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Identifying the interference effect in different harmonic-emission channels from oriented
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We investigate the effect of intramolecular interference in the high-order harmonic generation (HHG) from
oriented asymmetric diatomic molecules interacting strongly with a laser field numerically. We focus on the two-
center–interference-induced minimum in the two HHG channels of odd and even harmonics. As the interference
usually results in a well-defined minimum for symmetric molecules, the odd or even HHG spectra of asymmetric
molecules do not show a pronounced minimum in our simulations. We show that the interplay of different
recombination routes, arising from the asymmetry of the molecule, significantly influences the minimum. A
scheme is proposed to identify the interference effect in the odd versus even HHG spectra for diverse molecular
parameters.
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I. INTRODUCTION

High-order harmonic generation (HHG) has long been
an active research topic in intense laser-matter interaction
for its potential applications in molecular orbital imaging
[1] and attosecond physics [2]. The HHG process can be
well understood by the semiclassical [3] and quantum [4]
recollision models: (i) ionization of the active electron by
tunneling, (ii) propagation of the electron in the laser field,
and (iii) recombination of the electron into the bound state to
emit a high-energy photon.

In the last few decades, considerable efforts have been
devoted to investigating the HHG from symmetric molecules,
such as O2 [5], N2 [6], and H2

+ [7]. Lein and co-workers found
that the harmonic spectrum of H2

+ shows a striking minimum
[7]. Usually, this minimum can be read from the spectrum
readily as it is located in a remarkably suppressed region in
the HHG plateau. The position of the minimum is related to the
orientation of the molecule and this phenomenon is identified
as arising from intramolecular two-center interference. There-
after, this striking minimum has attracted great theoretical and
experimental interest [8–16] and has shown its significance in
the molecular orbital tomography procedure [1].

For asymmetric molecules, such as CO [17–21], HeH2+
[22–24], NF [25], and BF [26], the minimum in the HHG
spectrum has been less studied in comparison with symmetric
ones. Recently, it has been shown that the difference between
the recombination phases in different atomic centers plays
a nontrivial role in this minimum [27]. The Stark effect
originating from the permanent dipole [28,29] of the asym-
metric molecule significantly influences this minimum [30].
In addition, the minimum is also shown to be sensitive to
the valence orbital structure of the asymmetric molecule [31].
In the above studies, the minimum is associated with the
whole HHG spectrum of the asymmetric molecule, including
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both odd and even harmonics. The emission of odd and
even harmonics is one of the important characteristics of the
HHG from asymmetric molecules, which results from the
symmetry breaking. To understand the HHG mechanism of
the asymmetric molecule sufficiently, the property of these
two HHG channels of odd and even harmonics also needs to
be studied. In a previous paper with two-dimensional (2D)
numerical simulations [32], it was shown that the two HHG
channels of odd and even harmonics are subject to different
interference effects. Very recently, it was also shown that
through decoding odd-even harmonics, one can image the
orbital of the asymmetric molecule [33]. In this situation,
a detailed study of the interference minimum in odd versus
even HHG spectra, which is important in asymmetric orbital
imaging and can be used to judge the signs of the relevant
dipoles, is desired.

In this paper, we study the HHG from asymmetric model di-
atomic molecules by numerically solving the time-dependent
Schrödinger equation (TDSE) with full three-dimensional
(3D) simulations. We pay attention to the interference-induced
structure in the HHG spectra. Our simulations show that the
odd or even HHG spectrum of the asymmetric molecule does
not show a striking minimum in some cases. Our analyses
reveal that, generally, there are several different recombination
routes that contribute to the emission of odd or even harmonics,
with a route dominating in the emission. For a certain energy
region, however, as the dominating route is significantly
suppressed due to two-center interference, other routes that
are less influenced by the interference then become important
in the emission. The interplay of the contributions from
the different recombination routes washes out the striking
minimum that may exist in the odd or even HHG spectrum due
to two-center interference. In addition, as the asymmetry of the
molecule is relatively weak, the excited state can also play an
important role in the minimum. Since the effect of two-center
interference within asymmetric molecules can entangle with
other effects in the HHG of odd and even harmonics, we
propose a scheme to identify the interference effect in these two
HHG channels indirectly via the intersection of odd and even

053428-11050-2947/2013/88(5)/053428(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.053428


ZHANG, CHEN, JIANG, AND SUN PHYSICAL REVIEW A 88, 053428 (2013)

spectra at the same orientation angle for the strong asymmetry
of the molecule, as well as that of odd or even spectra at
different angles for the weak asymmetry.

