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We consider a two-mode model describing scalar bosons with two-body interactions in a single trap, taking into
account coherent pair exchange between the modes. It is demonstrated that the resulting fragmented many-body
states with continuous (nonsingular) Fock-space distribution amplitudes are robust against perturbations due to
occupation number and relative phase fluctuations, Josephson-type tunneling between the modes, and weakly
broken parity of orbitals, as well as against perturbations due to interaction with a third mode.
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I. INTRODUCTION

Conventional wisdom has it that fragmented condensates,
i.e., many-body states leading to more than one macroscopic
eigenvalue of the single-particle density matrix [1], are
unstable against small perturbations when contained in a
single (e.g., harmonic) trap [2,3]. It is well established that
stable fragmentation can be readily prepared for spatially
well separated modes in the field operator expansion, for
example, in deep double wells [4] or in optical lattices [5–7].
On the other hand, fragmented condensate states in a single
trap are conventionally obtained around special points of
symmetry of the system, e.g., in spin-1 Bose gases [8,9],
rotating gases [10–13], and spin-orbit-coupled systems [14].
These fragmented condensate many-body states obtained
from symmetry in a single trap are sharply peaked in Fock
space; as a consequence, they are inherently unstable against
perturbations and decay into single condensates. Recent
theoretical work, however, put forward the possibility of
robust fragmented condensate states in a single trap, with
significant (that is, not exponentially small) spatial overlapping
of the field operator modes [15]. The corresponding class of
fragmented condensate many-body states was subsequently
shown to be immune against perturbations on the dynamical
many-body level, i.e., under rapid changes of interaction
couplings [16].

In what follows, we elucidate the distinct features of the
ground-state many-body properties of stably fragmented con-
densates by contrasting them with the fragility of symmetry-
point-induced fragmented condensate states. To this end,
and to illustrate the salient features of stable fragmentation
for interacting bosons in a most transparent fashion, we
use a simple model with just two macroscopically occupied
field operator modes. Within this model, a closed analytical
expression for fragmented condensate many-body states can
be devised. Using the corresponding many-body amplitudes
in Fock space, we demonstrate that a fragmented state with
continuous (i.e., nonsingular) probability amplitudes for the
Fock basis states is stable against quantum fluctuations of the
occupation numbers of the modes and their relative phase,
as well as against single-particle tunneling between the two
states. We contrast this with the well-known instability of
symmetry-point-induced fragmented states, which occurs in
our model at vanishing pair-exchange coupling. In addition,
we investigate whether a (slightly) broken parity of orbitals

significantly influences fragmentation. Finally, we discuss the
perturbative effect of introducing an additional interacting
mode. We find that the single-particle density matrix has
essentially still two macroscopic eigenvalues, and the many-
body state thus remains twofold fragmented.

II. TWO-MODE FRAGMENTED STATES

A. Hamiltonian and the many-body states

We describe the quantum many-body phases of interacting
bosons by the following two-mode Hamiltonian [15]:

Ĥ =
∑
i=0,1

[
εi n̂i + Ui

2
n̂i(n̂i − 1)

]

+ P

2
(â†

0â
†
0â1â1 + H.c.) + V

2
n̂0n̂1. (1)

Without pair-exchange coupling, P = 0, for U0 + U1 − V >

0, we obtain a Fock state |N0,N1〉, where the particle number in
the ground-state mode N0 = N

2 − (U0−U1)(N−1)+2(ε0−ε1)
2(U0+U1−V ) . Here,

N = N0 + N1 is the total number of particles. To obtain
the generic features of the ground state for the Hamiltonian
(1), we expand in a linear superposition of Fock states,
|�〉 = ∑N

l=0 ψl|l〉, where |l〉 ≡ |N − l,l〉 [15]. This Fock state
expansion, by its definition, respects total particle number
conservation, and the many-body correlations are encoded in
the generally complex distribution vector ψl = |ψl| exp[iθl],
with amplitude |ψl| and phase θl . The distribution satisfies,
according to the Hamiltonian (1), the N + 1 equations

〈l|Ĥ |�〉 = Eψl = P

2
(dlψl+2 + dl−2ψl−2) + clψl, (2)

where the coefficients cl = ε0(N − l) + ε1l + 1
2U0(N −

l)(N − l − 1) + 1
2U1l(l − 1) + 1

2V (N − l)l and dl =√
(l + 2)(l + 1)(N − l − 1)(N − l).
Equations (2) decompose into two independent sets of

equations containing the even and odd l sectors of ψl only. The
two corresponding ground states in the even and odd l sectors
are therefore degenerate in the continuum limit of N → ∞.

