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We propose a generalized Floquet Hamiltonian method that is applicable to laser-induced molecular dynamics
including nonperiodicity arising from time dependence of laser parameters and nuclear kinematic effects. Effects
from these two types of nonperiodicity are formulated as generalized nonadiabatic transitions and treated in
a unified manner. In this unified treatment, the field-induced dynamics of a molecule is mapped onto an
effective nonadiabatic dynamics. An analog of the gradient approximation to the field-free nonadiabatic dynamics
thus naturally follows and the relevant validity conditions are also formulated. Full-quantum-type numerical
implementation of this method is applied first to the field-induced dynamics of H2

+/D2
+ within a two-state

model and second to that of LiF based on the ab initio potential-energy surfaces. With the H2
+/D2

+ calculations,
we confirm the validity of our formalism by reproducing the previously reported dissociation probabilities, which
represent the phenomena of bond softening and bond hardening, including the “inverse bond-hardening effect”
that has been identified in the present study. In the calculations of LiF, we realize full generalized ab initio
Floquet analysis including the intrinsic nuclear derivative coupling. The effects of nuclear derivative couplings
are assessed by directly comparing the calculations with and without the couplings. The present method, giving
a simple and clear view of field-induced and kinematically induced nonadiabatic transitions, appears to be
promising for the study of ab initio laser-induced dynamics of a system with nuclear derivative couplings.
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I. INTRODUCTION

Laser-induced dynamics of molecules [1–3] has been a
subject of intense research [4–6], reflecting its importance in
understanding the nature of chemical bond formation and as
a promising means for applications such as wave-packet engi-
neering for chemical reaction control [7]. Recent developments
in experimental techniques have achieved, for example, control
over laser pulses with subfemtosecond resolution, enabling
real-time observation of electronic dynamics in molecules
[8–10]. Theoretical studies in this respect, on the other
hand, still suffers from difficulties due to the nonperturbative
nature of photon-molecule interactions, and indeed accurate
calculations of laser-induced electron dynamics in a molecule
are still a hard task even for diatoms or triatoms [11–15].
Since the studies of chemical reactions in the laser field [7,9]
necessarily involves the dynamics of nuclei, full quantum-
mechanical treatment of entire electron-nucleus dynamics, in
particular, are prohibitively difficult except for the simplest
molecules such as H2

+ [16,17].
However, a part of the difficulties can be circumvented if

one can approximate the nuclear dynamics by a quasiclassical
method on effective potential-energy surfaces (PESs), just
in analogy to field-free chemical dynamics [18–22]. In this
respect the field-induced PES [23,24], which is obtained
from the Floquet formalism [23–26], has been known as
a corresponding notion of the field-free PES. In fact, the
quasiclassical approximation of nuclear dynamics on the
field-induced PES has been applied [27–29] to successfully
describe the field-induced dynamics. Most notably, two
fundamental mechanisms, the bond-softening [30–32] and
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the bond-hardening [29,33], have been clearly explained in
terms of quasiclassical dynamics. However, the validity of
the Floquet-based analysis is ambiguous when the exact
periodicity (of the electronic Hamiltonian) is broken due to
the nonperiodicity of the laser field and/or nuclear kinematic
effects. Therefore the validity and its associated conditions
should be theoretically established for the Floquet method to
be safely applied to such aperiodic cases.

Another crucial effect to be considered in nuclear dynamics
of molecules is intrinsic nonadiabatic transitions due to the
nuclear derivative (kinematic) couplings. It is then expected
that the interplay of field-induced deformation of PESs and
the intrinsic nonadiabatic effects should lead to richer variety
of dynamics, which is indeed realized as the dynamical Stark
control in Ref. [1]. Inclusion of nuclear nonadiabatic effects in
the Floquet analysis is therefore critical for the study of field-
induced nonadiabatic dynamics. Both the nuclear kinematic
effects and nonstationary laser fields introduce nonperiodicity
in the electronic Hamiltonian, thereby breaking the stationarity
of electronic Floquet states. Ho and Chu are the first who
incorporated those nonstationarities of the Floquet states as
generalized nonadiabatic transitions among them [34].

In order to make the theoretical ground of the Ho and Chu
formalism more robust and widen the applicability range,
we here restructure (reconstruct) the generalized Floquet
Hamilton method by means of the two-time formalism of
Pesikin and Moiseyev [35] [or what theses authors call (t,t ′)
formalism] with appropriate modifications. With this general-
ized Floquet Hamiltonian method we treat electron-nucleus
coupled chemical reaction dynamics under nonstationary
laser fields controlled with time-dependent parameters. We
also develop a numerical algorithm that enables unified and
simultaneous calculations of all those kinds of nonadiabatic
transitions.
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The theory thus implemented is applied to field-induced
bond dynamics mainly to see how it works. We first calculate
H2

+ and its isotope D2
+, using a modeled Hamiltonian without

nuclear derivative couplings, to verify the present formalism.
We will also examine whether this approach can provide
clearer insights into the underlying mechanisms such as bond
softening [30–32] and bond hardening [29,33]. We next treat
a problem in which the intrinsic nuclear derivative couplings
are explicitly involved. We are particularly interested in such
systems where the nuclear kinematic effects play an essential
role in a dissociation process. Such a system can be found,
for example, in typical ionic bound diatomics, such as LiF,
in which the lowest ionic and covalent PESs have an avoided
crossing. We calculate ab initio PESs and matrix elements of
LiF to perform dynamical calculations with all nonadiabatic
effects fully taken into account. These results all show in the
end that the present theory is promising as a general method for
unified treatment of field-induced and intrinsic nonadiabatic
transitions.

The organization of this paper is as follows; We first
formulate the theory and method in Sec. II. Numerical
calculations of H2

+/D2
+ and LiF are then discussed in Secs. III

and IV, respectively. The paper concludes in Sec. V.

II. EXTENDED FLOQUET ANALYSIS

In this section, we formulate a generalized Floquet Hamil-
tonian method with use of two timelike variables, originally
developed by Peskin and Moiseyev [35].

A. Two-time formalism of quantum dynamics

Let us begin with the time-dependent Schrödinger equation

ih̄
∂

∂t
|ψt 〉 = Ht |ψt 〉, (1)

where |ψt 〉 is the state vector of the system. Up to this point,
no restriction is imposed on the time dependence of the
Hamiltonian Ht . The state vector |ψt 〉 is then extended to a
function of two time variables |ψ̃t,s〉, which is related to the
original or the physical state, by

|ψ̃t,s〉|t=s = |ψt 〉. (2)

The Schrödinger equation for the extended state is then given
by (

ih̄
∂

∂t
+ ih̄

∂

∂s

)
|ψ̃t,s〉 = Ht |ψ̃t,s〉 (3)

or, equivalently,

ih̄
∂

∂t
|ψ̃t,s〉 = Ht,s |ψ̃t,s〉 (4)

with the Floquet-type operator Ht,s ≡ Ht − ih̄ ∂
∂s

.

