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Mollow triplet for cavity-mediated laser cooling
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Here we analyze cavity-mediated laser cooling for an experimental setup with an external trap which strongly
confines the motion of a particle in the direction of the cavity axis. It is shown that the stationary-state phonon
number exhibits three sharp minima as a function of the atom-cavity detuning due to a direct atom-phonon-photon
coupling term in the system Hamiltonian. These resonances have the same origin as the Mollow triplet in the
resonance fluorescence of a laser-driven atomic system. It is shown that a laser-Rabi-frequency-dependent
atom-cavity detuning yields the lowest stationary-state phonon number for a wide range of experimental
parameters.
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I. INTRODUCTION

Laser sideband cooling allows us to cool single, strongly
confined atomic particles to very low temperatures [1].
Its discovery opened the way for experiments which test
the foundations of quantum physics and have applications
ranging from quantum metrology to quantum computing [2].
Unfortunately, laser sideband cooling cannot be used to cool
large numbers of trapped particles to very low temperatures.
Moreover, laser sideband cooling cannot be used to cool
particles with a very complex level structure, like molecules,
very efficiently [3]. Alternative cooling techniques therefore
receive a lot of attention in the literature. The first indications
that cavity-mediated laser cooling allows us to cool trapped
particles to low temperatures were found in Paris in 1995 [4].
More systematic experimental studies of cavity-mediated laser
cooling and related effects have subsequently been reported by
several groups (cf. Refs. [5–14]).

The theory of cavity-mediated laser cooling of free particles
was first discussed in Refs. [15,16]. Later, Ritsch and collab-
orators [17,18] and others [19–21] developed semiclassical
theories to model cavity-mediated cooling processes. In 1993,
Cirac et al. [22] introduced a master-equation approach to ana-
lyze cavity-mediated laser cooling in detail. Since the precision
of calculations which are based on master equations is easier
to control than the precision of semiclassical calculations, this
approach has been used by many authors to show a close
analogy between laser sideband and cavity-mediated laser
cooling [23–28]. In this paper we use the same master-equation
approach as in Refs. [26,27,29] and analyze the cooling
dynamics of the experimental setup in Fig. 1 with the help
of linear differential equations, so-called rate equations, for
expectation values.

In the following, we assume that an external trap confines
the motion of a single particle in the direction of the cavity axis.
This case is a special case of the general scenario considered
in Refs. [25,28]. As illustrated in Fig. 1, the particle should be
placed in a node of the quantized standing-wave cavity field
mode. One way to achieve this is to drive the cavity and to
create a strong optical lattice trapping potential. To initiate the
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cooling process, a laser field with Rabi frequency � should
drive the particle from the side.

In cavity-mediated laser cooling, the reduction in the mean
phonon number of the trapped particle is due to the continuous
conversion of phonons into cavity photons. These phonons are
permanently lost from the system when cavity photons leak
out of the resonator. The result is a reduction of the kinetic
energy of the trapped particle, i.e., cooling. One of the roles
of the atomic particle in the cooling process is to facilitate the
phonon-photon conversion, which needs to be accompanied
by certain electronic transitions. The purpose of the applied
laser field is to populate the atomic states which are involved
in this process. Calculations which go beyond the scope of
this paper have already shown that resonant laser driving of
the atomic 0–1 transition supports the cooling process best.
We therefore assume in the following zero laser detuning.

As we shall see below, the stationary-state phonon number
mss of the experimental setup in Fig. 1 exhibits three sharp
minima as a function of the atom-cavity detuning δ. The
corresponding atom-cavity resonances have the same origin
as the Mollow triplet in the resonance fluorescence of a laser-
driven atomic system [30,31]. For relatively small spontaneous
decay rates, they are simply given by

δ0 ≡ ν, δ± ≡ ν ± � . (1)

Although the experimental setup which we consider here has
already been discussed in the literature [25,28], the cooling
potential of all three resonances has not yet been analyzed
in the literature. For a relatively wide range of experimental
parameters, the previously unconsidered resonance δ = δ+
yields a lower stationary-state phonon number than the optimal
detuning δ = ν of laser sideband cooling [2]. Our calculations
show that this cooling resonance is then especially of interest
when the spontaneous cavity decay rate κ is relatively large or
when the phonon frequency ν is relatively small.