To represent the structure of the many-body wave function
sufficiently far away from the singular symmetry point P = 0,
we employ the spinor wave functions [2]:

|θ,φ〉 = 1√
N !

(uâ
†
1 + vâ

†
2)N |0〉, (3)
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where the coefficients read u = e−iφ/2cos(θ/2) and v =
eiφ/2sin(θ/2). Due to the even and odd l sector degeneracy,
the weights of even and odd sectors α and β, respectively,
are arbitrary (subject to normalization of the wave function).
Upon investigating the structure of the binomially expanded
spinor wave-function basis above, taking into account the
degeneracy of the even-odd l sector, we can write an ansatz
for the many-body wave function in the form

|�〉 = α

√
2

N !

N/2∑
k=0

C2k
N (uâ

†
0)2k(vâ

†
1)N−2k|0〉

+β

√
2

N !

N/2∑
k=1

C2k−1
N (uâ

†
0)2k−1(vâ

†
1)N−2k+1|0〉, (4)

where the binomial coefficients are Ck
N = N!

(N−k)!k! , u =
exp[−iφ2/2]cos(θ/2), v = exp[iφ2/2]sin(θ/2) and φ2 here
represents half the phase difference between the l and l + 2
modes, defined such as to enter identically for even and odd l

sectors. We assume for simplicity that N is even.
The normalization of the wave function implies |α|2 +

|β|2 = 1. The phase relation between even and odd Fock
states is defined by writing α = |α| exp[−iφ1/2] and
β = |β| exp[iφ1/2]. The matrix elements of the single-
particle density matrix in this state are 〈�|â†

0â0|�〉 =
N0 = Ncos2(θ/2), 〈�|â†

1â1|�〉 = N1 = Nsin2(θ/2), and
〈�|â†

0â1|�〉 = N |α||β|cos(θ/2)sin(θ/2)cos(φ1)eiφ2 .
Using the wave-function ansatz (4), the total energy per

particle reads [17]

E

N
= N

2
[U0 + U1 − 2P cos(2φ2) − V ] sin4(θ/2)

+
[
ε1 − ε0 + N

(
V

2
− U0 + P cos(2φ2)

)]
sin2(θ/2)

+ U0

2
N + ε0. (5)

It is easily verified that, minimizing the above energy ex-
pression, we can recapture within one wave-function ansatz
(4) the (continuum limit) observations made in [15] for the
many-body ground states of the two-model (1). We will
now discuss these quantum phases for the parameter regime
U0 + U1 + 2|P | − V > 0 in more detail. For a numerical
verification of the wave-function ansatz (4), see Sec. II C.

B. Coherence properties

The first-order coherence and degree of fragmentation F
[15], corresponding to the ansatz (4), are, respectively, given
by

g1 = 1

2
〈â†

0â1 + â
†
1â0〉 = 2|α||β|

√
N0N1cos(φ1)cos(φ2) (6)

and, using F = 1 − 2
N

|N
2 − N1|,

F = 1 − 2

N

√
|〈â†

0â1〉|2 +
(

N

2
− 〈â†

1â1〉
)2

= 1 − 2

N

√
4|α|2|β|2N0N1cos2(φ1) +

(
N

2
− N1

)2

. (7)

For P < 0, the minimization of energy terms associated
with the relative phase φ2 in Eq. (5), P cos(2φ2)N0N1,
determines the phase to be either φ2 = 0 or π (mod
2π ). Suppose that φ1 = 0 [this is achieved for P < 0
provided that an infinitesimally small Josephson-type coupling
between the levels is present; cf. the discussion in Sec.
III B and Eq. (17)] and φ2 = 0; the first-order coherence
reads g1 = √

N0N1, implying that the ground-state phase
is a coherent (single-condensate) state. On the other hand,
when φ2 = π , the ground state is a π -phase coherent
ground state, for which the system favors negative first-order
coherence.