B. Formulation of quasiperiodic quantum dynamics

Now we assume the Hamiltonian to be of quasiperiodic
property. In so doing, our formalism deviates from that in
Ref. [35]. We first introduce an extended Hamiltonian H̃t,s

that is dependent on the two time variables. It has a formal

periodicity in the second variable s in the sense

H̃t,s+T = H̃t,s , (5)

where the fundamental period T is assumed to be a fixed
constant.1 The t-variable dependence of the extended Hamil-
tonian H̃t,s is arbitrary except that it is assumed to have a
time scale Tnp (np stands for nonperiodic) much longer than
T ( T

Tnp
� 1) so that the Hamiltonian Ht is quasiperiodic in

the sense Ht+T = Ht + O( T
Tnp

). The physical Hamiltonian is

related to H̃t,s by

Ht = H̃t,s |s=t . (6)

An example of the Hamiltonian of this property is that of a
system under a time-dependent optical field,

Ht = H0 − μ · εE(t) cos ωt, (7)

where H0 is the time-independent part, μ and ε are the dipole
operator and field polarization vector, respectively. The field
amplitude E(t) varies slowly with the variable t over multiple
optical periods. One can then construct a two-time counterpart
of this Hamiltonian as

H̃t,s = H0 − μ · εE(t) cos ωs, (8)

which has formal periodicity in the variable s for a fixed value
of t , and is related to the original Hamiltonian by Eq. (6).

Let Rt collectively represent slowly varying system pa-
rameters. It can be readily seen that a two-time extended
Hamiltonian of the form H̃s(Rt ), which is periodic in the
variable s and dependent on the variable t only through Rt ,
has the same type of periodicity. The parameters most relevant
for the later discussions are the nuclear positions, represented
by a collective vector R = (R1,R2, . . . ,RN )T , with each RI

being the position of I th nucleus. The other examples are laser
parameters such as the field amplitude and the polarization,
which are formally represented as ζμ [see Eq. (13)].

In this paper, laser frequency ω is assumed to be a constant,
although it can also be among time-dependent parameters as
in the case of chirped pulse. Extension of our formalism to
such more general cases is discussed in Appendix A.

Substituting the parametrized Hamiltonian H̃s(Rt ) into
Eq. (4), the Floquet-type operator becomes Hs(Rt ) =
H̃s(Rt ) − ih̄ ∂

∂s
, which is now a true Floquet operator in the

sense that it has the exact periodicity in the variable s. It thus
follows that the eigenstates of this Floquet operatorHs(Rt ) are
also periodic in the variable s. We define parametrized Floquet
states

Hs(Rt )|�α(s);Rt 〉 = λα(Rt )|�α(s);Rt 〉, (9)

where λα(Rt ) is the αth Floquet quasienergy. Restricting our
attention to the discrete spectrum, we can further impose
mutual orthonormality with respect to the inner product 〈〈·〉〉
defined as

〈〈u|v〉〉 ≡
∫ T

0

ds

T
〈us |vs〉, (10)

1This restriction can be lifted to allow frequency modulations as is
shown in Appendix A.
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where T is the fundamental period as indicated in
Eq. (5).

We now consider an electron-nucleus coupled system. We
denote the two-time extension of the total state as 	̃t,s . The
corresponding Schrödinger equation, in the nuclear coordinate
representation, becomes

ih̄

(
∂

∂t
+ ∂

∂s

)
〈R|	̃t,s〉 =

[∑
I

1

2MI

[
h̄

i

∂

∂RI
− QI

c
A

]2

+Unuc(R,t) + H̃ ele
s (Rt )

]
〈R|	̃t,s〉,

(11)

where 〈R| is the bra vector associated with the position
eigenstate of nuclei |R〉, MI and QI are the mass and charge of
the I th nucleus, and Unuc(R,t) is the nuclear potential term. A
is the vector potential. Throughout this paper, optical fields are
treated within the long-wavelength approximation. H̃ ele

s (Rt )
is the electronic Hamiltonian including electron-nucleus in-
teractions. We then define the Floquet states {|�α(s);Rt 〉}
as the eigenstates of the electronic Floquet operator Hele ≡
H̃ ele − ih̄ ∂

∂s
. The parameter set Rt in this problem therefore

includes nuclear coordinate in addition to laser parameters.
The total state 	̃t,s is then expanded in the form

|	̃t,s〉 =
∑

α

∫
dR|R〉|�α(s);Rt 〉χα(R,t), (12)

where χα(R,t) is the nuclear wave function associated with
the electronic state |�α(s);Rt 〉. Then the coupled Schrödinger
equations for χα(R,t) become

ih̄χ̇α(R) =
∑

I

1

2MI

∑
β

([
h̄

i

∂

∂RI
− QI

c
A − ih̄X

]2)
αβ

χβ

+Unuc(R)χα + λαχα − ih̄
∑

μ

ζ̇ μ
∑

β

X (ζμ)
αβ χβ,

(13)

where XI
αβ ≡ 〈〈�α| ∂

∂RI
|�β〉〉 are the nuclear derivative cou-

pling terms, while X (ζμ)
αβ ≡ 〈〈�α| ∂

∂ζμ |�β〉〉 are nonadiabatic
coupling terms that are associated with laser parameters ζμ.

In this paper, the notion of (non)adiabaticity is meant to
be the (non)stationarity of the Floquet states. Under the exact
periodicity and in the absence of nuclear derivative couplings,
the Floquet theorem ensures the stationarity of Floquet states.
Conversely, any deviation from the periodicity can cause
transitions among the Floquet states, which are, in our present
formalism, uniformly treated as the generalized nonadiabatic
transitions [see the first and the last terms in the right-hand
side of Eq. (13)].

Equation (13) is basically similar to Eq. (12) in Ref. [34],
as it should be. However, the present formalism brings about
some key notions and quantities in more definite ways. Some
of the examples are the formal periodicity of the Floquet
operatorHs(Rt ) and the formal definition of the inner product,
Eq. (10). Both are defined under a fixed value of t , and
hence are independent of the t dependence of parameters Rt .
This formal independence ensures broader applicability of the
present formalism. In fact it is formally applicable even in the

cases with poor periodicity, T/Tnp ∼ 1.2 In practice, however,
as nonperiodicity T/Tnp grows, nonadiabatic contributions in
Eq. (13) become larger, and hence the advantages of Floquet
state expansion diminish. In this regard, the quasiperiodicity
in our formalism is not a core assumption but a requirement
for an effective use of this method.

In the present formalism, the Floquet-type analysis is
applied to the electronic Hamiltonian Hel , but not to the
total Hamiltonian. As a consequence, the electronic states
are expanded in the (parametrized) electronic Floquet basis,
which are the eigenstates of the electronic Floquet operator.
It thus follows that the eigenvalues are real if possible
ionization processes are ignored. If, on the other hand, we
used the total Hamiltonian (including the nuclear kinetic part)
in constructing the Floquet Hamiltonian, the total state would
be expanded in the electron-nucleus coupled Floquet basis.
The eigenvalues would be complex-valued reflecting finite
dissociation rates. This latter type of treatment has been studied
[33,36,37] to reach many important results including lifetime
analysis of bond hardening [33], time-independent analysis
of photodissociation [36], and discussions on the exceptional
points which induce intriguing quantum dynamics [37]. In the
present work, however, we take the former approach to take full
advantages of the well-established formalism of nonadiabatic
dynamics.

C. Physical observables

The two-time extended state |ψ̃t,s〉 bears arbitrariness in
the variable s. In the dynamical calculations, an arbitrariness
exists in the s dependence of the initial (t = 0) extended-state
vector, |	̃t=0,s〉, which can be set to any function as long as
the extended state equals the physical initial state vector |	0〉
at s = 0, that is, |	̃t=0,0〉 = |	0〉. For example, two extreme
choices are |	̃0,s〉 = |	0〉δ(s) and |	̃0,0〉 = |	0〉 (independent
of s).