There are five sections in this paper. In Sec. II, we introduce
the master equations for the description of the experimental
setup shown in Fig. 1. We then use this equation to obtain a
closed set of rate equations, i.e. linear differential equations for
the time evolution of expectation values. These can be used to
model the time evolution of the mean phonon number m up to
second order in the Lamb-Dicke parameter η. Before doing so,
Sec. III uses a simple argument to identify the relevant cooling
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FIG. 1. (Color online) Schematic view of the experimental setup.
It consists of a resonantly driven atomic particle which is externally
confined in the node of an optical cavity. Its motion is quantized in
the direction of the cavity axis.

and heating resonances. A detailed analysis of the cooling
process with analytical and numerical results can be found in
Sec. IV. Finally, we summarize our findings in Sec. V.

II. THEORETICAL MODEL

Let us now have a closer look at the Hamiltonian of the
experimental setup shown in Fig. 1. In the usual dipole and
rotating-wave approximation, it equals

H = h̄ω0 σ+σ− + h̄ν b†b + h̄ωcav c†c + h̄g sin(kcav · r) cσ+

+ H.c. + 1
2h̄� σ+ e−iω0t + H.c. (2)

Here h̄ω0, h̄ν, and h̄ωcav denote the energy difference between
the atomic ground state |0〉 and the excited state |1〉, the free
energy of a single phonon, and the free energy of a cavity
photon. Moreover, σ+ ≡ |1〉〈0| and σ− ≡ |0〉〈1|, while b and
c are phonon and photon annihilation operators with bosonic
commutator relations,

[b,b†] = [c,c†] = 1 . (3)

The last term in the first line of Eq. (2) takes the atom-cavity
interaction at position r of the trapped particle into account.
Here g is the atom-cavity coupling constant, and kcav is the
wave vector of the cavity field. The last term in Eq. (2)
describes the resonant driving of the particle with a laser with
Rabi frequency � and frequency ω0.

In this paper, we assume an external trap which confines
the motion of the particle in the direction of the cavity axis.
We denote the trap center by R and the displacement of the
atom from the trap center by x such that its position r is
given by r = R + x. Considering the center-of-mass motion
of the trapped particle quantized with the phonon annihilation
operator b from above yields

kcav · x = η(b + b†) . (4)

The Lamb-Dicke parameter η in this equation is a measure of
the strength of the trapping potential. Usually, one has

η � 1 . (5)

For a wide range of particle positions r, the atom-phonon-
photon interaction is therefore only relatively weak. In order
to maximize it, we assume in the following that R points at a

node of the cavity field, which implies e−ikcav·R = ±1. Hence

sin(kcav · r) = ±η (b + b†) + O(η3) . (6)

Substituting this equation into Eq. (2) and going into the
interaction picture with respect to

H0 = h̄ω0(σ+σ− + c†c) , (7)

we obtain the time-independent interaction Hamiltonian

HI = h̄ν b†b + h̄δ c†c + 1
2h̄� (σ− + σ+)

+ h̄ηg (b + b†)(σ+c + σ−c†) + O(η3) (8)

in the usual Lamb-Dicke approximation. Here we ignored the
minus sign in Eq. (6) since this phase factor has no real physical
consequences [32].

The main difference between laser sideband [1,2] and
cavity-mediated laser cooling is that, in the latter case, the
atomic raising operator σ+ in the cooling Hamiltonian is
replaced by the cavity photon creation operator c†. Hence the
cooling efficiency depends strongly on the spontaneous cavity
decay rate κ and not only on the spontaneous atom decay
rate 	. To model this, spontaneous photon emission is, in the
following, taken into account by the quantum optical master
equation

ρ̇I = − i

h̄
[HI,ρI] + 1

2
κ(2cρIc

† − c†cρI − ρIc
†c)

+ 1

2
	(2σ−ρIσ

+ − σ+σ−ρI − ρIσ
+σ−). (9)

In the following, we use this equation to analyze the cooling
process on a time scale proportional to η2. But before doing so,
let us have a closer look at the expected cooling and heating
resonances.

III. EXPECTED COOLING AND HEATING RESONANCES

Phonons have no spontaneous decay rate. To initiate the
cooling process, it is therefore important to convert them
into particles with a nonzero spontaneous decay rate, like
cavity photons. One of the roles of the atomic particle is to
facilitate this conversion. By changing its electronic state, the
atomic particle supports the conversion of a phonon into a
cavity photon. When the photon subsequently leaks out of the
cavity, a phonon is permanently lost, which implies cooling. In
order to make the cooling process as efficient as possible, the
detunings of the experimental setup in Fig. 1 should be adjusted
such that cooling transitions become resonant. Moreover, all
heating transitions should be as off-resonant as possible. For
the experimental setup which we consider here, this means that
at least some of the bc† terms in the Hamiltonian need to be in
resonance, while resonance of b†c† terms should be avoided.