The paper is organized as follows. We present our numerical
methods and discuss our main results in Sec. II. In Sec. III,
we introduce the scheme to identify the interference effect
in the HHG from asymmetric molecules. Section IV is our
conclusion.

II. NUMERICAL METHODS AND DISCUSSIONS

In this part, to explore the interference effect in the HHG
from asymmetric molecules, we first perform 3D recollision
simulations. These simulations allow us to identify the role
of the ionization process in the HHG. Because performing
3D full-quantum analyses of HHG is very time-memory
consuming, one-dimensional (1D) analyses are then performed
to study the role of the recombination process in the HHG.
Finally, based on the 1D and 3D results, the interference effect
for asymmetric molecules is discussed in detail through the
analyses of the HHG recombination routes.

A. 3D recollision simulations: Role of ionization

In the 3D simulations, we assume the molecular axis
is located in the xoy plane and the laser field is linearly
polarized along a direction parallel to the x axis. The
Hamiltonian of the asymmetric diatomic molecule studied
here is given by H (t) = p2/2 + V (r) + r · E(t) (h̄ = e =
me = 1). Here, E(t) = f (t)�exE sin ω0t is the external electric
field and �ex is the unit vector along the x axis. f (t)
is the envelope function. V (r) is the Coulomb potential
of the asymmetric molecule. We use the soft-core poten-
tial that has the following form: V (r) = −Z1/

√
ξ + r2

1 −
Z2/

√
ξ + r2

2 . Here r2
1 = (x − R1 cos θ )2 + (y − R1 sin θ )2 +

z2, r2
2 = (x + R2 cos θ)2 + (y + R2 sin θ )2 + z2. Z1 and Z2

are the effective charges, R1 = Z2R/(Z1 + Z2) and R2 =
Z1R/(Z1 + Z2). R = 2 a.u. is the internuclear separation.
ξ = 0.5 is the smoothing parameter, and θ denotes the angle
between the molecular axis and the laser polarization. Note
that if Z1 = Z2, the above Hamiltonian stands for a symmetric
molecule. In our calculations, we use a ten-cycle laser pulse
which is linearly ramped up for three optical cycles and then
keeps a constant intensity for seven additional cycles, similar to
that used in Ref. [34]. This pulse form allows one to minimize
the complications related to a time-varying pulse and to focus
on the mechanism of the HHG from the asymmetric molecule
that is subject to a particular intensity. It is a reasonable
approximation to the usual case of a long laser pulse. We
work with a grid size of 480 × 60 × 60 a.u. for the x, y, and z

axes, respectively. The coherent part of the HHG spectrum is
given by

F (ω,θ ) =
∫

〈ψ(t)|�ex · ∇V (r)|ψ(t)〉eiωtdt, (1)

where |ψ(t)〉 is the time-dependent wave function of the
Hamiltonian H (t) and ω is the emitted photon frequency.

To explore the role of the asymmetry in the HHG of
asymmetric molecules, in the following discussions, we focus
on two typical cases of Z1/Z2 = 2 and Z1/Z2 = 1.33. The

FIG. 1. (Color online) Harmonic spectra of a 3D asymmetric
molecule exposed to a strong laser field with I = 5 × 1014 W/cm2

and λ = 800 nm at (a),(c) θ = 0◦ and (b),(d) θ = 40◦. The odd (bold
black curves) and even (thin red curves) harmonic spectra are obtained
using (a),(b) Eq. (1) of the accurate expression and (c),(d) Eq. (2) of
the simulated recollision. The molecular parameters are shown at
the top of the panels. (e),(f) The corresponding odd |Godd(ω,θ )|2/ω4

of Eq. (7) (bold black curves) and even |Geven(ω,θ )|2/ω4 of Eq. (8)
(thin red curves) interference factors in dipoles. The dipole curves
are divided by a factor ω4 to compare with the spectra. Here, the
dashed arrows indicate the intersection of the odd and even spectra
and the solid arrows indicate the minimum in the odd-order simulated
spectra.

