = ψ (0)
n (K,ω) + qψ (1)

n (K,ω)

+ q2ψ (2)
n (K,ω) + O(q3). (82)

Note that, for hydrodynamic modes, ω(0)
n = 0, ω(1)

n corresponds
to the speed of the mode if it is a propagating mode, and ω(2)

n

gives the rate of decay of the mode. For nonhydrodynamic
modes ω(0)

n = λn, where λn is the nth nonzero eigenvalue of
the collision operator. Also, we will normalize the states using
the scaling factor N eq

k F eq
k . Therefore, we require

∑
K

N eq
K F eq

K ψ (0)
n (K)ψ (0)

m (K) = δm,n. (83)

The normalization constants Ci are defined as C−2
1 = 〈K2

x 〉,
C−2

2 = 〈K2
y 〉, C−2

3 = 〈K2
z 〉, and C−2

4 = 〈E2
K〉, where

〈f (K)〉 =
∑

K

N eq
K F eq

K f (K). (84)

To zeroth order in q, Eq. (79) reduces to

ω(0)
n ψ (0)

n (K) = − i

h̄
Ĝ11ψ

(0)
n (K) = 0 for n = 1,2,3,4 (85)

since the states ψ (0)
n (K) (n = 1, . . . ,4) are eigenvectors of the

collision operator Ĝ11 with eigenvalue equal to 0. Therefore,
ω(0)

n = 0 for n = 1,2,3,4, and to second order in q, Eq. (79)
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takes the form(
qω(1)

n + · · · )N eq
K F eq

K

(
ψ (0)

n (K) + qψ (1)
n (K)

)
= qBKKzN eq

K F eq
K

(
ψ (0)

n (K) + qψ (1)
n (K)

) + q3(
qω

(1)
n

)2 − Aq2

h̄

m
�

eq
K J 1

V

∑
K′

′
K ′

zN
eq
K ′F eq

K ′
(
ψ (0)

n (K ′) + qψ (1)
n (K′)

)

− qKz�
eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)
N eq

K ′F eq
K ′

(
ψ (0)

n (K′) + qψ (1)
n (K′)

) − i

h̄
N eq

K F eq
K Ĝ11

(
qψ (1)

n (K) + q2ψ (2)
n (K)

)
. (86)

We now can compute the frequencies of the hydrodynamic
modes.

A. Transverse modes

The two transverse modes correspond to ψ
(0)
1 (K) = C1Kx

and ψ
(0)
2 (K) = C2Ky . Let us first consider mode n = 1. To

first order in q, Eq. (86) becomes

ω
(1)
1 N eq

K F eq
K C1Kx

= BKKzN eq
K F eq

K C1Kx + 1(
ω

(1)
1

)2 − A
h̄

m
�

eq
K J 1

V

×
∑
K′

′
K ′

zN
eq
K ′F eq

K ′C1K
′
x − Kz�

eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)

×N eq
K ′F eq

K ′C1K
′
x − i

h̄
N eq

K F eq
K Ĝ11ψ

(1)
1 (K). (87)

The second and third terms on the right are 0 because of the
summation involving K ′

x . Therefore, Eq. (87) reduces to

ω
(1)
1 C1Kx = BKC1KzKx − i

h̄
Ĝ11ψ

(1)
1 (K). (88)

Now multiply on the left by C1KxN eq
K F eq

K and sum over K.
Since C2

1〈K2
x 〉 = 1, we find

ω
(1)
1 =

∑
K

BKKzN eq
K F eq

K C2
1K

2
x = 0 (89)

and

ψ
(1)
1 (K) = − C1h̄

iĜ11
BKKzKx. (90)

Let us now consider terms that are second order in q. The
second and third terms on the right in Eq. (86) again do not
contribute due to the summation

∑
K ′ . Therefore, Eq. (86)

reduces to

ω
(2)
1 C1Kx = BKKzψ

(1)
1 (K) − i

h̄
Ĝ11ψ

(1)
1 (K). (91)

Now multiply on the left by C1KxN eq
K F eq

K and sum over K to
get

ω
(2)
1 = −

∑
K

N eq
K F eq

K BKKzC1Kx

h̄

iĜ11
BKKzC1Kx. (92)

It is straightforward to show that ω
(2)
1 = ω

(2)
2 . Thus, the trans-

verse modes are decoupled from each other and the frequencies
associated with the microscopic transverse modes are of the
form ω = ω(2)

n q2 for n = 1,2. Because ω
(1)
1 = ω

(1)
2 = 0, the

transverse modes cannot propagate. Transverse fluctuations in
the gas will relax at a rate determined by ω

(2)
1 and ω

(2)
2 .