The s dependence can be fixed for the sake of convenience
in actual calculations. This arbitrariness, however, should not
affect the final result as far as the “physical observables” are
concerned, which are quantities obtained from the physical
state vector |	̃t,t 〉. It is then clear from the above two extreme
choices that the population of an individual Floquet state is
not a physical observable and is indeed affected by the choice
of the s dependence of an initial state. In order to proceed,
we recall that for any Floquet state |�α(s)〉 with quasienergy
λα , scalar multiplication of e−inωs yields another Floquet state
with a quasienergy λα − nh̄ω, which is hereafter referred to
as an “nω shift” of the original one. We also describe any two
Floquet states to be “distinct” if one of them is not an nω shift of
the other. To obtain physical observables related to the Floquet
state population, we consider the following summation over
nω shifts:

ξα(R,t) =
∑

n

e−inωtχα−nω(R), (14)

2This is in contrast to the derivation of Ref. [34], in which smallness
of t dependence is explicitly assumed in formulation [see derivation
of Eq. (12) of Ref. [34]].
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which is the projected amplitude of physical state vec-
tor 〈R|	̃t (s)〉|s=t on the Floquet eigenstate at s = t ;
|�α(s);Rt 〉|s=t , and is a physical observable. Taking square
and neglecting the fast oscillating components (or equivalently,
taking an average over one optical cycle), we obtain

ρ[α](R,t) =
∑

n

|χα−nω(R)|2, (15)

where the subscript [α] indicates that the state α and its all nω

shifts are not mutually distinguished.

D. On the validity of quasiclassical approximation

Having formulated a generalized Floquet Hamiltonian
method, we examine the validity of the gradient approximation
on quasienergy surface (QES)3—an approximation for the
nuclear dynamics by classical dynamics of a pointlike particle
driven by the minus of the gradient of a single QES.

Using a formal theory of mixed quantum classical represen-
tation of nonadiabatic dynamics [38] developed in Ref. [39]
(also see Appendix B) [40], the effective force acting on nuclei
is given as

Feff ≈ 〈�α(t);Rt |
(

−∂Hel

∂R

)
|�α(t);Rt 〉, (16)

provided that the effects of nonadiabatic transitions are
negligible. Further assuming that the time scale of nuclear
dynamics is large compared to the fundamental period T , we
can take the cycle average of Eq. (16) to obtain

Feff ≈ 〈〈�α(t);Rt |
(

−∂Hel

∂R

)
|�α(t);Rt 〉〉 = −∂λα(Rt )

∂R
,

(17)

which is the gradient of QES.
From this derivation, we obtain three validity conditions for

the gradient approximation: (a) smallness of nonadiabaticity
(see Appendix B for details), (b) longer time scale of nuclear
dynamics, and (c) absence of purely quantum-mechanical
effects, such as tunneling, the last one being the assumption in
the discussions in Ref. [39].

Conversely, the gradient approximation breaks down
around avoided crossings on QESs, where strength of the
nonadiabatic coupling becomes large compared to the dif-
ference of adjacent quasienergies. Avoided crossings of QESs
in the weak-field limit typically occur around resonant points,
where the energy difference of two dipole-coupled adiabatic
states is equal to nh̄ω with n being an integer (referred to as
nω resonances). Resonant points, along with intrinsic avoided
crossings on the original field-free PESs, are to be treated with
special care in the following analysis.

3In this paper, in order to emphasize the term Floquet quasienergy,
we use the term QES, whereas the term “field-induced PES” seems
to be more common in the literature.

III. APPLICATIONS TO THE FIELD-INDUCED BOND
DEFORMATION OF H2

+ AND D2
+

To verify the theory presented above, we have implemented
Eq. (13) in a computational scheme to actually obtain the
extended wave function 	̃t,s . We first examine the method
with the field-induced dynamics of H2

+ and D2
+, in which

no nuclear derivative coupling is involved, and then in the
next section we present a unified treatment of field-induced
nonadiabatic dynamics and the intrinsic one due to the nuclear
kinetic couplings in the LiF molecule. Most of the technical
details described in this section, except for the potential
functions and coupling elements, are also applied to the study
of LiF in the next section.

A. Systems and computational methods

The field-induced dynamics of H2
+ and D2

+ has been
intensively studied in the literature and hence the properties
are well known to serve as reference data. For the simplest
assessment of the method, we use the two-state model
proposed in Ref. [41]. The two-state models are known to
sufficiently reproduce the essential effects in the field-induced
bond dynamics: bond softening and bond hardening. We can
therefore check if these two fundamental effects are correctly
treated in the present method. The R-dependent electronic
states are denoted as |j ; R〉, with either j = g or j = u

corresponding to the gerade and ungerade states, respectively.
The molecular orientation is fixed so as the molecular axis is
parallel to the polarization vector of the applied laser in, say,
the x axis, and we concentrate only on the one-dimensional
vibrational motion. The Schrödinger equation is

ih̄
∂

∂t
	α(R) =

∑
β

[
− h̄2

2M

∂2

∂R2
δαβ + H ele

αβ (R,t)

]
	β(R),

(18)

where M is the reduced mass of the nuclear relative motion
and H ele is the electronic Hamiltonian given as

H ele(R,t) =
(

Ug(R) −μ(R)E(t) cos(ωt)
−μ(R)E(t) cos(ωt) Uu(R)

)
(19)

with E(t) cos(ωt) being the electric field, and μ(R) is the
dipole matrix element between the g and u state. Here the
electric-field amplitude E(t) is chosen to be of a single
Gaussian form with the full width half maximum (FWHM)
being 150 fs; E(t) = E0 exp[−( t−tc

tw
)2] with tc = 162.15 fs and

tw = 90.08 fs. The effective potential and the dipole matrix
element are, following Ref. [41], given as

Ug(R) = K{exp[−2D(R − R0)] − 2 exp[−D(R − R0)]},
(20)

Uu(R) = K{exp[−2D(R − R0)] − 2a exp[−D(R − R0)]},
(21)

μ(R) = μ0 + μ′
0

Dy
{1 − exp[−Dy(R − R0)]}. (22)
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Here the parameters are set, following Ref. [41], as D =
0.72, K = 0.10262, R0 = 2.0, μ0 = 1.07, μ′

0 = 0.396, y =
−0.055, and a = −1.11, respectively. We use the atomic units
throughout, except for time.

The Schrödinger equation (18) was numerically solved
using a standard grid-based split operator method [42]. Each
χα(R) in Eq. (13) is represented on a spatial grid. Although
this implementation scarifies applicability to larger systems,
we can expect the most accurate results that are directly
comparable to those obtained by full quantum calculations.
Here the one-dimensional space is limited to the range
[0,Rmax] and divided into NS equal-spaced lattice, whose
lattice points are given as Rk = k Rmax

NS
, k = 0, . . . ,NS − 1.

The actual parameters used are NS = 4096 and Rmax = 20.
The results were confirmed to be qualitatively independent
of the system size by comparison with those of a smaller size
simulation NS = 2048 and Rmax = 16. An imaginary potential
term VI is applied near the boundary in order to eliminate
unphysical reflections by absorption:

VI =
{

−iB0
(

R−Rb

Rw

)2
Ra � R � Rb,

0 otherwise,
(23)

where we chose B0 = 2.4K [this K is the parameter introduced
in Eq. (20)], Rw = 3.6, Ra = 14.0, and Rb = 18.0.