former implies a larger asymmetry and the latter denotes a
smaller one. In addition, to study the orientation dependence
of the odd and even HHG spectra from asymmetric molecules,
our discussions also concentrate on two typical cases of the
small angle of θ = 0◦ and the intermediate angle of θ = 40◦.
We mention that for the large angle of θ = 90◦, the even
harmonics disappear in the spectrum and the asymmetric
molecule behaves similarly to an atom in our simulations. For
comparison, the ground states of the asymmetric molecules
with different molecular parameters studied here have the
same ionization potential, Ip = 1.1 a.u. These ground states
are chosen as the initial states in solving the TDSE numerically
by means of the spectral method [35].

In the first rows of Figs. 1 and 2, we show the 3D HHG
spectra obtained using Eq. (1) for asymmetric model diatomic
molecules with different effective charges and orientation
angles. In our simulations, odd and even harmonics are well
resolved. In the paper, we will compare the odd and even
spectra. For clarity, we use bold or thin lines to link them.

Due to the two-center characteristic of the asymmetric
potential, one can expect that the effect of two-center inter-
ference will also induce a striking minimum in the odd-even
HHG spectrum from the asymmetric molecule, as it does
for the symmetric one H2

+ [7]. However, from the results
in Figs. 1(a) and 1(b) [and also in Figs. 2(a) and 2(b)], one
does not observe any minimum that can be readily attributed
to the geometrical two-center interference. What is the role of
the asymmetric two-center potential in the HHG of odd and
even harmonics? To answer this question, we first performed
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FIG. 2. (Color online) Same as Fig. 1, but for different molecular
parameters.

a 3D recollision simulation. We use the continuum electronic
wave packet generated from a symmetric molecule (H2

+ used
here) to recollide with the nuclei of the asymmetric one. The
spectra generated from this recollision are given by

Fs(ω,θ ) =
∫

〈0|�ex · ∇V (r)|ψsy(t)〉a∗
0 (t)eiωtdt, (2)

where |ψsy(t)〉 is the TDSE wave function of the symmetric
molecule with the ionization potential as the asymmetric one,
and a0(t) = 〈0sy |ψsy(t)〉 and |0sy〉 is the ground state of the
symmetric molecule. |0〉 and V (r) are associated with the
asymmetric molecule under study.

It should be mentioned that in Eq. (2), (i) the continuum
state components of the TDSE wave function |ψsy(t)〉 from
the symmetric molecule can be assumed to be orthonormal to
the ground state |0〉 of the asymmetric molecule. Because the
continuum states are far away from the nuclei, the influence
of the molecular potential on them is weak. One can expect
that the continuum states of the asymmetric molecule are also
similar to those of the symmetric one. (ii) The bound-state
components of |ψsy(t)〉 cannot be considered to be orthonormal
to the asymmetric ground state |0〉, since bound states are
near to the nuclei and are affected strongly by the molecular
potential, especially for lower bound states. This can influence
the simulated spectra using Eq. (2). To check this influence, we
have performed simulations with the exclusion of some lower-
bound-state components of the symmetric molecule, obtained
through the imaginary-time propagation, from the TDSE
wave function |ψsy(t)〉. This procedure generates the spectra
similar to those presented in Figs. 1 and 2, especially for the
plateau harmonics. We, therefore, expect that the bound-state
components of the symmetric molecule in |ψsy(t)〉 play a small
role in the plateau harmonics obtained using Eq. (2). (iii)
According to the three-step model [3,4], one can expect that
the asymmetric potential will play roles in all of the ionization,
propagation, and recombination processes of HHG. The use
of Eq. (2) implies that here we only consider the role of the
asymmetry in the recombination. For the closely related case of
high-order above-threshold ionization, it has been shown [20]

that the asymmetry is also very important in the ionization
process for some polar molecules. This is not accounted for
by Eq. (2). However, as is shown in the following, for the
present cases explored here, the asymmetry plays a small
role in the ionization process and significantly influences the
recombination.