The second-order coherence function is defined by g2 =
1
2 〈â†

0â
†
0â1â1 + â

†
1â

†
1â0â0〉. Evaluating it by using the ansatz (4)

yields

g2 = N2sin2(θ/2)cos2(θ/2)cos(2φ2) = N0N1. (8)

The second-order coherence g2 is independent of the relative
phase φ1 between coefficients α and β and is macroscopic,
i.e., O(N2), implying that the ground-state is intrinsically
pair coherent by virtue of energy minimization. By contrast,
the first-order coherence g1 depends on α and β, and
proper coherent states in our model exist for α = β = 1/

√
2

only. Minimizing the total energy with respect to sin(θ/2),
the occupation number in the “excited” single-particle state
reads

N1 = 〈â†
1â1〉 = ε0 − ε1 − (

V
2 − U0 − |P |)N

U0 + U1 + 2|P | − V
, (9)

a formula also valid for P > 0.
Turning to positive pair-exchange coupling, minimal energy

requires φ2 = π/2 or −π/2. This results in vanishing first-
order and negative pair coherence, g1 = 0 and g2 = −N0N1.
The ground state in the form of Eq. (4) can then be rewritten
as follows:

|�〉 =
N/2∑
k=0

e±i π
4 (N−4k) [αf2k|2k〉 ± iβf2k+1|2k + 1〉] , (10)

where the real amplitude function fk is defined by

fk =
√

2k!(N − k)!

N !
Ck

N [cos(θ/2)]k[sin(θ/2)]N−k, (11)

and the upper and lower sign stands for φ2 = π/2 and φ2 =
−π/2, respectively.

Macroscopic and negative pair coherence, vanishing first-
order coherence, and, in particular, a finite degree of fragmen-
tation F characterize the many-body state for P > 0 in our
model and correspond to fragmented ground states.

C. Numerical verification of the wave-function ansatz

To verify the validity of our ground-state ansatz (4) for the
two-mode model, we solve numerically the set of equations
(2) when |α| = |β| = 1/

√
2 to obtain ψl and compare it with
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FIG. 1. (Color online) Comparison of numerics and the ansatz
in Eq. (4). (a) The coherent state and (b) π -phase coherent state
correspond to the parameters U0 = V = 1, U1 = 0.8, P = −0.2
while (c) the fragmented state is from P = 0.2 with other parameters
identical to (a) and (b). N = 100, 
 = 0, and ε0 = ε1 = 0 for all
cases here. Based on numerically solving Eq. (2), the red squares
indicate the even l sector of ψl , and the blue circles indicate the odd
l sector. The black solid line and the green dashed line correspond to
the even and odd l parts of the analytic formula for the distribution
functions P(l), respectively.

the distributions P(l) ≡ 〈l|�〉,

P(l) =
√

N !

(N − l)!l!
uN−lvl (12)

for coherent and

P(l) =
⎧⎨
⎩

√
N!

(N−l)!l!u
N−lvl ∀ l even,

±i
√

N!
(N−l)!l!u

N−lvl ∀ l odd
(13)

for fragmented states, respectively.
The results displayed in Fig. 1 show that the ansatz (4)

is consistent with the numerical results based on Eq. (2),
establishing the validity of our generic ground-state expression
in the interacting two-mode model.

We now proceed to demonstrate the fundamental distinction
between our fragmented states and fragile fragmented states
by contrasting their respective responses to various perturba-
tions, e.g., quantum fluctuations and Josephson-type couplings
between the single-particle states.

III. STABILITY OF FRAGMENTED STATES
AGAINST PERTURBATIONS

A. Quantum fluctuations of number and phase

We start by defining states which infinitesimally differ from
the ground state by writing the former in terms of the spinor
states |θ,φ〉 = |θ0 + δ,φ2 + φ〉, where θ0 and φ2 determine,
respectively, the particle number of the ground states in the
two modes and the relative phase between |l〉 and |l + 2〉.