The extended state |	̃t,s〉 is propagated using the Trotter
formula [see Eq. (24) below]. We use the Fourier series
expansion to represent the s dependence of the extended state
as |	̃t,s〉 = ∑

n e−inωs |	̃F
t [n]〉, where |	̃F

t [n]〉 represents the
nth Fourier component of the extended state vector, and n runs
from −Nw to Nw with a fixed large number Nw for the cutoff
(actually set to 50). The Fourier series is then represented
in the column vector as |	̃F

t 〉 = (|	̃F
t [−Nw]〉,|	̃F

t [−Nw +
1]〉, . . . ,|	̃F

t [Nw]〉)T, where the superscript T indicates the
vector transposition. We then have

∣∣	̃F
t

〉 =
P−1∏
j=0

{e−(i/h̄)(ε/2)Tnuc
e−(i/h̄)εHeff (tj )e−(i/h̄)(ε/2)Tnuc}∣∣	̃F

0

〉
,

(24)

where P is the number of the time steps in the Trotter
decomposition, ε ≡ t

P
is the infinitesimal time step, tj ≡ jε

is the j th time point, Tnuc and Heff(tj ) are the Fourier

series representation of the nuclear kinetic term T nuc and
the effective electronic Hamiltonian H eff ≡ Hele + VI in a
matrix form, respectively. In the actual computation, the
nuclear kinetic term was calculated using the fast Fourier
transformation (FFT) technique [42]. The electronic state
was expanded with the Fourier-transformed diabatic basis;
e−inωs |j ; R〉. The total state in this representation has the
form |	̃〉 = ∑

j

∑
k

∑Nw

n=−Nw
e−inωs |Rk〉|j ; Rk〉χj,k[n], where

χj,k[n] is the nth Fourier series component of the discretized
nuclear wave function χj,k ≡ χj (Rk).

The initial conditions of the present dynamical simulation
are chosen such that the electronic state is in the ground
(gerade) state and the nuclear state is at one of the vibrational
eigenstates (quantum number v) of the gerade electronic state.
The corresponding extended-state vector at t = 0 is then fixed
as χj,k[n] = δj,gδn,0φv(Rk), with the vth vibrational eigenstate
wave function φv(R). As stated above, the initial choice of the
extended state at t = 0 has arbitrariness with respect to the
dependence on the variable s. The choice here corresponds
to |	̃t=0,s〉 = |	0〉 (independent of s) and is found to be
favorable for the present numerical implementation, since by
this choice (together with the only weakly nonperiodic nature
of the problem) only a small number of states in n is populated
during the whole simulation. The simulation starts at t = 0
fs and end at t � 400 fs. The duration of simulation time is
taken long enough. (We recall that the pulse is Gaussian of
FWHM = 150 fs centered at tc = 162.15 fs.)

The Floquet state population at an arbitrary time point is
obtained by projecting the extended state vector on the Floquet
eigenstate vector, which is obtained by diagonalization of the
Floquet operator Hele. Formally, the physically meaningful
quantity should be given as in Eq. (14). However, within
the parameters chosen in this study the Floquet states of the
higher order are scarcely populated. Therefore the summation
in Eq. (14) was replaced with a single term.

B. Dissociation probability and underlying
wave-packet dynamics

We first show the calculated dissociation probability in
Fig. 1. The results for H2

+ are in good agreement with Fig. 18
of Ref. [43], in which no further analysis has been reported. As
we notice in Fig. 1, the dissociation probability versus the field
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FIG. 1. (Color) The dissociation probability calculated from the total population lost from the simulation space 0 � R � Rmax during the
laser radiation. Left and right panels show the results for H2

+ and D2
+, respectively. Each line shows the result obtained from the initial

vibration state indicated on the right of each panel. The horizontal axis is plotted in log scale.
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FIG. 2. (Color online) Snapshots of the squared wave-packet amplitude and Floquet quasienergy surface. Each panel shows the snapshot
at the time point which is indicated at the right top. For each panel, the red solid line represent the squared amplitude of the dominant Floquet
state, and the blue dashed curve represents the corresponding quasienergy surface. Another closely related QES is also plotted with black dotted
line for reference. Three panels in each vertical row show snapshots of the dynamics starting from the initial vibrational state and the peak field
intensity indicated at the top. We also plotted approximate position of resonant points by gray arrow. The arrow in panel (a-1) shows the 3ω

resonance point while that in panel (d-3) shows 1ω resonance point.

intensity are classified into three overall patterns. Pattern 1:
Near-zero probability at low field followed by rapid monotonic
increase at higher intensity: v = 2,3,4 in H2

+ and v = 3,4,5,6
in D2

+. Pattern 2: Nonmonotonic oscillatory behavior; v = 5
in H2

+ and v = 7,8 in D2
+. Pattern 3: Similar to pattern 1,

but the increase occurs at much lower field; v = 6 in H2
+ and

v = 9 in D2
+.

In order to analyze the dynamics behind each pattern,
we show in Fig. 2 selected snapshots of wave packets
represented by the squared amplitude of the dominant Floquet
state. The time-dependent behavior of the related QESs are
also superimposed in the figure. One can observe that the
wave-packet motion is in accordance with the QES gradient,
thereby qualitatively verifying the quasiclassical interpreta-
tion. Throughout the present simulation, the population of
the nω shifts of the dominant Floquet state was negligibly
small in the entire parameter range. The population of the
second-dominant Floquet state, which is distinct from the
dominant one, is also negligible in the parameter region in
Fig. 2. The second-dominant state population, however, may
grow to a finite value in other parameter regions (not plotted)
especially around the resonant points. Discussions below
are about the mechanisms of the above phenomena, which
are based on the dominant state behavior only, nonetheless
characterizing the overall behavior.

1. Pattern 1: Bond softening

The snapshots of the dynamics of initial state v = 3 and
the peak field intensity I = 80 TW/cm2 are shown in the
three panels, (a-1)–(a-3) in Fig. 2, where one can see that
the wave packet moves out through deformed QES after the

opening of the gap at the 3ω resonant point, which is a
typical behavior in bond softening [43]. Dynamics in other
parameters categorized in this pattern also shows a similar
behavior at intensities higher than an onset intensity, where a
sharp increase of dissociation probability (see Fig. 1) occurs.
We thus identify the present pattern as bond softening.

2. Pattern 2: Bond hardening and inverse bond hardening

The snapshots of the wave-packet dynamics of v = 5 at the
peak field intensity I = 60 TW/cm2, which is at the bottom of
the dissociation probability oscillation (see Fig. 1), are shown
in panels (b-1)–(b-3) of Fig. 2. One can see that the increase of
the QES local maximum near the 1ω resonant point prevents
the wave packet from dissociation, which is a typical behavior
in bond hardening [29,33,43,44].

We also show, in panels (c-1)–(c-3) in Fig. 2, the snapshots
of the dynamics of v = 5 with the peak field intensity I =
50 TW/cm2, which is at the peak of the dissociation probability
oscillation. Here the development of a local maximum in QES
near the 1ω resonant point seems to push out a portion of the
wave packet. Hence the underlying mechanism is the same
as the normal bond hardening seen in the dynamics at the
peak field intensity I = 60 TW/cm2, although the outcome is
opposite. We thus term it “inverse bond hardening.”

3. Pattern 3: Bond softening (at 1ω resonant point)

The snapshots of the dynamics of v = 6 at the peak field
intensity I = 22 TW/cm2 are shown in panels (d-1)–(d-3) in
Fig. 2. Here we can see the wave packet move out through
the gap formed by the 1ω resonance. The onset occurs at
much lower intensity due to the stronger dipole coupling
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FIG. 3. (Color) The adiabatic PESs (a) and the relevant elements (b)–(d) of matrices obtained by ab initio calculations. Matrices in (b)–(d)
are in the approximate diabatic representation as described in the text. (a) Adiabatic energies of the lowest eight adiabatic states. (b) Diagonal
elements of the Hamiltonian matrix. (c) Diagonal elements of the electric dipole matrix. (d) Off-diagonal elements of the nuclear nonadiabatic
coupling matrix. The adiabatic states are labeled as 11�+ to 61�+, 11�, 21�, where numbers are given in an increasing order in the adiabatic
energies.

at the 1ω resonant point than that at the 3ω resonant point.
Nevertheless, the essential mechanism is bond softening, the
same as pattern 1.