The simulated spectra from Eq. (2) are shown in Figs. 1(c)
and 1(d) [and also in Figs. 2(c) and 2(d)], in which both odd
and even harmonics agree with the accurate TDSE results of
Eq. (1) in most of the energy region. However, in the simulated
odd-order harmonic spectra (the bold black curve), one can
see a broad suppressed region with a striking minimum, as
indicated by the solid arrows. This is similar to the case of
the HHG from the symmetric molecule [7] and is expected
to be associated with two-center interference. The agreement
between the accurate and the simulated spectra indeed implies
that the continuum-state electron wave packet generated from
the asymmetric molecule is similar to the symmetric one in
a wide energy region. For symmetric molecules, it has been
shown [1] that the continuum-state electronic wave packets
generated at different orientation angles are similar within a
vertical scaling factor. The above agreement suggests that the
conclusion also holds for the present asymmetric cases with
small internuclear distances at which the permanent dipole
movement is relatively weak. The reason is that in the tunneling
region, the laser field is so strong that it causes an important
distortion of the molecular potential. As a result, the molecular
structure plays a small role in the ionization process through
tunneling. This is one of the basic assumptions of the molecular
orbital tomography procedure using HHG [1,33]. However,
the disagreement between the accurate and the simulated
spectra in the suppressed region also suggests that there exist
some inherent differences. The differences show themselves
remarkably in the energy region where the interference effect
dominates. We will return to the 3D cases later.

B. 1D quantum analyses: Role of recombination

To understand this difference between the accurate and the
simulated spectra in Figs. (1) and (2), next we perform simu-
lations in 1D cases, where a full-quantum analysis of the HHG
from asymmetric molecules can be executed. The 1D asym-
metric Coulomb potential used here has the following form:
V (x) = −Z1/

√
0.5 + (x − R1)2−Z2/

√
0.5 + (x + R2)2. We

project |ψ(t)〉 on the eigenstates of the system and only
consider the continuum-bound transition. Then we have
F (ω,θ ) ≈ ∑

n

∫
dp[an(p,ω)〈n|�ex · ∇V |p〉]. Here, an(p,ω) =∫

dt[a∗
n(t)cp(t)eiωt ], an(t) = 〈n|ψ(t)〉, and cp(t) = 〈p|ψ(t)〉.

〈n|∇V |p〉 is the dipole moment between the continuum
eigenstate |p〉 and the bound eigenstate |n〉 of the field-
free Hamiltonian H0 = p2/2 + V (x) of the 1D asymmetric
molecule. Here, we only consider the contributions of the
ground and the first excited states to the HHG, i.e., the cases
of n = 0 and n = 0,1. In our extended simulations, higher
excited states contribute little to the HHG. Then we have

Fg(ω,θ ) ≈
∫

dp[a0(p,ω)〈0|�ex · ∇V |p〉] (3)
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for the ground-state channel and

Fgf (ω,θ ) ≈
∑
n=0,1

∫
dp[an(p,ω)〈n|�ex · ∇V |p〉] (4)

for the ground–first-excited-states channel. Our simulations
show that the ground state is mainly responsible for the HHG,
while the excited state plays a smaller role here. For the ground-
state channel given by Eq. (3), as discussed in Ref. [32], the
main contribution to odd (even) harmonics comes from the
continuum state |p〉 with oddlike (evenlike) “parity.” Then we
also have

F odd
g (ω,θ ) ≈

∫
dp

[
au

0 (p,ω)〈0|�ex · ∇V |pu〉
]

(5)

for the emission of odd harmonics and

F even
g (ω,θ ) ≈

∫
dp

[
a

g

0 (p,ω)〈0|�ex · ∇V |pg〉
]

(6)

for the emission of even harmonics. Here, |pu(g)〉 denotes
the continuum state |p〉 that has the ungeradelike (gerade-
like) parity, au(g)

0 (p,ω) = ∫
dt[a∗

0 (t)cu(g)
p (t)eiωt ] and c

u(g)
p (t) =

〈pu(g)|ψ(t)〉. We mention that while momentum eigenstates
(plane waves) in the strong-field approximation [4] have exact
parities, scattering states (continuum states) of asymmetric
molecules have no parity. However, as discussed in Eq. (2),
the influence of the molecular potential is weak on the
continuum electrons, and scattering states of asymmetric
molecules are similar to the symmetric ones, especially for the
continuum electrons with high energy. We therefore use
the terms of “geradelike” and “ungeradelike” to characterize
the continuum states of asymmetric molecules. By comparison
with Eq. (3), one can see that in Eq. (5), the contribution of
the evenlike-parity continuum states to the emission of odd
harmonics is omitted. The situation reverses for Eq. (6). Below,
we will compare the HHG spectra obtained using the above
expressions. One can expect that the comparison will provide
insights into the complicated HHG mechanism of asymmetric
molecules.