Expanding up to quadratic order in δ and φ around the
ground state corresponding to the minimum of (5) and using

relation (9), we obtain that the low-lying excitations have
the following energy, quadratic in phase (φ) and number (δ)
fluctuations:

E(θ0 + δ,φ2 + φ) − E(θ0,φ2)

= 2|P |N0N1φ
2 +

[(
U0 − V

2
+ |P |

)
3N0N1 − N2

0

4

+
(

U1 − V

2
+ |P |

)
3N0N1 − N2

1

4

+ (ε1 − ε0)
N0 − N1

4

]
δ2. (14)

The crucial feature of the above result for the excited-state
energy is that it makes explicit that the energy of quantum
fluctuations depends only on the absolute value of the pair-
exchange coupling |P |. Therefore, the presently considered
fragmented state with continuous distribution amplitudes |ψl|,
obtained sufficiently far from P = 0 (also see below), is as
robust against fluctuations of the ψl distribution as a coherent
state at the same value of |P |. Note in this respect that the
factor N0N1 in front of φ2 implies that the excitation energy
per particle grows linearly in the total number of particles, so
that the critical region of instability towards phase fluctuations
around P = 0 has the size δP ∼ O(1/N) [18].

We now set the above discussion in relation to the analogous
one for the well-known double well, as again described by a
two-mode model [19], with a Hamiltonian

Ĥ = −


2
(â†

LâR + H.c.) + U

2

∑
i=L,R

n̂i(n̂i − 1), (15)

in terms of the lowest-energy single-particle left and right
eigenstates, putting εL = εR = 0. The energy in terms of the
spinor wave functions (3) reads E(θ,φ) = −


2 N cos φ sin θ +
U [N2

4 (cos2θ + 1) − N
2 ]. The excitation energy around the

two-mode coherent state, |C〉 = (â†
0 + â

†
1)N |0〉/

√
2NN !, in the

double-well system therefore takes the form

E(π/2+ δ,φ) −E(π/2,0) = 


4
Nφ2+ N

4
(
+UN )δ2 + · · · .

(16)

Comparing Eqs. (14) and (16), a pronounced difference is
manifest: The energy of phase fluctuations is associated with
N0N1 ∝ N2 for the fragmented many-body ground state of
(1), while it is linear in the total particle number N0 + N1 in
the double-well system.

Therefore, we come to the surprising conclusion that
the single-trap fragmented state is less susceptible to phase
fluctuations in the thermodynamic limit than its double-
well counterpart, provided single-particle and pair-exchange
amplitudes, 
 and |P |, for the double well and single trap,
respectively, are approximately of the same order. This is
reflected in the width of the critical region around P = 0
discussed above; there is no such critical region (critical in
terms of the N scaling of the exchange or tunneling coupling)
for stability against phase fluctuations in the double-well case.
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FIG. 2. (Color online) The Fock space distribution (left) ampli-
tude |ψl | and (right) phase θl of the ground-state wave function,
varying the single-particle tunneling 
, for a fragmented state with
P = 0.4, U0 = V = 1, U1 = 2/3, ε0 = ε1 = 0, and N = 200. The
Josephson-type coupling increases from top to bottom, (a) 
 = 0,
(b) 0.015NU0, (c) 0.1NU0, (d) 0.4NU0, and (e) 0.8NU0. Red circles
represent the odd l sector, and blue squares show the even l sector.
The arrows pointing to the phase data indicate the increasing breakup
of the phase structure of the fragmented state. The phase structure
of the ground state of (1), i.e., for 
 = 0, alternates according to the
scheme (0,0,π,π,0,0,π,π, . . .).

B. Josephson-type single-particle coupling

A Josephson-type perturbation of the form

ĤJ = −


2
(â†

0â1 + H.c.) (17)

couples the two modes on the single-particle level. This can be
due to tunneling in the case of a double well, as discussed
above. For a single trap, it can be realized by using two
hyperfine states coupled by a two-photon Raman transition.
The energy of such a perturbation in terms of the state (4) is

HJ ≡ 〈�|ĤJ |�〉
= −
N |α||β|cos(θ/2)sin(θ/2)cos(φ1)cos(φ2). (18)

Minimizing the Josephson energy HJ yields α = β =
1/

√
2 when 
cos(φ2) > 0 and the two modes are both

occupied macroscopically, i.e., sin(θ/2) �= 0 and 1. For a
coherent state where φ2 = 0, the Josephson-type energy is
negative (the Josephson tunneling rate being positive definite,

 > 0). Single-particle tunneling reduces the total energy and
stabilizes the coherent state. By contrast, the π -phase coherent
state (φ2 = π ) leads to the Josephson-tunneling energy HJ

being positive, which indicates that the π -phase coherent state
is unstable for any finite 
.