In order to identify the relevant cooling and heating
resonances and to get more insight into the dynamics induced
by the Hamiltonian HI, we now change into a dressed-state
picture. To do so, we diagonalize the laser driving term, i.e., the
atomic operator σx = σ− + σ+, in Eq. (12). The eigenvalues
and eigenvectors of σx are λ± = ±1 and

|λ±〉 = 1√
2

(|0〉 ± |1〉) , (10)
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respectively. Using this notation, we find that

σ± = 1
2 (|λ+〉〈λ+| − |λ−〉〈λ−| ± |λ+〉〈λ−| ∓ |λ−〉〈λ+|).

(11)

Consequently, the Hamiltonian HI in Eq. (8) can be written as

HI = h̄ν b†b + h̄δ c†c + 1
2h̄�(|λ+〉〈λ+| − |λ−〉〈λ−|)

+ 1
2h̄ηg (b + b†)(c + c†)(|λ+〉〈λ+| − |λ−〉〈λ−|)

+ 1
2h̄ηg (b + b†)(c − c†)(|λ+〉〈λ−| − H.c.). (12)

To remove all the terms in the first line of this equation from
HI, we now go into a further interaction picture and obtain the
interaction Hamiltonian H̃I,

H̃I = 1
2h̄ηg [e−i(δ+ν)t bc + e−i(δ−ν)t bc† + H.c.]

× (|λ+〉〈λ+| − |λ−〉〈λ−|)
+ 1

2
h̄ηg [e−i(δ+ν)t bc − e−i(δ−ν)t bc† − H.c.]

× (ei�t |λ+〉〈λ−| − H.c.). (13)

To ensure that at least one of the bc† terms in the above
Hamiltonian becomes time independent, the atom-cavity
detuning δ needs to equal one of the three detunings δ0 and
δ± in Eq. (1). These three resonances are the three cooling
resonances of the cooling process which we consider here.

Moreover, all heating terms, i.e., all b†c† terms, should
oscillate rapidly in time. This means the atom-cavity detuning
δ should stay as far away as possible from the three detunings

μ0 ≡ −ν, μ± ≡ −ν ± � . (14)

These are the three heating resonances of the cooling process.
One can easily check that the distance between any neigh-
boring cooling or heating resonances equals the laser Rabi
frequency �, i.e., |δ0 − δ±| and |μ0 − μ±|. The same applies
for the resonances of a laser-driven atomic two-level system
inside a quantized field [30]. This means the δ resonances in
Eq. (1) and the μ resonances in Eq. (14) form so-called Mollow
triplets.

IV. DETAILED ANALYSIS OF THE COOLING PROCESS

The discussion in the previous section tells us for which
atom-cavity detunings we can expect relatively efficient cool-
ing of the trapped particle, as long as the spontaneous decay
rates κ and 	 remain relatively small. To learn more about
the cooling process and to study the effect of relatively large
spontaneous decay rates, we now analyze the above-described
cooling process in more detail. To do so, we introduce a closed
set of rate equations. These are linear differential equations
for the time evolution of expectation values. Using master
equation (9), one can show that the time evolution of the
expectation value of an arbitrary operator AI in the interaction
picture is given by

〈ȦI〉 = − i

h̄
〈[AI,HI]〉 + 1

2
κ〈2c†AIc − AIc

†c − c†cAI〉

+ 1

2
	〈2σ+AIσ

− − AIσ
+σ− − σ+σ−AI〉. (15)

Here we are especially interested in the time evolution of the
mean phonon number

m ≡ 〈b†b〉 . (16)

Additional expectation values are taken into account in order to
obtain a closed set of rate equations which accurately describe
the experimental setup in Fig. 1 on a time scale proportional
to η2.

In the following, we assume that the atom-phonon-photon
interaction constant ηg is either much smaller than the atom-
cavity detuning δ or much smaller than the cavity decay rate κ

or much smaller than the phonon frequency ν,

ηg � δ, κ,or ν . (17)

As we shall see below, this condition guarantees that the mean
phonon number m evolves on a much slower time scale than
all other expectation values which are involved in the cooling
process. It guarantees that the time evolution of m is much
slower than the inner dynamics of the atom-cavity-phonon
system. No conditions, other than Eq. (17), need to be imposed
for the following calculations to apply.