The relevant comparisons are shown in Figs. 3 and 4. In
Fig. 3, we plot the results obtained for the 1D asymmetric
molecule with the molecular parameters similar to those used
in Fig. 1. The odd and even harmonic spectra obtained using
Eq. (1) and their relevant dipoles 〈0|�ex · ∇V |pu〉 for odd
harmonics and 〈0|�ex · ∇V |pg〉 for even harmonics are shown
in the first row of Fig. 3. From Fig. 3(a), one can see that the
yields of the even harmonics (thin red curve) are one order of
magnitude higher than the odd harmonics (bold black curve) in
the plateau. In addition, the interference-induced minimum is
difficult to identify in the odd harmonics. These characteristics
are similar to the 3D results in Fig. 1(a) and the corresponding
2D results in Ref. [32]. By comparison, the relative yields of
odd versus even harmonics are well predicted by the relevant
dipoles presented in Fig. 3(b) where the thin red curve of the
even dipole, 〈0|�ex · ∇V |pg〉, is remarkably higher than the bold
black curve of the odd one, 〈0|�ex · ∇V |pu〉. Another charac-
teristic observed in Fig. 3(b) is that the bold black curve of the
odd dipole shows a strikingly suppressed region with a sharp
minimum. This characteristic can be expected to originate from
the two-center characteristic of the molecular potential and is
absent in the accurate odd spectrum in Fig. 3(a). However,

FIG. 3. (Color online) Harmonic spectra and relevant dipoles of
a 1D asymmetric molecule exposed to a strong laser field with I =
5 × 1014 W/cm2 and λ = 800 nm. The molecular parameters are
shown at the top of the panels. (a) The accurate odd (bold black curves)
and even (thin red curves) harmonic spectra obtained using Eq. (1).
(b) The relevant dipoles |〈0|∇V |p〉|2/ω4 of the model molecule with
|p〉 being the oddlike parity |pu〉 (bold black curve) and evenlike
parity |pg〉 (thin red curve) continuum eigenstates of the asymmetric
molecule. The continuum energy Ep of |p〉 is related to the harmonic
ω using the disperse relation Ep = ω − Ip . (c),(d) Comparison of
the spectra obtained using Eq. (5) of the ground-state–|pu〉 channel,
Eq. (6) of the ground-state–|pg〉 channel (bold black curves), Eq. (3)
of the ground-state–all-continuum-states channel (thin red curves),
and Eq. (1) of the accurate expression (dashed blue curves). (e),(f)
Plot of the spectra obtained using Eq. (3) of the ground-state channel
(thin red curves) and Eq. (4) of the ground–first-excited-states channel
(bold black curves). Here, the solid arrows indicate the minimum in
the spectra of Eq. (5).

when we calculate the spectrum using Eq. (4) where only the
contribution from the continuum states with oddlike parity is
considered, the characteristic is reproduced in our simulations.

FIG. 4. (Color online) Same as Fig. 3, but for different molecular
parameters.
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In the second row of Fig. 3, we plot odd (even) HHG
spectrum obtained from Eq. (5) [Eq. (6)] using bold black
curves. Because the odd (even) spectrum is obtained with
considering the transitions between the ground state and
continuum states of oddlike (evenlike) parity, we call it odd
g-ungerade (even g-gerade) spectrum. For comparison, the
accurate spectrum obtained from Eq. (1) and that obtained
from Eq. (3) with all continuum states are also plotted using
dashed blue and thin red curves, respectively. It is obvious
that the even harmonics obtained using different expressions
in Fig. 3(c) are quite similar to each other in the plateau.
This similarity indeed implies the applicability of Eq. (6)
in describing the strong emission of even harmonics and the
dominating recombination route from the ungeradelike-parity
continuum state to the ground state in this emission.