B. Longitudinal modes

The longitudinal modes are coupled to each other and
are degenerate for q = 0 so we need to use degenerate
perturbation theory to determine the correct combination of
modes ψ

(0)
3 (K) = C3Kz and ψ

(0)
4 (K) = C4EK to use in the

perturbation expansion. Also, because the equations are not
symmetric, the left and right zeroth order (in q) states will be
different. Let us write

�
(0)
L (K) = �3,Lψ

(0)
3 (K) + �4,Lψ

(0)
4 (K)

and �
(0)
R (K) = �3,Rψ

(0)
3 (K) + �4,Rψ

(0)
4 (K) (93)

for the left and right eigenvectors, respectively. Keeping terms
first order in q, Eq. (86) becomes

ω(1)N eq
K F eq

K �
(0)
R (K)

= BKKzN eq
K F eq

K �
(0)
R (K) + 1

((ω(1))2 − A)
h̄

m
�

eq
K J 1

V

×
∑
K′

′
K ′

zN
eq
K ′F eq

K ′�
(0)
R (K′) − Kz�

eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)

×N eq
K ′F eq

K ′�
(0)
R (K′) − i

h̄
N eq

K F eq
K Ĝ11ψ

(1)
R (K). (94)

Although the collision operator only admits two longitudinal
modes with zero eigenvalue, Eq. (94), because of its nonlinear
dependence on the frequency ω(1) has four solutions. These
four solutions correspond to the four longitudinal hydrody-
namic modes.

Let us multiply Eq. (94) on the left by �
(0)
L (K) and sum

over K. The term involving the collision operator gives 0 when
�

(0)
L (K) acts on it from the left. We then obtain

(
�1,L �2,L

) ( −ω(1) α

β(ω(1)) −ω(1)

) (
�1,R

�2,R

)
= 0, (95)

where

β(ω(1)) = α + γ

(ω(1))2 − A , (96)

α =
∑

K

BKK2
z C3C4EKN eq

K F eq
K

−
∑

K

C3K
2
z �

eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)
C4EK ′N eq

K ′F eq
K ′ ,

(97)

and

γ = J
∑

K

h̄

m
C4EK�

eq
K

1

V

∑
K′

′
(K ′

z)
2C3N eq

K′ F eq
K′ . (98)
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Equation (95) has solutions if

det

( −ω(1) α

β(ω(1)) −ω(1)

)

= (ω(1))4 − (α2 + A)(ω(1))2 + α2A − αγ

(ω(1))2 − A = 0. (99)

This equation has two pairs of solutions for ω(1). The solutions
undergo an avoided crossing at low temperatures. We call them
ω

(1)
I,± and ω

(1)
II,± so that

ω
(1)
I,± = ±

√
1

2
[α2 + A +

√
(A − α2)2 + 4αγ ] (100)

and

ω
(1)
II,± = ±

√
1

2
[α2 + A −

√
(A − α2)2 + 4αγ ]. (101)

Note that γ → 0 as T → 0 K so that at very low temperatures
the two sound modes decouple. Then we obtain limT →0 ω

(1)
I,± =

√
A =

√
gN

eq
0

m
(which is the Bogoliubov speed of sound at

T = 0) K and limT →0 ω
(1)
II,± = α =

√
gN

eq
0

3m
at T = 0 K. These

results agree with those obtained by Lee and Yang [25] using
a very different method. In Fig. 1, we plot the speeds of these
two types of sound as a function of T/Tc.