A. The relevant expectation values

As we shall see below, in order to obtain a closed set of
cooling equations, including one for the time evolution of the
mean phonon number m up to order η2, we need to consider
the expectation values of certain mixed operators Xijk of the
form

Xijk ≡ Bi�jCk, (18)

with the B, �, and C operators defined such that

(B0,�0,C0) ≡ (1,1,1),

(B1,�1,C1) ≡ (b†b,σ+σ−,c†c) ,

(B2,�2,C2) ≡ (b + b†,σ− + σ+,c + c†), (19)

(B3,�3,C3) ≡ i(b − b†,σ− − σ+,c − c†),

(B4,C4) ≡ (b2 + b†2,c2 + c†2),

(B5,C5) ≡ i(b2 − b†2,c2 − c†2).

Using these operators, the Hamiltonian HI in Eq. (8) becomes

HI = h̄ν B1 + h̄δ C1 + 1
2h̄��2

+ 1
2h̄ηg B2(�2C2 + �3C3) . (20)

In the following, we use this representation of the Hamiltonian
since the X operators obey relatively simple commutator
relations.

Moreover, we denote their expectation values by

xijk ≡ 〈Xijk〉 . (21)

Since all operators Xijk are Hermitian, the variables xijk are all
real. To distinguish terms in different orders in η more easily,
we adopt the notation

xijk ≡ x
(0)
ijk + x

(1)
ijk + · · · (22)

throughout the remainder of this paper, while the mean phonon
number m is written as

m ≡ m(0) + m(1) + · · · (23)
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and so on. The superscripts indicate the scaling of the
contribution of the respective variable in η.

B. Time evolution at zeroth order in η

First, we have a look at the η = 0 case. This means we
assume that there is no coupling between phonon, photon, and
atomic states. Hence the cavity remains in its vacuum state and

〈Ck〉(0) ≡ 0 (24)

for k = 1, . . . ,5. Analogously, or by using Eqs. (15) and (20),
one can show that

ṁ(0) = 0 . (25)

This tells us that there is no cooling at zeroth order in η.
Moreover, we find that

〈Ḃ2〉(0) = −ν 〈B3〉(0), 〈Ḃ3〉(0) = ν 〈B2〉(0) ,
(26)〈Ḃ4〉(0) = −2ν 〈B5〉(0), 〈Ḃ5〉(0) = 2ν 〈B4〉(0).

When solving these rate equations, we find that the phonon
coherences 〈B2〉(0) to 〈B5〉(0) oscillate around zero on time
scales given by the phonon frequency ν. When analyzing the
cavity-mediated cooling process on a much longer time scale,
the above phonon coherences can be adiabatically eliminated
from the system dynamics. Setting their time derivatives in
Eq. (26) equal to zero yields

〈Bi〉(0) ≡ 0, (27)

with i = 2, . . . ,5. Notice that we only use this equation to
analyze the cooling dynamics of our system. In this case,
Eq. (27) is well justified since the effective cooling rate γc of
the experimental setup which we consider here (see below)
scales as η2.

After introducing the short-hand notation zj ≡ 〈�j 〉(0) for
expectation values of the electronic states of the trapped
particle, one can show that

ż1 = 1
2�z3 − 	 z1, ż2 = − 1

2	 z2,
(28)

ż3 = � (1 − 2z1) − 1
2	 z3

at zeroth order in η. These expectation values reach a stationary
state relatively quickly. When analyzing processes on the
time scale given by the cooling rate γc, these too can be
adiabatically eliminated and approximated by their stationary-
state solutions. Doing so, we find that

(z1,z2,z3) =
(

�2

	2 + 2�2
,0,

2	�

	2 + 2�2

)
. (29)

Before using these results to derive an effective cooling
equation for the mean phonon number m, we notice that

x
(0)
ijk = 〈Bi〉(0)〈�j 〉(0)〈Ck〉(0) (30)

when η = 0 since all three subsystems evolve independently
in this case.

C. Time evolution at first order in η

Let us now have a closer look at the differential equations
which describe the time evolution of m and the xijk’s at first

order in η. Using Eqs. (15) and (20), we find, for example, that

ṁ(1) = 1
2ηg

(
x

(0)
322 + x

(0)
333

)
. (31)

Unfortunately, Eq. (30) implies x
(0)
322 = x

(0)
333 = 0, which yields

ṁ(1) = 0 . (32)

As in other laser cooling schemes of atomic particles, the mean
phonon number m changes only on the very slow time scale
given by η2. As we shall see below, we obtain a nonzero time
derivative of m when we calculate x322 and x333 up to first order
in η. Therefore we now have a closer look at these expectation
values.