As for odd harmonics in Fig. 3(d), the bold black curve
presents a strikingly suppressed region around the 37th har-
monic order, in agreement with the behavior of the odd-dipole
curve in the upper panel, as indicated by the solid arrow. In
this suppressed region, it differs from the other two curves
significantly. In other regions, however, these three curves are
also comparable. This difference between the spectra obtained
using different expressions in Fig. 3(d) tells that in the region
where the contribution from the oddlike-parity continuum
states is suppressed significantly due to the interference effect,
the evenlike-parity continuum states become important in
the emission of odd harmonics. In other words, due to the
strong suppression on the recombination route related to the
oddlike-parity continuum state described by Eq. (5), another
route from the evenlike-parity continuum state to the ground
state dominates in the emission of the odd harmonics in a
specific energy region.

It should be stressed that for a symmetric molecule with a
gerade-parity initial state, the gerade-parity continuum states
do not contribute to the emission of odd harmonics since
the transition matrix element along the laser polarization �e
is zero, i.e., 〈0gerade

sy |�e · r|pgerade
sy 〉 = 0. This is different from

the asymmetric case discussed above.

C. HHG recombination routes for asymmetric molecules

More generally, for a system with the symmetric Coulomb
potential, it is well known that the odd harmonics are emitted
as the electron ionizes from and recombines with the same
initial state that has a definite parity [4]. We denote the odd-
harmonic route along the laser polarization �e simply using
〈p|�e · r|0〉i〈0|�e · r|p〉r . The former matrix element 〈p|�e · r|0〉i
is related to the ionization process and the latter one 〈0|�e · r|p〉r
is related to the recombination process in the HHG. Note that
for symmetric molecules, only as the initial state |0〉 and the
continuum state |p〉 have different parities, the values of the
matrix elements are not zero.

For the asymmetric molecule with 1sσ initial state |0〉 =
|0g〉 + |0u〉 that includes both gerade |0g〉 and ungerade
|0u〉 components studied here, there are two HHG routes
contributing to the emission of odd harmonics [33]. The
first one corresponds to the gerade-parity component |0g〉
of the initial state and can be denoted using Lo

gg = 〈pu|�e ·
r|0g〉i〈0g|�e · r|pu〉r . This route is included in Eq. (5). The
second one is related to the ungerade-parity component |0u〉

of the initial state and can be denoted simply using Lo
uu =

〈pg|�e · r|0u〉i〈0u|�e · r|pg〉r . This route is omitted in Eq. (5).
When the first route Lo

gg dominates in the emission in most
of the energy region, the second route Lo

uu shows itself in
a specific energy region where the first one is significantly
suppressed due to two-center interference. As a result, the
interference-induced minimum arising from the first route
is covered up by the contributions of the second route, as
discussed in Fig. 3(d).

With the discussions, we return to 3D cases. In our 3D
HHG recollision simulations, the continuum-state electron
wave packet is generated from the symmetric molecule with
the initial state having a gerade parity. Therefore, the second
route Lo

uu discussed above, which is related to the tunneling
ionization of the electron from the ungerade component, is
closed. This implies that only the first route Lo

gg plays a role
in the HHG recollision simulations. Consequently, we observe
the striking interference minimum in the odd simulated spectra
in the second rows of Figs. 1 and 2.

Similarly, the even harmonics are emitted as the electron
ionizes from and returns to different components of the
initial state. These relevant routes can be denoted sim-
ply using Le

gu = 〈pu|�e · r|0g〉i〈0u|�e · r|pg〉r and Le
ug = 〈pg|�e ·

r|0u〉i〈0g|�e · r|pu〉r . In this case, the route Le
gu, which is

included in Eq. (6) and which is corresponding to the ionization
of the electron from the gerade component of the initial state,
still dominates in the emission. The dominating route is so
strong that the other route, Le

ug , which is omitted in Eq. (6)
and is related to the ionization from the ungerade component of
the initial state, does not show itself basically in the emission of
even harmonics, as shown in Fig. 3(c). From the comparisons
in Fig. 3(c), it is also safe to say that in comparison with the
gerade component |0g〉, there is only a small fraction of the
ungerade component |0u〉 of the asymmetric initial state to
tunnel out from the asymmetric potential in the HHG process.
As a result, the route Le

ug has a small amplitude and thus
contributes little to the emission of even harmonics.