We can construct orthonormal pairs of left and right
eigenvectors for the first sound and second sound modes.
Let us first consider the first sound waves. The left and right
eigenvectors, �̄T

I± and �̄I±, respectively, take the form

�̄I± = 1√
2

(±√
α/β(ωI,±)

1

)

and �̄T
I± = 1√

2
(±√

β(ωI,±)/α,1). (102)

Therefore, the right and left eigenvectors can be written

�R
I,±(K) = ±

√
α√

2β(ωI,±)
ψ

(0)
3 (K) + 1√

2
ψ

(0)
4 (K) (103)

and

�L
I,±(K) = ±

√
β(ωI,±)√

2α
ψ

(0)
3 (K) + 1√

2
ψ

(0)
4 (K), (104)
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FIG. 1. Plot of the speed of the first sound (dashed line) and
second sound (solid line) versus temperature at a particle number
density n ≡ Neq such that na3 = 1.0 × 10−5. Speeds are plotted in
units of

√
gn/m, which is the Bogoliubov speed of sound at zero

temperature.

respectively. Analogous expressions can be written for the
second sound modes. Namely,

�R
II,±(K) = ±

√
α√

2β(ωII,±)
ψ

(0)
3 (K) + 1√

2
ψ

(0)
4 (K) (105)

and

�L
II,±(K) = ±

√
β(ωII,±)√

2α
ψ

(0)
3 (K) + 1√

2
ψ

(0)
4 (K). (106)

Let us now return to the perturbation expansion for the four
longitudinal microscopic modes. We can solve Eq. (94) for the
first-order (in q) correction to the right eigenvector. We obtain

N eq
K F eq

K ψ
(1)
R (K)

= −N eq
K F eq

K

h̄

iĜ11

[
(ω(1) − BKKz)�

(0)
R (K)

]

− h̄

iĜ11

[
Kz�

eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)
N eq

K ′F eq
K ′�

(0)
R (K′)

− 1

((ω(1))2 − A)
h̄

m
�

eq
K J 1

V

∑
K′

K ′
zN

eq
K ′F eq

K ′�
(0)
R (K′)

]
.

(107)

We next find the correction to ω of order q2. From Eq. (86)
we can write

ω(2)N eq
K F eq

K �
(0)
R (K)

= BKKzN eq
K F eq

K ψ
(1)
R (K) − Kz�

eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)

×N eq
K ′F eq

K ′ψ
(1)
R (K′) + 1

(ω(1))2 − A
h̄

m
�

eq
K J 1

V

∑
K′

−K ′
zN

eq
K ′F eq

K ′ψ
(1)
R (K′) − i

h̄
N eq

K F eq
K Ĝ11ψ

(2)
R (K). (108)

If we multiply on the left by �
(0)
L (K) and integrate over K, we

obtain

ω(2) =
∑

K

�
(0)
L (K)BKKzN eq

K F eq
K ψ

(1)
R (K)

−
∑

K

�
(0)
L (K)Kz�

eq
K

1

V

∑
K′

(
u2

K ′ + v2
K ′

)
N eq

K ′F eq
K ′

×ψ
(1)
R (K′) +

∑
K

�
(0)
L (K)

1

(ω(1))2 − A
h̄

m
�

eq
K J 1

V

×
∑
K′

K ′
zN

eq
K ′F eq

K ′ψ
(1)
R (K′). (109)

This expression applies for all four longitudinal modes. We
simply insert the appropriate values of ω and ψ

(1)
R (K) into

Eq. (109). The detailed behavior of the decay rates given by
Eq. (109) is rather involved and will be considered elsewhere.