To summarize this section, we have thus verified the
present formalism by successfully reproducing the dissoci-
ation probabilities of H2

+ reported in Ref. [43], including
the oscillatory feature. We also show that an interplay of
bond softening and bond hardening can be clearly seen in the
snapshots of time-dependent QESs and wave-packet dynamics
on them, which is clearly understood in terms of quasiclassical
approximation. In fact our simulation serves as a direct real-
time demonstration of possibly competing bond-softening and
bond-hardening mechanisms, and moreover, has suggested
a possible phenomenon, the inverse bond-hardening.4 The
additional calculations for D2

+ dissociation have been found
to be consistent with these interpretations.5

IV. APPLICATION TO THE CURVE-CROSSING
DISSOCIATION DYNAMICS OF LiF

We next proceed to a system in which the intrinsic nuclear
derivative couplings directly affect the dissociation process in

4Further discussions on physical conditions are necessary for
inverse bond hardening, bond softening, and bond hardening to be
observed experimentally.

5In fact the spatial distribution of the initial wave function with
respect to the position of the QES resonant points is found to have
similarity among each pattern. The fact may explain the origin of
each pattern, but will be discussed elsewhere.

laser fields. We take LiF as a case study having an avoided
crossing of ionic and covalent PESs [see Fig. 3(a)]. In the
presence of strong laser field, these ionic and covalent PESs
are expected to be largely deformed, since these two and other
possible excited states are dipole coupled. Thus a qualitative
description of the field-induced dissociation dynamics should
require full consideration of nuclear kinematic effects as well
as dynamical deformation of QESs.

A. Systems and computational details

Theoretical studies on LiF in recent years include static
ab initio calculation of PESs [45,46], and calculations of
field-induced dynamics [47,48]. To the best of our knowledge,
no experimental study on its field-induced dynamics has ever
been reported, but it still serves as a prototype for studying
an interplay of field-induced and intrinsic nonadiabatic transi-
tions.

The full quantum-mechanical calculations in Ref. [47]
suggests onset of dissociation under strong infrared (λ =
9.4 μm) laser field of order 100–101 TW/cm2. Mixed
quantum classical calculations in Ref. [48], on the other
hand, show dissociation under higher field intensities around
102–103 TW/cm2 although the laser wavelengths are different
from Ref. [47]. Here we consider the laser field of wavelength
λ = 227 nm.

1. Ab initio calculation of electronic matrix elements

We first calculate PESs and relevant matrix elements of LiF
by ab initio calculations. We use the program package GAMESS
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[49] to perform configuration interaction calculations limited
to single and double excitation (CISD) using the graphical
unitary group approach (GUGA) [50] and obtain PESs as
well as the relevant matrix elements including electronic
dipole and derivative couplings [51]. Our chosen basis set
is Dunning’s second-order augmented correlation-consistent
basis set (aug-cc-pCVDZ) [52], which generates a total of
48 atomic orbitals. In the CISD calculations, 2 core-like
and 27 higher-lying orbitals out of 48 molecular orbitals are
frozen. The number of symmetry-adapted configuration state
functions (CSFs) was 870.

The adiabatic PESs are shown in Fig. 3. Although the
calculation level is rather lower than the previous works on
the same molecule [46], it is however sufficient to qualita-
tively reproduce the features obtained from more accurate
calculations [46]. The position of the avoided crossing of the
lowest two PESs is obtained at around internuclear distance
Rc = 11.85. (Reference [46] reports 12 � Rc � 13 with larger
size calculations.) Since the value of Rc is sensitive to the level
and size of calculations, the present Rc seems to be within a
tolerable range. The necessary matrix elements in the adiabatic
representation are first calculated using the Ntot = 870 CSFs
as described above. Dimension of the basis set is then reduced
by restricting to the lowest Nb = 8 adiabatic states.

The obtained Nb × Nb matrices are further transformed
to an approximately diabatic basis to avoid the direct use of
the derivative couplings. Here an approximate diabatization
is applied to the lowest two adiabatic states, whereas the
rest Nb − 2 basis states are kept as adiabatic states. We
diagonalize the lowest 2 × 2 block of the dipole matrix to
obtain new states with either “ionic” or “covalent” character.
Thus the nonadiabatic coupling between these states has been
significantly reduced around the avoided crossing, although
being finite. The residual derivative couplings are evaluated as
is separately described in Appendix C.

The relevant elements of thus obtained matrices are
shown in Fig. 3. All the matrices are calculated at 171
grid points with the internuclear distance R(p) = 1.4 + 0.1p

(p = 0,1,2, . . . ,170).

2. Quantum wave-packet calculations

Here again we assume one-dimensional nuclear motion
along the molecular axis, which is fixed parallel to the field
polarization. The quantum wave-packet calculations are then
performed using Eq. (24) in a similar manner as was described
in the preceding section but with several modifications. The
nuclear degrees of freedom is represented by internuclear
distance R, whose corresponding reduced mass is Meff =
MLiMF

MLi+MF
and the effective charge Qeff = MF QLi−MLiQF

MLi+MF
, which

are, in the atomic unit, 9265.97 and −0.591 950, respectively.
The grid points are chosen as R = Rmin + k Rmax−Rmin

NS
with

k = 0,1, . . . ,NS − 1, Rmin = 1.4, and Rmax = 18.312. The
number of grid points NS is set to 2048. An imaginary
potential term of the form Eq. (23) is applied with modified
parameters: B0 = 0.5084, Ra = 16.312, Rb = 18.312, and
Rw = 2.0. Matrices at each grid point Rk are obtained by
a linear interpolation technique using the nearest two data
points (R(p) and R(p+1) which satisfies R(p) � Rk < R(p+1)).
The cutoff of the Fourier series Nw is set to 30, which is

confirmed to be sufficiently large by comparing the results
with those of Nw = 45.

Due to the existence of finite diagonal components
in the dipole matrix, better convergence is expected by
using the velocity gauge rather than the length gauge. We
calculate the electronic dipole velocity momenta in the
adiabatic representation using the formula qe

me
(p)αβ = i

h̄
(Eα −

Eβ)(μ)αβ , where me and qe are the electronic mass and
charge, respectively, p and μ are the electronic momentum
and the dipole matrices, and Eα is the αth adiabatic energy,
respectively. We also redefine the field in terms of the vector
potential as A(t) cos(ωt) with a Gaussian pulse envelope
A(t) = Amax exp[−( t−tc

tw
)2]. In this paper, the pulse width is

set to 300 fs (FWHM) and tc and tw are chosen to be 324.3 and
180.2 fs, respectively. The width is set longer than that used in
H2

+/D2
+ to take account of the heavier reduced nuclear mass.

To prepare the initial vibrational states, we fit the first
diagonal element of the Hamiltonian matrix (this is almost
equal to the ground adiabatic surface in the range of R in
which the vibrational states of our interest lie) to a Morse
potential and derived the vibrational eigenstates.