In the last row of Fig. 3, we plot the odd and even harmonics
obtained using Eq. (4) that considers the contributions of both
the ground and the first excited states in bold black curves,
which are very near to the thin red curves of the results
of Eq. (3) where only the ground state is considered. This
observation indicates that for the present case with the strong
asymmetry, the main contribution to harmonics comes from
the ground state.

In Fig. 4, we plot the HHG spectra and relevant dipoles of
a 1D asymmetric molecule with molecular parameters similar
to those used in Fig. 2. Despite the different parameter regions
explored, we draw a similar conclusion from Fig. 4 as that
from Fig. 3. The remaining difference between them is that
in Fig. 4(a), with the relatively weak asymmetry, the yields
of odd and even harmonics of the asymmetric molecule are
close to each other, except for some oscillations in the even
spectrum. In addition, the odd-harmonics route Lo

uu seems to
play a smaller role in Fig. 4(d) than in Fig. 3(d), while the
excited state shows a more important role in Fig. 4(f) than in
Fig. 3(f).

We mention that (i) the minimum in Fig. 4(d) is below
the ionization threshold. The interference model cannot work
well in the energy region where the multiphoton effects are
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expected to make an important contribution to harmonics.
However, as seen in Fig. 4(b), the bold black curve of the odd
dipole also shows a remarkable minimum, which is associated
with two-center interference and is very near to the ionization
threshold. Because of the close relation between dipoles and
spectra discussed in Ref. [32], we expect that the interference
effect also plays an important role in the minimum observed
in Fig. 4(d). (ii) To check the important influence of the HHG
recombination route Lo

uu on the interference minimum relating
to the route Lo

gg , we have explored a wide parameter region
in our extended simulations. (iii) The above discussions for
the HHG recombination routes of asymmetric molecules also
show that as the ionization process is not sensitive to the
molecular structure, the recombination process mostly does
so, similar to the symmetric cases [1]. (iv) As the HHG
recombination routes are analyzed in detail in the 1D cases
here, a 3D full-quantum analysis of HHG from asymmetric
molecules, where the orientation effect can also be included,
is highly desired.

Despite some limitations, from the above analyses, we ar-
rive at the conclusion that for oriented asymmetric molecules,
the disappearance of the striking interference minimum in
odd or even spectra arises essentially from the inherent
asymmetry of the molecule. This minimum is closely related
to the structure of the asymmetric molecule [32,33]. The
experimental procedures for orienting a polar molecule have
also been reported recently [36,37], which is believed to have
greatly stimulated relevant HHG experiments in the following
years. Below, we will explore a scheme to “evaluate” this
interference minimum in the odd-even HHG spectra.

III. SCHEMES TO IDENTIFY THE
INTERFERENCE MINIMUM

In Ref. [32], the analytical expressions for the interference
factors in the dipoles relating to the emission of odd and even
harmonics have been given as follows:

Godd(ω,θ ) = a1 cos(pkR1 cos θ ) + a2 cos(pkR2 cos θ ) (7)

for the emission of odd harmonics and

Geven(ω,θ ) = a1 sin(pkR1 cos θ ) − a2 sin(pkR2 cos θ ) (8)

for the emission of even harmonics. Here, it has been
assumed that a1 = Z1/B, a2 = Z2/B, B =

√
Z2

1 + Z2
2 , and

pk = √
2ω. In the last row of Fig. 1, we show the analytical

results for odd and even interference factors using bold black
and thin red curves. One can observe that the intersection of
the relevant spectra in Fig. 1(a) is near to the 20th harmonic
order, as indicated by the dashed arrow. This agrees with the
intersection of the odd and even factors in Fig. 1(e). In Fig. 1(b),
the intersection of the harmonic spectra is also located at
an order similar to that predicted by the analytical model in
Fig. 1(f). In particular, from Figs. 1(e) and 1(f), it can be seen
that the minimum in the odd interference factor (bold black
curve) is located at a position near to the intersection of the odd
and even interference factors. Therefore, from the intersection
of the odd and even harmonic spectra, one can predict the
intersection of the relevant interference factors and roughly
evaluate the position of the interference-induced minimum.