Taking the results in Eqs. (24), (27), (29), and (30) into
account, one can show that

ẋ
(1)
202 = −ν x

(1)
302 − δ x

(1)
203 − ηg (1 + 2m(0))z3 − 1

2γ0 x
(1)
202 ,

ẋ
(1)
203 = −ν x

(1)
303 + δ x

(1)
202 + ηg (1 + 2m(0))z2 − 1

2γ0 x
(1)
203,

ẋ
(1)
302 = ν x

(1)
202 − δ x

(1)
303 + ηg z2 − 1

2γ0 x
(1)
302,

ẋ
(1)
303 = ν x

(1)
203 + δ x

(1)
302 + ηg z3 − 1

2γ0 x
(1)
303, (33)

and

ẋ
(1)
212 = −ν x

(1)
312 − δ x

(1)
213 + 1

2�x
(1)
232 − 1

2γ2 x
(1)
212 ,

ẋ
(1)
213 = −ν x

(1)
313 + δ x

(1)
212 + 1

2�x
(1)
233 − 1

2γ2 x
(1)
213 ,

(34)
ẋ312 = ν x

(1)
212 − δ x

(1)
313 + 1

2�x
(1)
332 − 1

2γ2 x
(1)
312 ,

ẋ
(1)
313 = ν x

(1)
213 + δ x

(1)
312 + 1

2�x
(1)
333 − 1

2γ2 x
(1)
313.

Moreover, one can show that

ẋ
(1)
222 = −ν x

(1)
322 − δ x

(1)
223 − 1

2γ1 x
(1)
222 ,

ẋ
(1)
223 = −ν x

(1)
323 + δ x

(1)
222 + 2ηg (1 + 2m(0))z1 − 1

2γ1 x
(1)
223 ,

ẋ
(1)
322 = ν x

(1)
222 − δ x

(1)
323 + 2ηg z1 − 1

2γ1 x
(1)
322 ,

ẋ
(1)
323 = ν x

(1)
223 + δ x

(1)
322 − 1

2γ1 x
(1)
323 , (35)

and

ẋ
(1)
232 =−ν x

(1)
332 − δ x

(1)
233 + �

(
x

(1)
202 − 2x

(1)
212

)
− 2ηg (1 + 2m(0))z1 − 1

2γ1 x
(1)
232,

ẋ
(1)
233 =−ν x

(1)
333 + δ x

(1)
232 + �

(
x

(1)
203 − 2x

(1)
213

) − 1
2γ1 x

(1)
233,

ẋ
(1)
332 =ν x

(1)
232 − δ x

(1)
333 + �

(
x

(1)
302 − 2x

(1)
312

) − 1
2γ1 x

(1)
332,

ẋ
(1)
333 =ν x

(1)
233 + δ x

(1)
332 + �

(
x

(1)
303 − 2x

(1)
313

) + 2ηg z1 − 1
2γ1 x

(1)
333.

(36)

Here the effective spontaneous decay rates γn are defined such
that

γn ≡ κ + n	 . (37)

As we shall see below [cf. Eq. (39)], these equations indeed
constitute a closed set of rate equations when combined with
the differential equation for the time evolution of the mean
phonon number m at second order in η.

D. An effective cooling equation

The previous two sections have shown that there is no time
evolution of the mean phonon number m at zeroth and first

053417-4



MOLLOW TRIPLET FOR CAVITY-MEDIATED LASER COOLING PHYSICAL REVIEW A 88, 053417 (2013)

order in η [cf. Eqs. (25) and (32)]. Going an order higher in η

and using again Eqs. (15) and (20) yields

ṁ(2) = 1
2ηg

(
x

(1)
322 + x

(1)
333

)
. (38)

To calculate the x coherences in this equation, we employ
condition (17). This condition allows us to calculate the
coherences x

(1)
ijk in Eqs. (33)–(36) via an adiabatic elimination.

Doing so and setting, for example, the time derivatives of the
coherences x

(1)
ijk with j = 2 in Eq. (35) equal to zero, we obtain

an expression for x
(1)
322. To calculate x

(1)
333, the remaining 12 rate

equations have to be taken into account. Setting them equal
to zero and substituting the resulting expressions for x

(1)
322 and

x
(1)
333 into Eq. (38), we finally find that

ṁ(2) = 2η2g2�2

	2 + 2�2

{
γ1

γ 2
1 + ξ 2+

+ (γ0γ1γ2 + γ−1ξ
2
+)

(
γ 2

2 + ξ 2
+
) + 4�2

(
γ0γ

2
2 + γ4ξ

2
+
)

(
γ 2

0 + ξ 2+
)[(

γ 2
1 + ξ 2+

)(
γ 2

2 + ξ 2+
) + 8�2(γ1γ2 − ξ 2+) + 16�4

]
} (

1 + m(0)
)