VIII. VISCOSITY

We can obtain a relation between the viscosity and the
microscopic hydrodynamic modes from the bogolon kinetic
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equation. The bogolon kinetic equation can be written

∂δN (K,R,t)

∂t

= −∇R · (εK + �)

EK

h̄K
m

δN (K,R,t) + ∇R · �KKδN(R,t)

−∇R · vs(R,t)�eq
K + i

h̄
δG11(K,R,t). (110)

The balance equation for the momentum density is obtained
by multiplying the bogolon kinetic equation by the momen-
tum h̄K and summing over all K. As shown earlier, the
bogolon current is equal to the particle current [J (R,t) =∑

Kh̄KδN (K,R,t) = ∑
Kh̄KδF11(K,R,t)] and we obtain

∂δJ (R,t)

∂t
= −∇R ·

∑
K

(εK + �)

EK

h̄2

m
KKδN (K,R,t)

+ h̄∇R ·
∑

K

�KKKδN(R,t). (111)

The two-fluid hydrodynamic expression for the total parti-
cle current in the laboratory frame is J = ρsvs + ρnvn, where
ρn(ρs) is the hydrodynamic expression for the normal fluid
(superfluid) density, and vn is the normal fluid velocity [26,27].
The time derivative of the total particle current then can be
written (to first order in deviations from equilibrium) as

∂δJ
∂t

= ρs

∂vs

∂t
+ ρn

∂vn

∂t
= mN eq ∂vs

∂t
+ ∂δJ (R,t)

∂t

≡ −∇R · δP (R,t) − ∇R · �̄D(R,t), (112)

where δP (R,t) is the pressure and �̄D(R,t) is the dissipative
momentum current (stress tensor).

We now introduce the coefficient of shear viscosity η. The
dissipative part of the stress tensor can be written [22] �̄D =
�̄(s) + �Ū, where �̄(s) is a symmetric tensor, � is a scalar,
and Ū is the unit tensor. The shear viscosity is the generalized
conductivity, which relates gradients in the transverse particle
current, J⊥ = ρnvn,⊥ to the symmetric stress tensor so that

ρn

∂vn,⊥
∂t

= ∂J⊥
∂t

= (∇R·�̄(s)
D

)
⊥≡ − 2η∇2

Rvn,⊥. (113)

It is now useful to transform from variables (R,t) to the Fourier
components of the (linearized) hydrodynamic equation with
wave vector q and frequency ω via a transformation of the
form

δJ (R,t) ∼ e+iωt e−iq·RδJ (q,ω). (114)

In order to pull out the transverse parts of Eqs. (111) and (113),
we assume that q = q êz, where êz is a unit vector in the
z direction. Eq. (111), then separates into two independent
equations forJx andJy (the transverse modes) and an equation
for the longitudinal part of the flow Jz. The two transverse
hydrodynamic modes each satisfy the equation

ωδJ⊥(q,ω) = i
ηq2

ρn

J⊥(q,ω), (115)

where δJ⊥(q,ω) is a component of the momentum current
perpendicular to the z direction.

If we now equate the microscopic expression [Eq. (92)]
and the macroscopic expression [Eq. (115)] for the transverse
hydrodynamic modes, we obtain the following microscopic

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00
0.02
0.04
0.06
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0.10

T /TC

η
ξ

na3= 2.5×10−6

na3= 1.0×10−5

na3= 2.5×10−6

na3= 1.0×10−5

FIG. 2. Variation of the shear viscosity with temperature for a
dilute BEC. Circles represent the density na3 = 2.5 × 10−6 and
squares represent the density na3 = 1.0 × 10−5 (n is the particle
number density).

expression for the shear viscosity:

η = −ρn

∑
K

N eq
K F eq

K BKKzC1Kx

h̄

Ĝ11
BKKzC1Kx. (116)

Numerical values of the shear viscosity for a dilute gas can be
explicitly calculated using this expression. To carry out this
calculation, we use a spectral decomposition of the linearized
collision operator [10,18]. The viscosity depends on the
particle properties and the equilibrium density and temperature
of the system. The particle density is parameterized by a3N eq,
where N eq is the particle number density, a = mg

4πh̄2 is the
s-wave scattering length, and the temperature is parameterized
by T/TC , where TC is the BEC transition temperature of an
ideal gas. In this parametrization scheme, the viscosity can
be written as a pure function of a3N eq and T/TC times the
quantity

ξ = 1

8πa2

√
πmkBT

2
. (117)

The results of the viscosity calculation are shown in Fig. 2.
We have plotted the viscosity as a function of T/TC for
two densities, a3N eq = 2.5 × 10−6 and a3N eq = 1.0 × 10−5.
Compared to the noncondensed case, where η/ξ ∼ 0.5, the
viscosity of the BEC is much lower. This is a result of the
higher relaxation rates as discussed in Ref. [10].