B. Laser-induced dynamics of LiF

The graph of the dissociation probability against the
laser intensity under a pulse of FWHM 300 fs is depicted
in Fig. 4. It shows a globally monotonic increase of the
dissociation probability with pulse peak intensity, but with
a slight oscillatory behavior, which implies the existence of a
trapping mechanism. However, this effect is less clear than in
the case of H2

+ and D2
+.

A typical dissociation process is seen in Fig. 5, which shows
the behavior of the Floquet populations and corresponding
QESs obtained in the simulation under a laser pulse of width
300 fs (FWHM) and the peak intensity I = 126.36 TW/cm2

(Amax/c = 0.30). Here again the population of the higher-
order Floquet states are small, and therefore we can use
the single Floquet state populations to represent the actual
dynamics. Note the difference of the topology of QESs
between the two panels: the three QESs in panel (a), plotted
with orange solid, purple dotted and light green dashed lines
correspond to those in panel (b), plotted with red solid, blue
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FIG. 4. Dissociation probability calculated from the total popu-
lation lost from the simulation space Rmin � R � Rmax during the
simulation time. Pulse FWHM was set 300 fs and the initial vibration
state was set to v = 3.
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FIG. 5. (Color) The squared Floquet state amplitudes and QESs in the dissociation dynamics of LiF under a laser pulse of width 300 fs
(FWHM) and the peak intensity I = 126.36 TW/cm2 (Amax/c = 0.30). Each panel shows the snapshot at the time indicated on the panel:
(a) t = 313 fs and (b) t = 459 fs from the pulse onset. The scale for the QES plot is indicated on the right of each panel, while that for the
amplitude plot is arbitrary. Each Floquet state population and the corresponding QES is plotted with the same color and the same line style. 1′:
orange solid; 2′: light green dashed; 3′: purple dotted lines in panel (a) are related to 1, red-solid (S1); 2, dark green dashed (S2); and 3, blue
dotted (S3) lines in panel (b) (see also text). The gray thin dotted curve in each panel, which shows the QES of the fourth dominant Floquet
state (S4), is plotted to help understanding although the corresponding state population is almost negligible.

dotted, and dark green dashed lines. The correspondence
is one-to-one in the asymptotic region (typically R � 8),
although it is not in the region with small R. For the sake
of convenience of later discussion, we label each Floquet state
accordingly; those plotted with (1) red solid, (2) dark green
dashed, and (3) blue dotted lines will be referred to as the
Floquet state S1, S2, and S3, respectively. The wave packet
begins to flow out of the initial bound potential (R � 4) around
the time when the laser pulse intensity reaches the peak. An
example is seen in Fig. 5(a), in which the field is strong enough
to induce significant deformation of QES at even around the
equilibrium bond length (R ≈ 3.0). In panel (a) three QESs
avoid-cross around R ≈ 3 and part of the initially bound
vibration state population goes out along the QES plotted by
the light green dashed line (see also the inset for details).
The dynamics in this region is therefore similar to that in the
bond-softening pattern of H2

+/D2
+.

In contrast to H2
+/D2

+, the outgoing wave packet in this
system further undergoes trapping at a “later stage,” or at a
larger value of R. As is shown in Fig. 5(b), the outgoing wave
packet is trapped by the upward slope of the corresponding
QES around 8 � R � 12, which essentially comes from the
character of the ionic PES. Some proportion on it, on the other
hand, undergoes nonadiabatic transition through the avoided
crossing at R ≈ 9 to another Floquet state (a blue dotted
curve) of the covalent type and leading to dissociation. We
note however that in this simulation, this later-stage trapping
at the intermediate region 8 � R � 12 is led to dissociation as
the field diminishes.

To facilitate understanding of the above dynamics, we
correlate the field induced QESs in Fig. 5 to those in the
zero-field limit (ZF QESs), which are field-free PESs and their
nω shifts [see Fig. 3(a)]. Such an approximate assignment
would allow an intuitive characterization of the finite field
QESs. Figure 6 presents the QESs of Fig. 5(b) and related ZF
QESs. We first study the global features: the upward slope of
the QES seen in the region 8 � R � 12 reflects −ω-shifted
11�+, whereas the blue dotted QES, which asymptotes to

−2ω-shifted 61�+, leads to dissociation. We can also see
that the QES forming the initial bound state (11�+ or its
finite-field correspondence) and those leading to dissociation
(−2ω shifted 51�+, 61�+, or their finite-field correspondence)
are indirectly coupled with −2ω shifts. This type of coupling
would be zero in the two-state model of H2

+/D2
+, but is finite

here due to the existence of more than two dipole-coupled
states.

We finally survey the role of the nuclear derivative
couplings. Since we adopt a diabatic representation for the
relevant states that are involved in the avoided crossing under
study (see Sec. IV A1), the effects from the nuclear kinematic
coupling is generally expected to be small. Nonetheless,
our computations taking full account of all the nonadiabatic
interactions show definite effects in dynamics as follows: It
is expected that the “later stage trapping” observed above
should be affected by the kinematically induced nonadiabatic
transitions at around the avoided crossing of QESs. In order to
confirm this, we perform additional calculations in which the

-107.1

-107.0

-106.9

 2  4  6  8  10  12  14

E
ne

rg
y 

(h
ar

tr
ee

)

R (bohr)

11Σ+

11Σ+ -ω
21Σ+ -ω

41Σ+ -2ω

51Σ+ -2ω
61Σ+ -2ω

FIG. 6. (Color) The same QESs as Fig. 5(b), with the zero-field
limit QESs (ZF QESs) being added in gray lines (refer to Fig. 3). The
characters of ZF QESs are indicated in right hand side of the figure.
The red solid, blue dotted, and dark green dashed lines, on the other
hand, show QESs identical to Fig. 5(b).
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(b) I=126.36 T=458.6
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(c) I=224.64 T=458.6
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FIG. 7. (Color) Comparison of the squared wave-packet amplitudes between the results obtained by the two calculation schemes (see
text). In each calculation, the laser pulse FWHM is fixed at 300 fs and the peak intensity is set (a) I = 56.16 TW/cm2 (Amax/c = 0.20), (b)
I = 126.36 TW/cm2 (Amax/c = 0.30), (c) I = 224.64 TW/cm2 (Amax/c = 0.40), and (d) I = 351.0 TW/cm2 (Amax/c = 0.50), respectively.
The snapshot at fixed time T = 459 fs from the pulse onset is taken for comparison. The external conditions for the panel (b) is hence identical
to that of Fig. 5(b). The Floquet state populations and their corresponding QESs obtained by the N -scheme calculations are plotted with the
same line styles as Fig. 5(b). S1: red full; S2: green dashed; S3: blue dotted; and S4: black thin dotted, respectively, whereas the Floquet state
populations in the Z scheme are plotted with S1′: orange dash-dotted; S2′: light-green dash-dot-dotted; S3′: purple dash-dot-dot-dotted; and
S4′: gray thin dotted lines, respectively.

nuclear derivative coupling terms [in Eq. (13)] are intentionally
ignored (zero nuclear derivative coupling limit denoted as Z

scheme). The resultant nuclear wave-packet behavior is shown
in Fig. 7, contrasted to that of the full standard calculations
of nuclear derivative couplings (N scheme). Figure 7 shows
the snapshots of the squared amplitudes and QESs of the
relevant Floquet states at each parameter shown in the figure.
In particular, panel (b) shows the results obtained at the same
parameters as those in Fig. 5(b). The results of the N -scheme
calculation is plotted in the same manner as that of Fig. 5(b),
whereas the results of Z-scheme calculations are added using
orange dash-dotted, light green dot-dot-dashed, and purple
dot-dot-dot-dashed lines for the Floquet state S1, S2, and
S3, respectively. We first see Fig. 7(b) where the differences
of the two schemes are most pronounced. It shows a larger
population of state S2 around R ≈ 10 in the N -scheme result
whereas a larger population has leaked off to dissociate through
state S3 in the Z-scheme result (compare the purple dot-
dot-dot-dashed lines against the blue-dotted ones), indicating
enhanced trapping due to the derivative coupling term. The
result does not match the naive perturbative expectation; if
one assumes the nonadiabatic term as a small perturbation
term added on the local Floquet Hamiltonian, any addition of

“small” off-diagonal terms would induce transitions among
the Floquet states. Such a simple guess, however, does not
apply here because the nonadiabatic term is not necessarily
a small perturbation at the avoided crossing of Floquet
states.

