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Inverse engineering control in open quantum systems
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We propose a scheme for inverse engineering control in open quantum systems. Starting from an undetermined
time evolution operator, a time-dependent Hamiltonian is derived in order to guide the system to attain an
arbitrary target state at a predefined time. We calculate the fidelity of our inverse engineering control protocol in
the presence of the noise with respect to the stochastic fluctuation of the linear parameters of the Hamiltonian
during the time evolution. For a special family of Hamiltonians for two-level systems, we show that the control
evolution of the system under noise can be categorized into two standard decohering processes: dephasing and
depolarization, for both Markovian and non-Markovian conditions. In particular, we illustrate our formalism by
analyzing the robustness of the engineered target state against errors. Moreover, we discuss the generalization of
the inverse protocol for higher-dimensional systems.
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I. INTRODUCTION

To fulfill the requirement of high-precision quantum gates,
teleportation, or state transfer, the aim of quantum state
engineering (QSE) [1–5] is to manipulate the system and
attain a target state, typically a pure state, at a designed time
T , or more ambitiously, to drive the eigenstates of an initial
Hamiltonian into those of a final Hamiltonian [3,4]. To be
concrete, for a two-level system, a passage is constructed
through which the system undergoes a transition from an initial
state |ψ(t = 0)〉 to a final state |ψ(T )〉 = μ|1〉 + ν|0〉, with
|μ|2 + |ν|2 = 1, in an undisturbed way. In a closed-system
scenario, QSE has been considered through time optimal
evolution [6], and robust protocols of realizing QSE have
been provided by adiabatic passages [2,7] and sequential
convex programming [8]. However, for open systems [9],
which are under environmental noise due to the onset of the
system-bath dynamics [10], QSE is significantly challenged
in both theoretical and experimental implementations. Indeed,
for decohering systems, there is a competition between the time
required for adiabaticity and the decoherence time scales [11],
which may limit the applicability of the adiabatic approach
[12]. Identifying protocols that are both fast and fault tolerant
is therefore an important research direction for quantum
information processing and quantum control [4].

A non-adiabatic approach for QSE [4,5,13], originally
defined in the context of closed systems, is the inverse
engineering control based on Lewis-Riesenfeld invariants [14].
In this approach, the quantum dynamics is dictated by a
dynamical invariant I (t), which is an operator defined through
the von Neumann equation, ∂

∂t
I (t) + i[H (t),I (t)] = 0 (setting

h̄ = 1). By denoting the instantaneous eigenbasis of I (t) as an
orthonormal set {|φn(t)〉}, the method of quantum control by
invariants first considers the initial state |ψ(t = 0)〉 to be one
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of the eigenstates of I (t), say |φ0(0)〉, and the target state to be
|φ0(T )〉. The operator I (t) is then designed to conveniently
interpolate between |φ0(0)〉 and |φ0(T )〉. In particular, the
von Neumann equation implies that I (t) = U (t)I (0)U †(t),
where U (t) denotes the time evolution operator. Then, U (t)
will satisfy U (T )|φ0(0)〉 = |φ0(T )〉; i.e., a system that is
initially prepared in a given eigenlevel of I (t) will be kept
in the corresponding instantaneous eigenlevel for any time T ,
yielding a nontransitional evolution. Hence, QSE by inverse
control can be implemented by obtaining a desired evolution
operator U (t) from I (t), which will give rise in a further step
to a time-dependent control Hamiltonian able to physically
generate the engineered target state |φ0(T )〉 at time T .

The aim of this work is to propose a scheme to investigate
QSE by inverse control in presence of decoherence. This
strategy is different from the usual techniques of protecting
the system against the external environmental noise through
fast pulse sequences, such as bang-bang control [15] and
optimal control [16]. Moreover, it is also distinct from the
direct kinematic controllability of open quantum systems [17].
The starting point of our framework is the observation that
the von Neumann equation implies that the density operator
ρ(t) is a Lewis-Riesenfeld invariant by itself. Indeed, ρ(t)
satisfies the same equation of motion as I (t), namely, ∂

∂t
ρ +

i[H,ρ] = 0. Then, I (t) and ρ(t) share the same eigenbasis
{|φn(t)〉}, and ρ(t) = U (t)ρ(0)U †(t) where ρ(0) is an arbitrary
initial density matrix. For the evolution operator U (t), we
obtain U (t) = ∑

n |φn(t)〉〈φn(0)|. Therefore, ρ(t) and U (t)
are mutually equivalent to each other without considering
the Lewis-Riesenfeld phase [14]. Hence, the procedure is
first to get the dynamics of the system as expressed by
the time evolution operator U (t). As a second step, we
inversely obtain the Hamiltonian H (t) = iU̇U †. Noise is then
introduced through stochastic fluctuations in the Hamiltonian
of the system. Such fluctuations will be identified according to
specific quantum channels [1], which are physically defined as
some special pipelines intended to carry quantum information