IX. CONCLUSIONS

We have derived the kinetic equation for a dilute BEC
using Bogoliubov mean-field theory and we have retained
terms to second order in perturbations Ĥ1 to the mean-field
Hamiltonian. The superfluid velocity is given by the gradient
of the macroscopic phase of the condensate wave function.
In all our calculations, the equilibrium state of the gas is
evaluated in the “Popov” approximation � = gN

eq
0 and are

expected to give good results for the transverse modes and the
viscosity in the temperature range 0 � T � 0.6Tc. To obtain
the longitudinal modes, we use a closure relation that has the
form of a nonequilibrium Hugenholtz-Pines relation, and we
evaluate it using the Bogoliubov approximation δ�̃(R,T ) =
gδN(R,T ). We expect our expressions for the longitudinal
modes to give good results for temperatures 0 � T � 0.3Tc.

We have used the bogolon kinetic equation to derive micro-
scopic expressions for the six hydrodynamic modes of a dilute
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BEC gas: two transverse modes and four longitudinal modes.
Using our microscopic expressions for the four longitudinal
modes, we have computed the speeds of the first and second
sound. We obtain sound speeds that are in agreement with
those obtained by Lee and Yang [25] for 0 � T � 0.3Tc.

We have computed the shear viscosity for a dilute BEC of
neutral atoms that interact via a contact potential, using the full
information contained in the three collision operators (see [10]
and Appendix B) that contribute to the relaxation of the gas.
For the temperature region we consider, we find that the shear
viscosity of a Bose-Einstein condensed gas is about 10% of its
value just above the critical temperature.
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APPENDIX A: WIGNER FUNCTIONS

Wigner functions are distribution functions in phase space
for quantum systems [28]. They are particularly useful in
dealing with transport processes because in the classical limit
they reduce to classical probability distributions in phase
space. Let us introduce center-of-mass and relative coordinates
R = 1

2 (r1 + r2) and r = r1 − r2, respectively. Then we write
the one-body density matrix in the form(

F11(r,R) F12(r,R)
F21(r,R) F22(r,R)

)
≡

(
〈ψ̂†

1ψ̂2〉 〈ψ̂†
1ψ̂

†
2〉

〈ψ̂1ψ̂2〉 〈ψ̂1ψ̂
†
2〉

)
. (A1)

If we next introduce center-of-mass and relative wave vectors
K = 1

2 (k1 + k2) and q = k1 − k2, respectively, the Wigner
functions for the BEC are defined(

F11(K,R) F12(K,R)
F21(K,R) F22(K,R)

)

= 1

V

∫
dre+iK·r

(
〈ψ̂†

1ψ̂2〉 〈ψ̂†
1ψ̂

†
2〉

〈ψ̂1ψ̂2〉 〈ψ̂1ψ̂
†
2〉

)
, (A2)

where h̄K is the momentum of particles in the gas and R is their
position. In the classical limit, F11(K,R) is the particle number
density in the interval K → K + dK and R → R + dR.

The field operators ψ̂
†
1 and ψ̂1 are related to the operators

â
†
k1

and âk1 , which create and annihilate, respectively, a particle
with momentum h̄k1, via the Fourier transforms

ψ̂
†
1 = 1√

V

∑
k1

e−ik1·r1 â
†
k1

and ψ̂1 = 1√
V

∑
k1

e+ik1·r1 âk1 .