− 2η2g2�2

	2 + 2�2

{
γ1

γ 2
1 + ξ 2−

+ (γ0γ1γ2 + γ−1ξ
2
−)

(
γ 2

2 + ξ 2
−
) + 4�2

(
γ0γ

2
2 + γ4ξ

2
−
)

(
γ 2

0 + ξ 2−
)[(

γ 2
1 + ξ 2−

)(
γ 2

2 + ξ 2−
) + 8�2(γ1γ2 − ξ 2−) + 16�4

]
}

m(0), (39)

with the parameter ξ± defined as

ξ± ≡ 2(δ ± ν) (40)

and with the γn defined as in Eq. (37).
Setting the time derivative ṁ(2) in Eq. (39) equal to zero

yields an analytical expression for the stationary-state phonon
number mss of the proposed cooling process at zeroth order
in η. Unfortunately, this expression is relatively complex, and
looking at it does not yield much insight into the considered
cavity-mediated laser cooling process. In the following, we
therefore only notice that the time evolution of the mean
phonon number m is, to a very good approximation, given
by a differential equation of the form

ṁ = −γc m + c , (41)

where γc is an effective cooling rate and where c is a constant.
Taking Eqs. (25) and (32) into account and comparing Eq. (41)
with Eq. (39) confirm that both γc and c scale as η2. The
comparison also yields analytical expressions for γ (2)

c and c(2).
In the following, we discuss the dependence of γ (2)

c and of the
stationary-state phonon number m(0)

ss ,

m(0)
ss = c(2)/γ (2)

c , (42)

on the different experimental parameters of the atom-cavity
system in Fig. 1.

E. Confirmation of the expected cooling and heating resonances

Before doing so, let us have a closer look at Eq. (39).
Suppose that the laser driving is so weak that all the �2 terms
in Eq. (39) become negligible. In this case, we find that

m(0)
ss = κ2 + 4(δ − ν)2

16δν
. (43)

This stationary-state phonon number is exactly the same as
mss for laser sideband cooling of a trapped particle in free
space [1,2,29], but with 	 replaced by κ . For relatively small
cavity decay rates κ , it assumes its minimum when δ = δ0, with
δ0 defined as in Eq. (1). Looking only at the case of weak laser
driving, one might indeed conclude that there is only a single
cooling resonance and a very close analogy between laser
sideband and cavity-mediated laser cooling. Instead, this paper

illustrates that atom-cavity-phonon systems can exhibit a much
richer inner dynamics than systems with only atom-phonon
interactions.

FIG. 2. (Color online) Logarithmic plot of the stationary-state
phonon number m(0)

ss as a function of the atom-cavity detuning δ

for three different Rabi frequencies � and ν = 	 for (top) κ = 	

and (bottom) κ = 10 	. This figure has been obtained from Eq. (39)
by setting ṁ(2) equal to zero and clearly illustrates the presence of
the cooling and heating resonances which we identified in Eqs. (1)
and (14).
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Another interesting parameter regime is the one where
�, ξ± � κ ,	. In this case, Eq. (39) simplifies to

ṁ(2) = η2g2

{
γ1

ξ 2+
+ γ−1ξ

2
+ + 4γ4�

2

ξ 4+ − 8�2ξ 2+ + 16�4

}
(1 + m(0))

− η2g2

{
γ1

ξ 2−
+ γ−1ξ

2
− + 4γ4�

2

ξ 4− − 8�2ξ 2− + 16�4

}
m(0) . (44)

The corresponding stationary-state phonon number m(0)
ss equals

zero when ξ 2
− = 4�2, i.e., when δ equals either δ− or δ+

in Eq. (1). This simple analysis confirms the presence of
the two additional laser-Rabi-frequency-dependent cooling
resonances δ±. However, notice that the above constraint
ξ− � κ ,	 excludes the case where δ = ν. Hence this simple
calculation returns only two of the three cooling resonances.