053422-11050-2947/2013/88(5)/053422(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.053422


JING, WU, SARANDY, AND MUGA PHYSICAL REVIEW A 88, 053422 (2013)

through an open quantum system. In particular, we find the
conditions in which the rapid and robust state passage or
population transfer could be realized and those in which the
QSE ends up with a mixed state.

II. INVERSE ENGINEERING THEORY IN QUANTUM
SYSTEM CONTROL

We start from a general time evolution operator for a two-
level system,

U (t) = cos θ (t) + i sin θ (t)�σ · �n(t), (1)

where �σ = (σx,σy,σz) represents the vector of Pauli operator
and �n denotes a unit vector in space. The Hamiltonian could
be expressed as [18]

H = iU̇U † = −�σ · [θ̇ �n + sin θ cos θ �̇n + sin2 θ (�̇n × �n)].

(2)

Consider a general unit vector �n = cos α�x + sin α cos β �y +
sin α sin β�z and substitute it into Eq. (2). Then the Hamiltonian
reads

H = σx(−θ̇ cos α + α̇ sin θ cos θ sin α + β̇ sin2 θ sin2 α)

+ σy[−θ̇ sin α cos β

− α̇ sin θ (cos θ cos α cos β + sin θ sin β)

+ β̇ sin θ sin α(cos θ sin β − sin θ cos α cos β)]

+ σz[−θ̇ sin α sin β

− α̇ sin θ (cos θ cos α sin β − sin θ cos β)

− β̇ sin θ sin α(cos θ cos β + sin θ cos α sin β)]. (3)

The Hamiltonian H in Eq. (3) is an explicit function of six
variables, namely, H = H (α̇,θ̇ ,β̇,α,θ,β). In particular, H is
linear in the variables α̇, θ̇ , and β̇, and nonlinear in the variables
α, θ , and β. Within an open-system dynamics, any of these
variables could be associated with a source of stochastic noise,
e.g., the semiclassical dephasing model [19]. We are interested
here in the fluctuations of the linear variables.

For the sake of simplicity, we take β = 0 to illustrate our
theory. In this case, H and U read

H = σx(−θ̇ cos α + α̇ sin θ cos θ sin α)

− σy(θ̇ sin α + α̇ sin θ cos θ cos α) + σzα̇ sin2 θ, (4)

U = cos θ + i sin θ (σx cos α + σy sin α). (5)

In the absence of noise, when the system is prepared as
|ψ(0)〉 = |0〉, it will evolve into

U |0〉〈0|U † =
(

sin2 θ i sin θ cos θe−iα

−i sin θ cos θeiα cos2 θ

)
, (6)

which is equivalent to a pure state |ψ(t)〉 = sin θ (t)|1〉 −
ieiα(t) cos θ (t)|0〉. Here |0〉 and |1〉 represent the two eigenvec-
tors of σz, with eigenvalues −1 and 1, respectively. Besides
the consistency condition sin θ (0) = 0, there is almost no limit
on the choices of functions θ (t) and α(t) for engineering the
system to reach an arbitrary target state μ|1〉 + ν|0〉 at arbitrary
time T , as long as sin θ (T ) = μ and −ieiα(T ) cos θ (T ) = ν. For
example, if μ = ν = 1√

2
, then a simple choice is θ (t) = πt

4T
,

α = 0, and H = − π
4T

σx . This control dynamics allows for a

target state achieved at an optimal time T compatible with the
brachistochrone solution [6].