When 
 = 0, the coefficients α and β in the even-odd
superposition (4) can be any choice, subject to |α|2 + |β|2 = 1.
However, the Josephson-type tunneling, even when infinitesi-
mally small, pins down the explicit form of the pair-coherent
states, in a similar manner to its establishing the conventional
single-particle coherent states.

As mentioned in the Introduction, the fragmented many-
body states found in previous work emerge at special symmetry
points of the Hamiltonian in question and are either macro-
scopically occupied single Fock states [2] or Schrödinger’s
cat states consisting of the coherent superposition of macro-
scopically distinct single Fock states [20]. For the latter, the
instability of this type of (maximally) fragmented state is
manifest as small quantum fluctuations rapidly destroy fragile
superpositions of the NOON type.

To illustrate and compare the stability features of both
robust and Fock-state-type fragmented states, we produce them
within our two-mode model by adjusting the pair-exchange
coupling P close to zero and then examine their stability
against Josephson-type perturbations.

As seen in Figs. 2(a) and 2(b), for a small 
 =
O(0.01NU0), the robust fragmented state with Gaussian-
shaped distribution experiences only a small alteration: The
distributions of even and odd l parts of |ψl| slightly shift
relative to each other, while the phase structure θl , in particular
the crucial feature of π -phase jumps between even and
odd l, remains unchanged. With increasing single-particle
tunneling, for example, from 0.1NU0 [Fig. 2(c)] to 0.8NU0

[Fig. 2(e)], the smooth amplitude function develops increasing
modulations, and the corresponding phase structure is broken
gradually due to the competition between single-particle
tunneling and pair-exchange coupling. Finally, a uniform
phase is established, and the Gaussian distribution of the
many-body wave function revives when the ground-state
properties are largely dominated by a very large single-particle
tunneling of the order of the interaction energy [
 = O(NU0);
see Fig. 2(e)].

FIG. 3. (Color online) Evolution of a fragmented state which is
“almost” a Fock state upon variation of the single-particle tunneling
coupling 
. We use parameters P = 0.0001, U0 = V = 1, and
U1 = 2/3. In (a), 
 = 0, while (b) and (c) represent the response
to 
 = 0.003NU0 and 0.015NU0.
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units of units of

FIG. 4. (Color online) Variation of the degree of fragmentation
with tunneling coupling for (a) a robust (P = 0.4) and (b) a fragile
fragmented state with P = 0.001 [= O(1/N )]. Black: U0 = U1 =
V = 1. Red (gray): U0 = V = 1 and U1 = 2/3; ε0 = ε1 = 0 and
N = 1000. Note the macroscopically distinct scales on the 
 axis in
(a) and (b).

By contrast, a comparatively small Josephson-type tun-
neling [for example, 
 = O(0.01NU0)] breaks a fragile
fragmented state in the critical region around P = 0 [Fig. 3(a)],
and the system is driven towards a coherent state [Fig. 3(b)];
the sharply peaked distribution and nonuniform phase structure
for this fragile fragmented state rapidly evolve into a Gaussian
distribution and a uniform phase structure with increasing 
.

We summarize these properties in Fig. 4, which shows the
variation of the degree of fragmentation upon increasing the
single-particle tunneling and thus the conversion from a frag-
mented condensate to a single condensate. Figure 4(b) demon-
strates that the (close to) Fock-like fragmented states quickly
decay into a coherent state already for small 
. On the other
hand, the fragmented states with large distribution width (P =
0.4) are persistent, and a comparatively huge 
 [O(NU0)],
i.e., of the order of the interaction energy scale, is necessary
to transform them to a coherent, single-condensate state.

C. Modes without definite parity

In general, there are interaction-induced terms of the
form − 1

2J2â
†
0â

†
0â0â1 + H.c. = − 1

2J2n̂0â
†
0â1 + H.c., as well as

− 1
2J ′

2â
†
1â

†
1â1â0 + H.c. = − 1

2J ′
2n̂1â

†
1â0 + H.c., in addition to

those occurring in (1). This happens even in the presently
considered case of a single trap, when the modes do not have
a definite parity which is different for the two modes. On the
other hand, when the modes respect a definite parity, the co-
efficients J2 = ∫ ∫

dxdx ′V (x − x ′)[ψ∗
0 (x)]2ψ0(x ′)ψ1(x ′) and

J ′
2 = ∫ ∫

dxdx ′Vint(x − x ′)[ψ∗
1 (x)]2ψ∗

1 (x ′)ψ0(x ′) are zero,
where Vint(x − x ′) is the two-body interaction, assumed to
be of a definite parity. The terms ∝ J2,J

′
2 lead to number-

weighted tunneling-coupling processes. The corresponding
weight in the energy scales with N2J2 and N2J ′

2; hence, when
J2 and J ′

2, respectively, are of the same order as P , these terms
will have a significant influence on the degree of fragmentation
F , similar to a tunneling rate 
 of order NU0.