We further compare the result with those obtained in
different values of laser parameters. In the weakest peak
field amplitude, I = 56.16 (Amax/c = 0.2), the effect of
derivative coupling is negligible because the population passes
through the avoided crossings is small. In stronger peak
field amplitudes, I = 224.64 (Amax/c = 0.4) and I = 351.0
(Amax/c = 0.5), the differences are small. The differences
appear to decrease with the peak intensity. This is partly
accounted for as the suppression of nonadiabatic transitions
by a larger gap among Floquet states.

In principle, the effect of nonadiabatic terms should be
small when the (temporal) laser intensity is large and gaps
among the Floquet states are large, but it may become relevant
otherwise. It is also affected by the “velocity” of the wave
packet in the form ih̄v · X, where v is the wave-packet velocity
(a more precise description will be given in Appendix D).
In dynamics under a pulsed laser field, one can then expect
a non-negligible effect if an accelerated wave packet passes
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through the avoided crossing on the falling edge of the pulse.
The reality is, however, that much is dependent on the details
of dynamics.

We must also note that the effects are transient and the total
dissociation probability (evaluated at large t from the onset,
where laser pulse diminishes) is almost identical between
the two schemes. However, the result may differ if there are
multiple dissociation channels and one distinguishes between
them [1].

We have thus applied our generalized Floquet method on the
field-induced dissociation of ionic bound LiF using ab initio
PESs and matrix elements, and observed that, even in the
presence of nuclear derivative couplings, wave-packet dynam-
ics can be qualitatively understood in terms of quasiclassical
dynamics on QESs. We have also explicitly shown nontrivial
effects of kinematically induced transitions on the wave-packet
amplitudes.

V. SUMMARY AND DISCUSSION

We have formulated a generalized Floquet Hamiltonian
method that is applicable to dynamics including nonperiodicity
arising from time dependence of laser parameters and/or the
nuclear kinematic effects. Use of the two-time formalism led to
a clear method that is formally independent on the details of the
time-dependent parameters. In this method, effects from these
two types of nonperiodicity are treated in a unified manner
under the notion of generalized nonadiabatic transitions. This
unified treatment naturally allows for quasiclassical analysis in
the (field-free) nonadiabatic dynamics with use of the gradients
of QESs, to which we have given analytic and numerical
verification. A numerical implementation of this method has
been applied first to the field-induced dynamics of H2

+/D2
+

within the two-state model with no derivative coupling. The
dissociation probabilities obtained for them have been in good
agreement with previously reported results. Analysis of time-
dependent QESs and wave-packet dynamics has exposed some
more details about the bond softening, bond hardening, and
inverse bond hardening. In the second application to the curve-
crossing dynamics of LiF, we have performed calculations of
the generalized Floquet-based method in the level of ab initio
electronic states, including the nuclear derivative coupling
elements among them. In fact we have shown a nontrivial effect
of the intrinsic (kinematic) nonadiabatic interaction in the
system of field-induced nonadiabatic dynamics. The present
method, giving a simple and clear view of field-induced and
intrinsic nonadiabatic transitions, will contribute to the study
of laser control of chemical reactions and therefore deserves
further study.
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APPENDIX A: EXTENSION TO
TIME-DEPENDENT FREQUENCY

In the (generalized) Floquet formalism, the time-dependent
variation of the optical frequency requires special care since it
alters the fundamental period T . Nevertheless laser frequency
is undoubtedly an important control parameter in experiments.
Pulse chirping, for example, is considered to be a powerful tool
for molecular dissociation control and/or quantum population
control [53,54]. The apparent difficulty in its Floquet based
formulation, however, was shown [55] to be circumvented by
using the phase variable θ instead of periodic time variable
s [55]. Here we apply this idea to derive the nonadiabatic time
evolution equation including frequency variation in terms of
two-time formalism. We use the phase variable θ instead of
short-time variable s to define the extended Hamiltonian H̃t,θ ,
which is periodic in θ in the sense H̃t,θ = H̃t,θ+2π . It reduces
to the physical Hamiltonian at θ = �(t), where �(t) is the
physical phase as a function of t . The physical phase may be
set as �(t) = ω(t)t + const, as Guerin assumed, but it may
take other forms. We here introduce the instant (differential)
frequency �t to define �(t) = ∫ t

dτ�τ . The Schrödinger
equation for the extended state becomes

ih̄∂t 	̃t,θ = Ht,θ 	̃t,θ , (A1)

where Ht,θ = Ht,θ − ih̄�t∂θ is the Floquet Hamiltonian,
which is formally periodic in θ . As we did in the main text,
we assume that the t dependence can be absorbed in the
parameter and rewrite the Floquet Hamiltonian as Hθ (Rt ).
The nonadiabatic time evolution equation reads

ih̄χ̇α(R) =
∑

I

1

2MI

∑
β

([
h̄

i

∂

∂RI
− QI

c
A − ih̄X

]2)
αβ

χβ

+Unuc(R)χα + λαχα − ih̄
∑

μ

ζ̇ μ
∑

β

X (ζμ)
αβ χβ.

(A2)

The formal appearance of Eq. (A2) is equivalent to that of
Eq. (13), although the inner product is now defined as

〈〈α|β〉〉 ≡
∫

dθ

2π
〈α(θ )|β(θ )〉, (A3)

and the adiabatic parameter set {ζμ
t } includes �t , which

accompanies corresponding nonadiabatic coupling X (�)
αβ given

as

X (�)
αβ = 〈〈�α;Rt | ∂

∂�
|�β ;Rt 〉〉 = 〈〈�α;Rt |ih̄∂θ |�β ;Rt 〉〉

λα − λβ

.

(A4)

If the physical phase is given by �t = ω(t)t + φ (φ is the
time-independent phase) after Refs. [53–55], we have �t =
ω̇(t)t + ω(t) and the resultant time evolution of the physical
wave function 	̃t,θ |θ=�t

is equivalent to Ref. [55].

APPENDIX B: DETAILS OF QUASICLASSICAL
APPROXIMATION

Here we discuss the details of the quasiclassical approxi-
mation. We first discuss Eq. (16). In Ref. [39], it was shown
that the best classical representation (within the stationary
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phase approximation) of nuclear dynamics is Newtonian
dynamics with nonclassical force, which is an expectation
value of electronic operator − ∂Hel

∂R along the time evolution
of the system. Calculation of this special type of expectation
value requires the knowledge of the time evolution of the
electronic degrees of freedom, which, in the general case,
leads to an extremely difficult self-consistency problem. In
the region with negligible nonadiabatic transitions, however,
the adiabatic state |�α(t);Rt 〉, after a sufficiently short time,
obviously evolves into the corresponding state on the nearby
nuclear position. The effective force is hence given by the
adiabatic state average. The argument here obviously extends
to generalized nonadiabaticity, since it is the Floquet state
which is (quasi)stationary under the laser field. The effective
force is hence given by Eq. (16) in the main text.