By adding decoherence to the system, the passage described
above is not always attainable. In order to develop a protocol
for QSE under the effect of decoherence, we individually
consider the special family of Hamiltonians given by Eq. (4)
under the effect of stochastic fluctuations over the linear
variables α̇ and θ̇ . A more general setup could be considered
by investigating the cases of correlated noise or the noise
attached to the nonlinear variables of the Hamiltonian. In
any case, the approach introduced in this work can also be
generalized to these situations. In the presence of noise, the
density matrix ρ(t) at time t can be evaluated by the ensemble
average over different realizations of time evolution operator
with fluctuating parameters due to noise, i.e.,

ρ(t) ≡ M[U (ξ )|ψ(0)〉〈ψ(0)|U †(ξ )], (7)

where M[·] denotes ensemble average, ξ the noise parameter,
and U (ξ ) the instantaneous time evolution operator (6). To
evaluate the quality of QSE under the effect of noise, we adopt
the control fidelity, which is defined by

F(t) ≡
√

〈ψ0(t)|ρ(t)|ψ0(t)〉, (8)

where |ψ0(t)〉 is the engineered state without noise. The
nonunitary dynamics implied by Eq. (7) can be identified
with different quantum channels. By identifying prototypical
quantum channels, we can illustrate the state preparation by
the inverse engineering procedure.

A. State preparation under dephasing

Suppose α̇ is not a stable variable, i.e., α̇ = a(t) + ξ (t),
where ξ (t) is chosen as Gaussian noise. Then, ensemble
average yields M[α̇] = a(t) + ξ0 and M[(ξ (t) − ξ0)(ξ (s) −
ξ0)] = g(t,s). Here ξ0 is the mean value (or the bias) of
ξ (t). When ξ0 = 0, the noise is categorized into a nonbiased
noise. The quantity g(t,s) is the correlation function for the
nonbiased Gaussian noise. In order to compute the mean
value over Eq. (6), all of the terms involving θ are kept
unchanged, but M[e±iα(t)] = e− 1

2

∫ t

0 G(s)dse±i[α0(t)+ξ0t], where
α0(t) ≡ ∫ t

0 a(s)ds and G(s) ≡ ∫ s

0 g(s,s ′)ds ′. Therefore the
density matrix is

ρ(t) =
(

1−cos(2θ)
2

i sin(2θ)re−i[α0(t)+ξ0 t]

2

−i sin(2θ)rei[α0(t)+ξ0 t]

2
1+cos(2θ)

2

)
, (9)

where r ≡ r(t) = e− 1
2

∫ t

0 G(s)ds is a time-dependent noise factor
determined by the noise correlation function. For any sta-
tionary noise, r(0) = 1 � r(t) � r(∞) = 0. We observe that
this stochastic fluctuation over α̇ induces a purely dephasing
process; i.e., the diagonal terms are not influenced by noise
and the off-diagonal terms are damped at the same rate in
the density matrix, which will end up with a mixed state
sin2 θ |1〉〈1| + cos2 θ |0〉〈0| in the asymptotic time limit. If
we use ρ0 ≡ |ψ0〉〈ψ0| to represent the initial density matrix
free of noise, as given by Eq. (6), then Eq. (9) can be
expressed in Kraus operator-sum representation [1,20,21] for
a qubit under dephasing, ρ(t) = K1ρ0K

†
1 + K2ρ0K

†
2 , where

K1 = diag[re−iξ0t ,1], K2 = diag[
√

1 − |r|2,0], and diag[·]
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FIG. 1. (Color online) Fidelity F under non-Markovian dephasing, with ξ0 = 0, as a function of t (dimensionless), γ (in the unit of
frequency), and θ (angle in radian measure). (a) The target state is chosen as θ = π/8. (b) The noise parameter is chosen as γ = 1.

represents the diagonal matrix. Concerning the control fidelity,
the evaluation of Eq. (8) yields

F(t,α̇) =
√

1 − 0.5 sin2(2θ )(1 − r cos ξ0t). (10)

In this model, the control fidelity is sensitive to the target

state. In particular, F �
√

1 − sin2(2θ)
2 ; i.e., it is increased

by decreasing θ , 0 � θ � π/4. Also the noise bias ξ0 	= 0
deteriorates the fidelity, unless the time T chosen to arrive the
target state satisfies cos(ξ0T ) = 0. Remarkably, the result with
noise is meaningful for pure state control. When the target state
is |1〉, it is still achievable at time T as long as θ (T ) = (2k+1)π

2 ,
k = 0,1,2, . . .. Thus a complete population inversion [17,22]
could be realized, which is robust to the dephasing noise
from α̇.

On the other hand, for ξ0 = 0 and r(t) representing a slowly
varying function of time, we can still attain a target state
with high fidelity in a short time T . For instance, suppose
r(t) = exp(−t/4), which corresponds to Markovian white
noise, with g(t,s) = δ(t,s) and  denoting the coupling
strength with the environment. At the same time, suppose
that it is required that F � Fc, a threshold value for quantum
information processing. Then, T must be less than a critical
time tc, which is given by

tc = − 4


ln

[
1 − 2(1 − F2

c )

sin2(2θ )

]
. (11)

If sin2(2θ ) = 0.5 and Fc = 0.99, then tc ≈ 0.33. For
Rydberg atoms in a cavity or electron spins in quantum
dots [23], we have  ∼ 106 Hz and T ∼ 0.33 μs. It is indeed
a very hard challenge to the external control time-dependent
fields, such as laser pulse sequences.