FIG. 5. (Color online) Odd-harmonic spectra obtained us-
ing Eq. (1) (a)–(c) and the corresponding interference factors
|Godd(ω,θ )|2/ω4 of Eq. (7) (d) for a 3D asymmetric molecule exposed
to a strong laser field with I = 5 × 1014 W/cm2 and λ = 800 nm at
θ = 0◦ (bold black curves), θ = 40◦ (thin red curves), and θ = 50◦

(dashed blue curves). The molecular parameters are shown at the top
of the panels.

The interference factors relating to the spectra in Figs. 2(a)
and 2(b) are presented in the last row of Fig. 2. One can
see that when the asymmetry of the molecule is relatively
weak, the intersections of the spectra are not easy to identify
because the yields of odd and even harmonics are comparable
here. In this situation, how can one “evaluate” the interference-
induced minimum in the spectra?

In Fig. 5, we plot the odd HHG spectra and the relevant
interference factors of the asymmetric molecule with Z1/Z2 =
1.33 discussed in Fig. 2 at diverse orientation angles of
θ = 0◦, θ = 40◦, and θ = 50◦ using bold black, thin red,
and dashed blue curves, respectively. For the model molecule
with relatively weak asymmetry, the even HHG spectra at
different angles are similar within a vertical scaling factor,
but the odd spectra are sensitive to the angle. Therefore, the
intersection of odd spectra at different angles can be clearly
pointed out. Comparing the intersections of the odd spectra in
Figs. 5(a)–5(c) with those of the related interference factors in
Fig. 5(d), one can see that the intersection of spectra at θ = 0◦
and θ = 40◦ is located at about the 29th harmonic order, and
so is that of the two relevant interference factors. Similarly, the
intersection of spectra at θ = 0◦ and θ = 50◦ occurs at about
the 34th order, and that of the two corresponding interference
factors is around the 35th order. The position of the intersection
in Fig. 5(c) also shows the agreement with that of the
corresponding interference factors. Around the intersection,
the curves of the interference factors at two different angles
θ1 and θ2 go through their respective minima. These minima
are also basically corresponding to the harmonics orders at
which the relative yields of the harmonics at θ1 and θ2 have
the maximal absolute values. Therefore, from the intersection
phenomena for the odd spectra at two different angles, one can
also approximately evaluate the interference minima in these
spectra. Similar procedures have been proposed for symmetric
molecules such as CO2 [14] and discussed for the asymmetric
molecule CO [33].
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FIG. 6. (Color online) Same as Fig. 5, but for different molecular
parameters.

In Fig. 6, we also compare the HHG spectra of the asym-
metric molecule with the stronger asymmetry of Z1/Z2 = 2
at different orientation angles. Nevertheless, in this case, the
odd-harmonic spectra seem not to be sensitive to the angle θ ,
and it is hard to tell the position of the intersection of the
spectra at different angles. So the above procedure may not be
suitable for an asymmetric molecule with strong asymmetry.

Now, we can summarize our schemes for evaluating the
interference-induced minimum through the intersection of the
HHG spectra of asymmetric molecules as two complementary
procedures: one is predicting the minimum from the inter-
section of odd and even spectra at the same angle, which is
suitable for the molecule of strong asymmetry, and the other is

forecasting the minimum from the intersection of odd or even
spectra at different orientation angles, which can be used for
the molecule of weak asymmetry.

IV. CONCLUSION

In summary, we have investigated the interference effect in
the HHG from asymmetric molecules with varied parameters.
Our 3D simulations show that the two HHG channels of
odd and even harmonics are significantly affected by dif-
ferent interference effects, in agreement with the previous
2D predictions. Our further analyses show that each HHG
channel of odd and even harmonics follows several different
recombination routes arising from the intrinsic property of
the asymmetric molecule. It is the interplay of the different
routes in the HHG process that leads to the difficulty in
identifying the interference-induced minimum in the odd or
even HHG spectrum from the asymmetric molecule. In this
situation, we propose a scheme to “evaluate” the interference
minimum using the intersection of the odd versus even HHG
spectra at the same or different orientation angles. The results
give suggestions on imaging the structure of the asymmetric
molecule using HHG.
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