(A3)

We can relate the configuration space distributions to momen-
tum space distributions via the Fourier transformation(

〈ψ̂†
1ψ̂2〉 〈ψ̂†

1ψ̂
†
2〉

〈ψ̂1ψ̂2〉 〈ψ̂1ψ̂
†
2〉

)

= 1

V

∑
k1,k2

e−ik1·r1e+ik2·r2

(
〈â†

k1
âk2〉 〈â†

k1
â
†
−k2

〉
〈â−k1 âk2〉 〈â−k1 â

†
−k2

〉

)
. (A4)

This, in turn, allows us to write(
F11(r,R) F12(r,R)
F21(r,R) F22(r,R)

)

= 1

V

∑
K,q

e−iK·re−iq·R
(

F11(K,q) F12(K,q)
F21(K,q) F22(K,q)

)
(A5)

and (
F11(K,R) F12(K,R)
F21(K,R) F22(K,R)

)

= 1

V

∑
q

e−iq·R
(

F11(K,q) F12(K,q)
F21(K,q) F22(K,q)

)
, (A6)

where(
F11(K,q) F12(K,q)
F21(K,q) F22(K,q)

)
=

(
〈â†

k1
âk2〉 〈â†

k1
â
†
−k2

〉
〈â−k1 âk2〉 〈â−k1 â

†
−k2

〉

)
. (A7)

In terms of Wigner functions, the particle number density N (R)
at point R is

N (R) =
∑

K

F11(K,R) = 〈ψ̂†
Rψ̂R〉 =

∑
q

e−iq·RN (q), (A8)

where N (q) = ∑
KF11(K,q) is the component of the particle

number density whose spatial variation has wave vector q. The
number of particles N (K) with momentum h̄K is

N (K) =
∫

dRF11(K,R) = 〈â†
KâK〉. (A9)

The component of the order parameters whose spatial variation
has wave vector q is given by

�†(q) = g
∑

K

F12(K,q) and �(q) = g
∑

K

F21(K,q).

(A10)

APPENDIX B: LINEARIZED COLLISION INTEGRALS

In this Appendix we give the linearized collision integrals
that appear in the particle kinetic equations and the bogolon
kinetic equations. We first give the linearized particle collision
integrals.

1. Linearized particle collision integrals

The linearized particle collision integral δI11(q,K) is the
sum of three contributions:

δI11(q,K) = δC12
K1,q + δC22

K1,q + δC31
K1,q. (B1)

They are obtained by linearizing the bogolon collision integrals
given in [10] and [21]. All of the particle collision integrals
depend on the bogolon distribution functions. To linearize the
collision integrals, we let Fj = F eq

j + N eq
j F eq

j �j and Nj =
N eq

j + N eq
j F eq

j �j , where �j ≡ �Kj ,q, and keep only those
terms of first order in the small parameter �j . The energy
conservation δ function ensures that the zeroth-order terms
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cancel. The linearized particle collision integrals are

δC12
K1,q = 4πN0g

2

h̄V 2

∑
2,3

′
δ1,2+3δ(E1 − E2 − E3)W 12

3,2,1

[
ϒA

1,2,3

(
F eq

1 N eq
2 N eq

3

)
(�2 + �3 − �1)

+ ϒ̃A
1,2,3

(
F eq

1 N eq
2 N eq

3

)
(�−2 + �−3 − �−1)

] + 8πN0g
2

h̄V 2

∑
2,3

′
δ1+2,3δ(E1 + E2 − E3)W 12

1,2,3

× [
ϒB

1,2,3

(
F eq

3 N eq
1 N eq

1

)
(�3 − �1 − �2) + ϒ̃B

1,2,3

(
F eq

3 N eq
1 N eq

1

)
(�−3 − �−1 − �−2)

]
, (B2)

δC22
K1,q = 4πg2

h̄V 2

∑
2,3,4

′
δ1+2,3+4δ(E1 + E2 − E3 − E4)W 22

1,2,3,4

[
ϒC

1,2,3,4

(
F eq

1 F eq
2 N eq

3 N eq
4

)
(�3 + �4 − �1 − �2)

− ϒ̃C
1,2,3,4

(
F eq

1 F eq
2 N eq

3 N eq
4

)
(�−3 + �−4 − �−1 − �−2)