However, if the noise is not a Markovian white noise,
then the time for QSE would be greatly extended. Here
we use the Ornstein-Uhlenbeck process with the correlation
function g(t,s) = γ e−γ |t−s|/2, to demonstrate the effect of
non-Markovian noise, where the time-dependent damping
function is r(t) = exp{−[t + (e−γ t − 1)/γ ]/4}. When γ →
∞, r(t) reduces to the exponential decay function as that in
the case of Markovian noise. On the other hand, for γ → 0,
the decay rate of r is intensively suppressed, which means the
fidelity maintains a value very close to unity in a much longer
time interval. In Fig. 1, we plot the dynamics of the control

fidelity under the Ornstein-Uhlenbeck noise. Figure 1(a)
shows the effect of γ with a fixed value of θ = π/8, i.e.,
sin2(2θ ) = 0.5. In a strong non-Markovian regime γ = 0.1,
the fidelity could be kept not less than 0.99 until t ≈ 8, i.e.,
T � 8μs for atoms in a cavity, which is almost 24 times what
we get with the Markov noise. Figure 2(a) shows the fidelity
dependence on different target state with 0 � θ � π/2. For
a target state |ψ〉 = sin θ |1〉 − ieiα cos θ |0〉, the population at
the high-level |1〉 is sin2 θ , which is monotonic in this scale.
Yet the plot is symmetric with respect to θ = π/4, where the
survival time for high-fidelity QSE takes a minimal value. This
means that the difficulty in the state control is not proportional
to the state population.

B. State preparation under depolarization

In this model, it is assumed that θ̇ = b(t) + ξ (t). By
employing the same notation as in the previous analysis, we
obtain, after ensemble average, that the density matrix is given
by

ρ(t) =
(

1−r4 cos[2θ0(t)+2ξ0t]
2

ir4 sin[2θ0(t)+2ξ0t]e−iα

2

−ir4 sin[2θ0(t)+2ξ0t]eiα

2
1+r4 cos[2θ0(t)+2ξ0t]

2

)
, (12)

where θ0(t) ≡ ∫ t

0 b(s)ds. The final state of ρ(t) is the most
mixed state 1

2I, where I is the identity matrix. Subsequently,
the fidelity is

F(t,θ̇) =
√

0.5[1 + r4 cos(2ξ0t)], (13)

which means that, in this model, the fidelity is independent of
the choice of target state. This is a dramatic difference between
the noises induced by θ̇ and α̇.

When ξ0 = 0, the external noise in θ̇ induces a standard
depolarization quantum channel [1] for the open system, since
under influence of the noise, ρ(t) = ∑4

j=1 Djρ0D
†
j , where the

Kraus operators are D1 = √
1 + 3r4I/2, D2 = √

1 − r4σx/2,
D3 = √

1 − r4σy/2, D4 = √
1 − r4σz/2. Here r measures the

probability that the system is undisturbed by the noise. Note
that this process constitutes a novel quantum microscopic
model for depolarization dynamics.

When ξ0 	= 0, there is a subtle aspect left for the initial state
preparation. Indeed, in Eq. (6), |ψ(0)〉 = |0〉 means sin θ0(0) =
0 for closed systems. However, for open systems, the initial
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FIG. 2. (Color online) The fidelity F dynamics under a non-
Markovian depolarization noise (ξ0 = 0) with different γ (in the unit
of frequency).

state is chosen as sin θ (0) = sin[θ0(t) + ξ0] = sin ξ0 	= 0 in
the presence of noise. This can be resolved by measuring the
noise bias through a spectroscopy analysis in an experimental
implementation.

By taking a Markovian noise with r(t) = exp(−t/4) and
ξ0 = 0, the critical time tc for control is

tc = − ln
(
2F2

c − 1
)/

. (14)

If Fc = 0.99, then t = 0.04, which is valid for an arbitrary
target state.