We demonstrate now with a specific example that, in a
single trap, we do not expect number-weighted tunneling to
play a significant role when the parity of the modes is weakly
broken. We take as the two (real) modes the ground state of the
harmonic oscillator ψ0(x) = (πσ 2)−1/4 exp[−x2/2σ 2] and the
first excited state ψ1(x) = (

√
πσ 3/2)−1/2x exp[−x2/2σ 2] in

one dimension and deform mode ψ1(x) away from odd parity
by introducing, at an arbitrary position where ψ0(x) has no
weight, an additional maximum of ψ1(x) (cf. Fig. 5), keeping

units of units of

[u
ni

ts
 o

f
] ]

[u
ni

ts
 o

f

FIG. 5. (Color online) Examples for the deformation of the first
excited state of the harmonic oscillator ψ1(x) (red dashed line) away
from exact odd parity with varying degree of overlap. The ground
state ψ0(x) is shown by the black solid line. The excited state with
definite (odd) parity here corresponds to D.O. = 0.8.

in the process exact orthogonality,
∫

dxψ0(x)ψ1(x) = 0, and
normalization of the modes. To parametrize the change in
the orbital’s shape away from definite parity, we define the
degree of orbital overlap as D.O. ≡ ∫

dx|ψ0(x)ψ1(x)|. When
the degree of overlap tends to zero and the parity violation
becomes large, we effectively have the familiar case of a
double-well potential (see Fig. 5), which displays examples
for the excited-state orbital when deformed away from the
definite-parity state corresponding to the first excited state of
the harmonic oscillator.

We then compute the coefficient ratios J2/P,J ′
2/P for

varying degrees of overlap. From Fig. 6, we conclude that
as long as the degree of overlap remains large and parity
of the modes is almost preserved, the fragmentation remains
largely unaffected, while for larger |J2/P |,|J ′

2/P |, the effect of
interaction-induced number-weighted tunneling on fragmenta-
tion will be, as expected, equivalent to a tunneling rate of order
NU0 [cf. Fig. 4(a)]. As long as parity is only weakly broken
and |J2| � |P |, stable fragmentation is thus still determined
by the finite value of P . We expect weak breaking of parity, for
example, when the trap confining the bosons does not exactly
respect a definite parity. On the other hand, for maximally
broken parity, pair exchange becomes less important than
number-weighted tunneling, and the physics of an effective
double well takes over.

FIG. 6. (Color online) Ratios of coupling constants J2/P,

− J ′
2/P as a function of the degree of overlap of the orbitals. The

degree of parity breaking increases from right to left. The ratios are
identical, e.g., for a contact Vint = gδ(x − x ′) or a dipolar interaction
Vint = 3gd/4π |x − x ′|3.
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D. Adding a third mode

We now study whether two-mode fragmented states con-
tinue to exist when a third mode, potentially also macroscopi-
cally occupied, couples to the two modes.

The three-mode Hamiltonian is in analogy to the two-mode
case given by

Ĥ =
∑

i=0,1,2

[
εi n̂i + Ui

2
n̂i(n̂i − 1)

]

+ P0

2
(â†

0â
†
0â1â1 + H.c.) + P1

2
(â†

1â
†
1â2â2 + H.c.)