]
, (B3)

and

δC31
K1,q = 4πg2

3h̄V 2

∑
2,3,4

′
δ1,2+3+4δ(E1 − E2 − E3 − E4)W 31

1,2,3,4

[
ϒD

1,2,3,4

(
F eq

1 N eq
2 N eq

3 N eq
4

)
(�2 + �3 + �4 − �1)

− ϒ̃D
1,2,3,4

(
F eq

1 N eq
2 N eq

3 N eq
4

)
(�−2 + �−3 + �−4 − �−1)

]+4πg2

h̄V 2

∑
2,3,4

′
δ1+2+3,4δ(E1 + E2 + E3 − E4)W 31

4,3,2,1

× [
ϒE

1,2,3,4

(
N eq

1 N eq
2 N eq

3 F eq
4

)
(�4 − �1 − �2 − �3) − ϒ̃E

1,2,3,4

(
N eq

1 N eq
2 N eq

3 F eq
4

)
(�−4 − �−1 − �−2 − �−3)

]
,

(B4)

where the weighting functions are given in terms of ui and vi by

W 12
1,2,3 = u1u2u3 − u1v2u3 − v1u2u3 + u1v2v3 + v1u2v3 − v1v2v3, (B5)

W 22
1,2,3,4 = u1u2u3u4 + u1v2u3v4 + u1v2v3u4 + v1u2u3v4 + v1u2v3u4 + v1v2v3v4, (B6)

and

W 31
1,2,3,4 = u1u2u3v4 + u1u2v3u4 + u1v2u3u4 + v1v2v3u4 + v1v2u3v4 + v1u2v3v4. (B7)

Each of these weighting functions has specific symmetry with respect to interchanges of its indices that is shared by its collision
operator. Also,

ϒA
1,2,3 = u1u2u3 − u1v2u3 − u1u2v3, (B8)

ϒB
1,2,3 = u1u2u3 + u1v2v3 − u1v2u3, (B9)

ϒC
1,2,3,4 = u1u2u3u4 + u1v2v3u4 + u1v2u3v4, (B10)

ϒD
1,2,3,4 = u1v2u3u4 + u1u2v3u4 + u1u2u3v4, (B11)

ϒE
1,2,3,4 = u1u2v3u4 + u1v2u3u4 + u1v2v3v4, (B12)

and ϒ̃ is ϒ with each u and v interchanged.

2. Linearized bogolon collision integrals

The linearized bogolon collision integral δJ11(q,K) is the sum of three contributions,

δJ11(q,K) = δG12
K1,q + δG22

K1,q + δG31
K1,q, (B13)

defined below. They are obtained by linearizing the bogolon collision integrals given in [10] and [21]. To linearize the bogolon
collision integrals, we have let Fj = F eq

j + N eq
j F eq

j hj and Nj = N eq
j + N eq

j F eq
j hj , where hj ≡ hKj ,q, and keep only those

terms of first order in the small parameter hj . The energy conservation δ function ensures that the zeroth-order terms cancel. The
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linearized particle-bogolon collision integrals are

δG12
K1,q = 4πN0g

2

h̄V 2

∑
2,3

′
δ1,2+3δ(E1 − E2 − E3)

(
W 12

3,2,1

)2[(F eq
1 N eq

2 N eq
3

)
(h2 + h3 − h1)

]

+ 8πN0g
2

h̄V 2

∑
2,3

′
δ1+2,3δ(E1 + E2 − E3)

(
W 12

1,2,3

)2[(F eq
3 N eq

1 N eq
1

)
(h3 − h1 − h2)

]
, (B14)

δG22
K1,q = 4πg2

h̄V 2

∑
2,3,4

′
δ1+2,3+4δ(E1 + E2 − E3 − E4)

(
W 22

1,2,3,4

)2[(F eq
1 F eq

2 N eq
3 N eq

4

)
(h3 + h4 − h1 − h2)

]
, (B15)

and

δG31
K1,q = 4πg2

3h̄V 2

∑
2,3,4

′
δ1,2+3+4δ(E1 − E2 − E3 − E4)

(
W 31

1,2,3,4

)2[(F eq
1 N eq

2 N eq
3 N eq

4

)
(h2 + h3 + h4 − h1)