The control fidelity under the non-Markovian depolariza-
tion noise is demonstrated in Fig. 2. When γ = 0.1, the fidelity
could be maintained as 0.99 until t ≈ 3, i.e., T � 3μs for
atoms in a cavity, which is about 75 times as that in the case
of white noise. A comparison of Eqs. (10) and (13) shows that
the depolarization noise plays a more severe role in destroying
QSE. In principle, there is no chance to perfectly attain
an arbitrary pure target state or realize a perfect population
transfer with depolarization noise even in the non-Markovian
regime.

III. DISCUSSIONS

A first important observation is that, for either dephasing
induced by α̇ or depolarization induced by θ̇ , the category
description of quantum channel for two-level systems holds
irrespectively to the statistical properties of the noise. Distinct
noises defined by different correlation functions will lead to
different damping functions r(t), which will determine the
control fidelity. Concerning the critical fidelity, for a quantum
system embedded into a non-Markovian environment, r(t)
could be preserved to nearly unity for a long time. Therefore,
non-Markovianity is a useful tool to achieve a suitable control
in QSE.

Moreover, this universal inverse QSE inverse pro-
tocol for two-level systems can be extended straight-
forwardly into higher-dimensional systems. Consider the
stimulated Raman adiabatic passage (STIRAP) [7] in a
three-level atomic system, which targets on the popu-
lation transition between |0〉 and |2〉 without disturb-
ing the quasistable state |1〉. The eigenbasis could be
chosen as |φ1〉 = sin θ sin α|0〉 + cos α|1〉 + cos θ sin α|2〉,
|φ2〉 = sin θ cos α|0〉 − sin α|1〉 + cos θ cos α|2〉, and |φ3〉 =

cos θ |0〉 − sin θ |2〉. Assume θ (0) = α(0) = 0. Then U and H

are obtained as

U (t) =

⎛
⎜⎝

cos θ cos α cos θ sin α − sin θ

− sin α cos α 0

sin θ cos α sin θ sin α cos θ

⎞
⎟⎠ , (15)

H (t) = i

⎛
⎜⎝

0 α̇ cos θ −θ̇

−α̇ cos θ 0 −α̇ sin θ

θ̇ α̇ sin θ 0

⎞
⎟⎠ . (16)

As expected, it demonstrates that the linear parameters of
Hamiltonian are α̇ and θ̇ . If the system is prepared as
|ψ(0)〉 = |0〉, then |ψ(t)〉 = − sin θ (t)|2〉 + cos θ (t)|0〉 in the
case of a closed system. That would be an ideal STIRAP. Yet,
with linear noise θ̇ = b(t) + ξ (t) (here we choose ξ0 = 0), the
density matrix becomes

ρ(t) =

⎛
⎜⎜⎝

1−r4 cos[2θ0(t)]
2 0 −r4 sin[2θ0(t)]

2

0 0 0
−r4 sin[2θ0(t)]

2 0 1+r4 cos[2θ0(t)]
2

⎞
⎟⎟⎠ , (17)

which is almost the same as Eq. (12) with α = ξ0 = 0;
i.e., it is also a depolarization process. Then the control
fidelity is given by

√
(1 + r4)/2, which means the noise

will definitely destroy the perfect QSE. However, beyond
the STIRAP, if the state is prepared as |1〉 and the target
state is μ|2〉 + ν|0〉, the fidelity under the same noise is

F =
√

1+r4

2 sin4 α + 2r sin2 α cos2 α + cos4 α, which is inde-
pendent of both the target state and θ0. When α(T ) = 0, F
could approach unity, meaning that now the QSE is robust
against the θ̇ noise.

In comparison with other recent Markovian approaches to
deal with decoherence due to weak system-bath interactions
[4], our inverse QSE method has no limitation on the
correlation function of the errors in the system parameters,
which can imply in more general sources of environmen-
tal noises, such as non-Markovian evolutions and strong
system-bath interactions. In this scenario, pure dephasing and
depolarization appear as two important quantum channels
associated with the fluctuations in the linear parameters of
the engineered Hamiltonian, but other sources of errors could
be considered. Moreover, following the strategy presented in
this section, systems with more than two or three levels could
be investigated.

IV. CONCLUSION

In conclusion, we have investigated decoherence in the
linear parameters of the Hamiltonians of two-level and three-
level open quantum systems, discussing its consequences for
inverse QSE protocol. Exact results have been expressed by
different standard quantum channels, each of them imposing
different restrictions on the control fidelity. Non-Markovian
noise is found to be helpful to attain a high fidelity state
passage for a much longer time than the Markov white noise.
Generalization of our approach for other higher-dimensional
systems is a promising route to reveal more abundant relations
between control and noise.
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