We now return to Eq. (39) and use it to calculate the
stationary-state phonon number m(0)

ss for the experimental setup
in Fig. 1 for concrete experimental parameters. Figure 2 shows
m(0)

ss as a function of the atom-cavity detuning δ for a relatively
wide range of parameters. To illustrate that the predictions
in Sec. III apply, even for relatively large spontaneous decay
rates, we choose κ and 	 to be of about the same order of
magnitude as the phonon frequency ν and the atom-cavity
detuning δ. For relatively large laser Rabi frequencies �, we
indeed observe three distinct cooling resonances with sharp
local minima of the stationary-state phonon number mss. These

FIG. 3. (Color online) Logarithmic plot of the stationary-state
phonon number m(0)

ss and the cooling rate γ (2)
c as a function of the

laser Rabi frequency � when ν = κ = 	.

are the atom-cavity detunings δ0 and δ± which we defined in
Eq. (1). In contrast to this and in good agreement with the
discussion in Sec. III, the stationary-state phonon number m(0)

ss
increases significantly when δ approaches one of the three
heating resonances μ0 and μ± in Eq. (14). Only when �

becomes much smaller than ν do the cooling resonances and
the heating resonances, respectively, all become the same. In
this case, cooling occurs only for δ = ν, and extreme heating
occurs for δ = −ν.

F. A comparison of the three cooling resonances

To find out how to best cool a trapped particle when
using the experimental setup in Fig. 1, we now compare the
stationary-state phonon numbers m(0)

ss and the effective cooling
rates γ (2)

c of the three cooling resonances δ0 and δ± with each
other. When comparing the expressions for ṁ(2) in Eqs. (39)
and (41), we find that γ (2)

c becomes independent of η and
g when dividing it by (ηg)2. The following results therefore
apply for any values of these two parameters, as long as they
fulfill the condition which we specified in Eq. (17).

1. Dependence on the laser Rabi frequency

Figure 3 shows the stationary-state phonon number m(0)
ss

and the cooling rate γ (2)
c as a function of the laser Rabi

frequency �. As suggested by Eq. (39), we find that there

FIG. 4. (Color online) Logarithmic plot of the stationary-state
phonon number m(0)

ss and the cooling rate γ (2)
c as a function of the

phonon frequency ν for � = 3 	 and κ = 	.
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is no effective cooling when the laser Rabi frequency �

becomes very small. In the limit � → 0, the cooling rate γ (2)
c

tends for all three cooling resonances to zero. Although the
stationary-state phonon number m(0)

ss might be relatively small,
this case is of no interest since the stationary state is reached
only after a very long time. When � increases, the cooling
rate γ (2)

c also increases rapidly. Naively, one might expect that
increasing the laser Rabi frequency � further and further would
also increase the cooling rate further. That is not the case.
As shown in Fig. 3, the cooling process saturates relatively
quickly, and the stationary-state phonon number remains more
or less constant for very large �.

When comparing all three cooling resonances, we see that
the atom-cavity detuning δ− yields the highest values of m(0)

ss
and is therefore of no practical interest. One reason for this
can be found in Eqs. (1) and (14). For δ = δ−, there is always
a heating resonance relatively close by, which compensates
some of the effects of the resonant cooling transition. Another
reason for the relatively high values of m(0)

ss for δ = δ− is that
the applied laser field creates a relatively large population in
state |λ+〉 of the trapped particle, while state |λ−〉 remains less
populated [cf. Eq. (29)]. As one can see from Eq. (13), for
δ = δ−, the resonant annihilation of a phonon and the creation
of a cavity photon is accompanied by an atomic transition from
the state |λ−〉 into |λ+〉. When the average population in the

FIG. 5. (Color online) Logarithmic plot of the stationary-state
phonon number m(0)

ss and the cooling rate γ (2)
c as a function of the

phonon frequency ν for � = 30 	 and κ = 	.

state |λ−〉 is relatively low, the atom is not well prepared to
assist the cooling process when δ = δ−.

In contrast to this, the system is, in general, well detuned
from all heating transitions when the atom-cavity detuning
equals either δ0 or δ+. Moreover, for δ = δ+ and for δ = δ0,
resonant cooling transitions are accompanied by a |λ+〉 →
|λ−〉 transition and by a |0〉 → |1〉 or a |1〉 → |0〉 transition,
respectively. Since the average populations in state |λ+〉 and
in atomic states |0〉 and |1〉, respectively, are relatively large
[see again Eq. (29)], the laser driving prepares the trapped
particle well to facilitate the annihilation of a phonon and
to assist the cooling process when δ = δ+ or δ = δ0. Indeed,
Fig. 3 shows that the atom-cavity detuning δ+ yields the lowest
stationary-state photon number m(0)

ss for a relatively wide range
of laser Rabi frequencies �. For the concrete parameters in
Fig. 3, this applies when � lies roughly between 2 and 7 	.
For larger values of �, we obtain the lowest stationary-state
phonon number when choosing δ = δ0 (sideband-cooling
case).