We next derive an explicit estimate of small nonadiabaticity.
Using a nondimensional estimate of nuclear derivative con-
tribution, smallness of nonadiabaticity between two Floquet
states |�α;Rt 〉 and |�β ;Rt 〉 with quasienergy λα and λβ is
given as

|ih̄v · Xαβ |
|λα − λβ | � 1, (B1)

where v = Ṙ is the velocity of the nuclei in the sense
of classical representation. Using the fact 〈〈�α| ∂

∂ζ
|�β〉〉 =

〈〈�α| − ∂Hele

∂ζ
|�β〉〉/(λα − λβ), Eq. (B1) is rewritten as∣∣ih̄v · 〈〈�α;Rt |

( − ∂Hele

∂R

)|�β ;Rt 〉〉
∣∣

(λα − λβ)2
� 1. (B2)

A similar estimate for the smallness of field-induced
nonadiabaticity is given as, in the dipole gauge,

|ih̄Ėε · 〈〈�α;Rt |μ|�β ;Rt 〉〉|
(λα − λβ)2

� 1, (B3)

where ε is the field polarization vector, E and Ė are the
electric-field amplitude and its time derivative (such as pulse
envelope and its time derivative), and μ is the dipole operator.
The corresponding expression for the velocity gauge can also
be obtained in an obvious manner.

It obviously follows that near avoided-crossing points that
adiabaticity is broken for the range where the difference of two
adjacent quasienergies is smaller than the energy scale given
by the square root of the numerator appearing in the left-hand
side of Eqs. (B2) or (B3).

APPENDIX C: APPROXIMATE DIABATIZATION OF
MATRIX ELEMENTS

Here we show some details of the approximate diabatization
scheme. We start from an Ntot dimensional adiabatic basis
set and corresponding matrices. We first select a subset of
adiabatic vectors {|Fa; R〉}a∈� where � is a fixed subset of the
adiabatic vector index set �0 = [1,Ntot]. We first diagonalize
the submatrix of the dipole matrix (parallel to the molecular
axis) D

‖
ab|a,b∈� as ∑

b∈�

′
D

‖
abU

b
p = μpUa

p, (C1)

where Ua
p denotes the ath component of pth eigenvector of the

dipole submatrix and μp is the corresponding eigenvalue. The
corresponding state is defined as |Up; R〉 ≡ ∑′

a |Fa; R〉Ua
p .

The derivative couplings of these state vectors are evaluated
as (the derivation will be given later)

〈Up; R| ∂

∂R
|Uq ; R〉

= −
∑′

b,a∈� Ub
p

∗ ∑
r /∈�(D‖

brXr,a − Xb,rD
‖
ra)Ua

q

μp − μq

, (C2)

where
∑′

b,a∈� indicates the summation over subset �, while∑
r /∈� indicates the summation over the residual set �0 \ �.

For the actual calculation of LiF in the main text, the lowest
two adiabatic states are thus transformed (i.e., � = {0,1}),
to |UI ; R〉 and |UC ; R〉, which are essentially ionic and
covalent, respectively. These two transformed state vectors
as well as the lowest Nb − 2 of remaining adiabatic vectors,
{|UI 〉,|UC〉,|F3〉, . . . ,|FNb

〉} are used in the calculation of
dynamics. The derivative coupling elements obtained in this
transformation are shown in Fig. 3(d).

We now evaluate the nuclear coordinate derivatives of state
vector |Up; R〉 defined as

∑′
a |Fa〉Ua

p where the summation
with prime (

∑′) is used to emphasize that the summation of
indices runs over the restricted set �. The derivative couplings
among state vectors |Up; R〉 are expanded as

〈Up; R| ∂

∂R
|Uq ; R〉 =

∑
a

′〈Up; R|Fa; R〉 ∂

∂R
Ua

q

+
∑

a

′〈Up; R| ∂

∂R
|Fa; R〉Ua

q

=
∑

a

′
Ua

p
∗ ∂

∂R
Ua

q +
∑
b,a

′
Ub

p

∗
XbaU

a
q .

(C3)

It follows from the fact that the coefficient vector Ua
q is the

eigenvector of the matrix D
‖
ab that

∑
a

′
Ua

p
∗ ∂

∂R
Ua

q = −
∑

a
′
Ua

p
∗ ∂

∂R (D‖
ab)Ub

q

μp − μq

. (C4)

Introducing the basis vector independent operator form of the
dipole D̂‖, the derivative of the matrix element is evaluated as
(using index i to emphasize unrestricted summation)

∂

∂R
(D‖

ab) = ∂

∂R
〈Fa|D̂‖|Fb〉 =

∑
i

(D‖
aiXi,b − Xa,iD

‖
i,b),

(C5)

where the dipole operator itself, being a purely electronic
operator, is assumed to be independent of nuclear coordinates:
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∂
∂R D̂‖ = 0. We hence have

〈Up; R| ∂

∂R
|Uq ; R〉

= −
∑′

b,aU
b
p

∗ ∑
i(D

‖
biXia − XbiD

‖
ia)Ua

q

μp − μq

+
∑
b,a

′
Ub

p

∗
XbaU

a
q

= −
∑′

b,aU
b
p

∗ ∑
r /∈�(D‖

brXr,a − Xb,rD
‖
ra)Ua

q

μp − μq

, (C6)

which proves Eq. (C2).

APPENDIX D: EXACT DESCRIPTION OF
NONADIABATIC TRANSITION

We show an exact expression of nonadiabatic transition
moment taking into account of the extended nature of the
nuclear wave function. We use Eq. (13) to derive the time
derivative of the local Floquet state population ρα(R,t) ≡
|χα(R,t)|2. A straightforward calculation gives

ρ̇α(R,t) = −
∑

I

∇I · JI
αα −

∑
I,β

1

2

[
XI

αβ · J I
αβ + c.c.

]
+

∑
I,β

1

2

[
XI

βα · J I
βα + c.c.

]
− 2

∑
μ

ζ̇ μRe
(
χ∗

α (R,t)χβ(R,t)X ζμ

αβ

)
, (D1)

where J I
αβ denotes the “covariant” currentlike quantity related

to the I th nuclear coordinate defined as

J I
αβ ≡ 1

MI

∑
γ

χ∗
α (R,t)

[(
h̄

i
∇ − q

c
A
)

δβγ − ih̄XI
βγ

]
χγ (R,t)

(D2)

and JI
α is the projected current,

JI
α ≡ 1

2

(
J I

αα + c.c.
)
. (D3)

The meaning of Eq. (D1) is now clear; the first term
describes the drift contribution while the second and the
third terms (each including c.c.) describe the transition
induced by nuclear motion through the derivative coupling.
The fourth term is the contribution from the time-dependent
change of the laser parameters. Mixed quantum classi-
cal description, or the narrow wave-packet limit, would
give

d

dt
|Cα|2 = −

∑
I

vI · (
C∗

αXI
αβCβ + c.c.

)
− 2

∑
μ

ζ̇Re
(
C∗

αX
ζμ

αβCβ

)
, (D4)

where Cα denotes the coefficient of Floquet state α, and
vI is the I th nuclear velocity (in the sense of mixed
quantum classical representation). The first term in Eq. (D4)
corresponds to the second and third terms in Eq. (D1),
while the second term in Eq. (D4) corresponds to the fourth
term.
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