]

+ 4πg2

h̄V 2

∑
2,3,4

′
δ1+2+3,4δ(E1 + E2 + E3 − E4)

(
W 31

4,3,2,1

)2[(N eq
1 N eq

2 N eq
3 F eq

4

)
(h4 − h1 − h2 − h3)

]
. (B16)

APPENDIX C: GRADIENT TERMS IN THE KINETIC EQUATION

In this Appendix we examine terms involving ∇KF̄ that appear in Eq. (40). We can evaluate them if we express them in terms
of bogolon distributions. Note that

∇K

(
F

eq
11 (K) F

eq
12 (K)

F
eq
21 (K) F

eq
22 (K)

)
= ∇K

[(
uK −vK

−vK uK

)
·
(
N eq

K 0

0 F eq
K

)
·
(

uK −vK

−vK uK

)]

= − h̄2

2m
K

2uKvK

Ek

(
N eq

K + F eq
K

) (
2uKvK −(

u2
K + v2

K

)
−(

u2
K + v2

K

)
2uKvK

)

− h̄2

2mkBT
K

2εK

Ek

N eq
K F eq

K

(
u2

K + v2
K −2uKvK

−2uKvK u2
K + v2

K

)
, (C1)

where εK = h̄2K2

2m
+ �.

It is useful to change to dimensionless variables and write Kj =
√

2mkBT

h̄
cj for (j = x,y,z), b = �

kBT
, εc = c2 + b, and

Ec = √
ε2
c − b2, where cj is thej th component of the dimensionless wave vector. If we then use the results of Eq. (C1), we can

write

[
K · vs(q)]q · ∇KF

eq
11 (K) = −(c·vs(q))(c·q)

[
2u2

cv
2
c

Ec

(
N eq

c + F eq
c

) + 2εc

Ec

(
u2

c + v2
c

)
N eq

c F eq
c

]
. (C2)

In order to get an estimate of the size of this term, let us consider, as an example, a condensate made of 23Na atoms at temperature

T = 10−7 K, with b = 1 and number density N
V

= 1020 m−3. Then
( 2mkBT

h2

)3/2 = 1.2 × 1017. Without loss of generality, let us
assume that q lies along the z axis so that q = qêz, where êz is a unit vector. Then vs(q) = vs(q)êz. If we integrate over momentum
we obtain∫

dK
[
K · vs(q)]q · ∇KF

eq
11 (K) = −qvs(q)

(
2mkBT

h2

)3/2

2π

∫ π

0
dθsin(θ )cos2(θ )

∫ ∞

0
dcc4

[
2u2

cv
2
c

Ec

(N eq(c) + F eq(c))

+ εc

Ec

ucvc

(
u2

c + v2
c

)
N eq(c)F eq(c)

]
≈ −7.2qvs(q)

(
2mkBT

h2

)3/2

. (C3)

We compare that to

∫
dK

[
q · vs(q)]F eq

11 (K) = qvs

N

V
≈ qvs

N0

V
+ 3.1qvs(q)

(
2mkBT

h2

)3/2

, (C4)

where N0 is the number of particles in the condensate and N is the total particle number. Thus, Eq. (C4) is three orders of
magnitude greater than Eq. (C3), so the contribution from Eq. (C3) can be neglected in Eq. (47).
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We next consider the effect of the Hugenholtz-Pines relation on Eq. (63). For the case �(q) = δ�̃(q), the bogolon kinetic
equation matrix takes the form

−ih̄
∂δN (K,q)

∂t
= (E1 − E2)δN (K,q) + h̄q · vs(q)N eq

K − h̄2

2m
q · K

2uKvK

EK

(uK − vK )2
(
N eq

K + F eq
K

)
δ�̃(q)

+ h̄2

2mkBT
K · q

2εK

Ek

(uK − vK )2N eq
K F eq

K δ�̃(q) + h̄(K · δvs(q))(q · K)
h̄2

2mkBT

2εK

EK

N eq
K F eq

K + δG11(1,2)

(C5)

and now includes the Hugenholtz-Pines equation.
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