2. Dependence on the phonon frequency

Let us now have a closer look at the dependence of the
cooling process on the phonon frequency ν. To do so, we
consider a relatively small and a relatively large value of
�, while keeping all other system parameters comparable to
previous experimental parameters. As suggested by Fig. 3,

FIG. 6. (Color online) Logarithmic plot of the stationary-state
phonon number m(0)

ss and the cooling rate γ (2)
c as a function of the

spontaneous cavity decay rate κ for � = 3 	 and ν = 	.
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FIG. 7. (Color online) Logarithmic plot of the stationary-state
phonon number m(0)

ss and the cooling rate γ (2)
c as a function of the

spontaneous cavity decay rate κ for � = 30 	 and ν = 	.

we choose � = 3 	 (cf. Fig. 4) and � = 30 	 (cf. Fig. 5). In
Fig. 5, we can easily identify two phonon frequencies ν for
which certain cooling resonances (e.g., δ−) become identical
to one of the heating resonances in Eq. (14). When this
applies, the cooling rate γ (2)

c becomes very small (in some
cases it even becomes negative, which implies heating), and
m(0)

ss tends to infinity. Moreover, in both Figs. 4 and 5, the
atom-cavity detuning δ− yields the highest stationary-state
phonon numbers and is therefore of less practical interest
than δ0 and δ+. For relatively small phonon frequencies ν,
the lowest stationary-state phonon number is achieved when
the atom-cavity detuning equals δ+. For very strongly confined
particles, it is better to choose δ = δ0 (sideband-cooling case).
As one would expect, we notice that higher phonon frequencies
allow us to cool the trapped particle to significantly lower
temperatures.

3. Dependence on the spontaneous cavity decay rate

Finally, we discuss the dependence of m(0)
ss and γ (2)

c on the
spontaneous cavity decay rate κ . As in the previous section,
we choose � = 3 	 (cf. Fig. 6) and � = 30 	 (cf. Fig. 7). For
a relatively wide range of experimental parameters, we find
that the detuning δ+ yields the lowest stationary-state phonon
number (cf. Figs. 6 and 7). This is especially the case when the
spontaneous cavity decay rate κ is relatively large. Although

it is not illustrated here, we would like to add that the cooling
transitions become overdamped when κ becomes too large.
In this case, the cooling becomes very inefficient, and the
stationary-state phonon number m(0)

ss increases rapidly.

V. CONCLUSIONS

In this paper, we analyze cavity-mediated laser cooling for
an atomic particle with external confinement in the direction of
the cavity axis (cf. Fig. 1). The Hamiltonian HI of this system
contains an atom-phonon-photon interaction term which gives
rise to three sharp resonances with a minimum stationary-state
phonon number. For a wide range of experimental parameters,
for example, when the spontaneous cavity decay rate κ is
relatively large or when the phonon frequency ν is relatively
small, one should choose an atom-cavity detuning δ equal to
δ+ in Eq. (1) in order to minimize the stationary-state phonon
number mss (cf. Figs. 3–7). This resonance depends on the laser
Rabi frequency � and is different from the usually considered
resonance δ0 for laser sideband cooling.

To obtain an effective cooling rate γc and an analytical
expression for the stationary-state phonon number mss for
the experimental setup which we consider in this paper [cf.
Eq. (39)], we proceed as in Refs. [26,27,29]. Starting from the
standard quantum optical master equation, we derive linear
differential equations, so-called rate or cooling equations, for
the time evolution of the expectation values. When taking
a large enough number of expectation values into account,
we obtain a closed set of equations, which can be used to
analyze the time evolution of the mean phonon number m

on a time scale given by η2. The only assumption made in
our calculations is that the atom-cavity coupling constant g

multiplied with the Lamb-Dicke η is much smaller than at
least one other experimental parameters [cf. Eq. (17)]. The
condition in Eq. (17) guarantees that the mean phonon number
m evolves on a much slower time scale than all the other
relevant expectation values and allows us to obtain Eq. (39)
via an adiabatic elimination.

Achieving very low stationary-state phonon numbers for
a single trapped particle requires a relatively large phonon
frequency ν, while very large spontaneous decay rates κ

and 	 need to be avoided. Achieving relatively large cooling
rates moreover requires a relatively large atom-cavity coupling
constant g since γc is proportional to (ηg)2/	. To overcome
this problem, it might be interesting to study the cooling
process of the experimental setup in Fig. 1 when it contains
many trapped particles [33]. Using the same arguments as in
Sec. III and diagonalizing the system Hamiltonian with respect
to its free energy and laser terms, one can show that many
noninteracting particles experience exactly the same Mollow
triplet of heating and cooling resonances as a single trapped
particle.
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