+ P2

2
(â†

0â
†
0â2â2 + H.c.) + V0

2
n̂0n̂1

+ V1

2
n̂1n̂2 + V2

2
n̂0n̂2, (19)

where additional pair-exchange terms associated with the
couplings P1, P2 as well as density-density-type terms ∝ V1,V2

are included.
We set εi = 0 for simplicity in what follows. The first-order

coherence measures for the three modes are specified by

g
(1)
ij = 1

2 〈â†
i âj + â

†
j âi〉, (20)

where i, j = {0,1,2} labels the modes; in particular, g(1)
01 ≡ g1,

as defined in Eq. (6).
We start from a twofold fragmented state as a ground-

state solution of the three-mode Hamiltonian above, with no
(macroscopic) occupation in the third mode. To study the
perturbative influence of the third mode, we then increase
the pair-exchange couplings P1 and P2 simultaneously from
zero to the same order as P0, such that the particle number
in the third mode increases gradually [cf. Fig. 7(a)]. We
study the paradigmatic case shown in Fig. 7 because we
anticipate, following the discussion in Sec. III B, that among
the parameters associated with the third mode the pair-
exchange parameters P1 and P2 influence the coherence
properties of the many-body state most significantly. With
increasing P1 = P2, both λ2 and n2 increase until a maximum
of λ2 occurs. At the same time, this maximum indicates
the transition to a novel two-mode fragmented state, for
which a finite coherence between modes i = 0 and i = 2
develops [see Fig. 7(c)]. That is, moving away from the small
maximum in λ2 towards larger values of P1, λ2 decreases from
its small peak to zero again, and the threefold fragmented
state converts again into a fragmented state with just two
macroscopic eigenvalues of the single-particle density matrix
instead of three. We verified that this behavior qualitatively
also occurs if we keep, e.g., P2 = 0 and only increase P1.
Whether either macroscopic g

(1)
02 or g

(1)
12 develops (limiting our

discussion to Pi > 0) varies with the choice of parameters.
For example, choosing U0 = 0.8 and U1 = 1 in Fig. 7, g

(1)
12

becomes macroscopic instead of g
(1)
02 .

We thus conclude that the two-mode fragmented state can
be stable against perturbations due to interaction coupling with
a third mode, even when this mode also develops a significant
(macroscopic) occupation.

units of

units of

units of

FIG. 7. (Color online) Illustration of the perturbative influence of
an additional mode on a twofold fragmented state. We display the
average occupation of the three modes in (a), the three eigenvalues
λi of the single-particle density matrix in (b), and the first-order
coherence measures (20) between various modes in (c), as a function
of the pair-exchange tunneling P1 between modes i = 1 and i = 2 in
units of P0. Here, P1 = P2 is fixed, and U0 = 1, U1 = 0.8, U2 = 1.2,
V0 = 1, V1 = V2 = 1.2, and N = 200.

IV. CONCLUDING REMARKS

We have investigated whether fragmented states in a
two-mode model with pair exchanges, representing bosons
interacting by two-body forces in a single trap, are robust
against perturbations of various origin.

We constructed an analytical ansatz describing the many-
body solutions, which was verified numerically. Concentrating
on a fragmented condensate solution originating from positive
pair-exchange coupling, we reveal its persistence against
quantum fluctuations of particle numbers in the modes and
their relative phase, against single-particle tunneling and
(weakly) broken parity of the modes, as well as the introduction
of an additional interacting mode. A possible extension of
the present work is to determine the spatial orbitals with
multiconfigurational methods [21–23] and hence to solve the
stability problem self-consistently. For example, fragmented
condensates have been found in the crossover from a single
condensate to “fermionization” [24], for tightly laterally
confined bosons [25,26]. It would then be of interest to
investigate the more generic situation where also the coupling
coefficients in the Hamiltonian can (in principle significantly)
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vary upon perturbing the system and the ensuing consequences
for the stability properties of fragmented condensates.

One might legitimately ask whether rising temperatures
above absolute zero, as T = 0 was assumed in what precedes,
destroy the fragmented condensate states. In the canonical
ensemble, the thermal average of the operators occurring in
the degree of fragmentation as defined in (7) is given by

〈Ô〉 = ∑N
γ=0

e
− Eγ

T

Z
〈Eγ |Ô|Eγ 〉, where the canonical partition

sum Z = ∑N
γ=0 e−Eγ /T and |Eγ 〉 are the eigenstates at energy

Eγ . We have verified that increasing the temperature to
very large values O(NU0) does not change the degree of
fragmentation F significantly; there is only a slight change

(on the subpercent level) for the parameter values used in
Fig. 2. The fragmentation considered herein is therefore also
not sensitive to finite-temperature effects.

In summary, the present study demonstrates that there exist
robust fragmented condensate many-body states in a single
trap, which share many features in regard to their stability
with single-condensate states, for which it is well established
that they are stable under (sufficiently small) perturbations.
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