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Carrier-envelope-phase-induced asymmetries in double ionization of helium
by an intense few-cycle XUV pulse
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The carrier-envelope-phase (CEP) dependence of electron angular distributions in double ionization of He by
an arbitrarily polarized, few-cycle, intense XUV pulse is formulated using perturbation theory (PT) in the pulse
amplitude. Owing to the broad pulse bandwidth, interference of first- and second-order PT amplitudes produces
asymmetric angular distributions sensitive to the CEP. The PT parametrization is shown to be valid by comparing
with results of solutions of the full-dimensional, two-electron time-dependent Schrödinger equation for the case
of linear polarization.
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I. INTRODUCTION

Theoretical analyses and experimental measurements of the
differential cross sections for single-photon, double photoion-
ization (DPI) of the He atom have a long history of providing
valuable insights into this most fundamental interacting three-
body Coulomb problem [1]. In particular, angular momentum,
parity, and identical particle exchange considerations have led
to discovery of numerous rigorous selection rules for the final-
state electron angular distributions (ADs) [1,2]. Moreover,
such analyses allow the AD to be parametrized in terms of
dynamical and geometrical factors [1,3,4].

Significant control of this fundamental process can be
achieved by measuring the AD of an electron pair [with
momentum directions p̂1 and p̂2 and energy E = (p2

1 +
p2

2)/(2m)] resulting from DPI of He by an intense, few-cycle
XUV pulse with stabilized carrier-envelope phase (CEP) φ.
Indeed, for processes initiated by a pulse field, unlike those
initiated by a monochromatic one, the physical observables
are not invariant with respect to the sign of the short-
pulse electric field vector F(t) or, equivalently, its generally
complex polarization vector e (e · e∗ = 1). Thus, changing
φ → (φ ± π ), or e → −e, “inverts” the temporal distribution
of the pulse field F(t). Since the triply differential probability
(TDP) for DPI, d3W/dEd�p̂1d�p̂2 ≡ W(p1,p2,e) is a true
scalar, the change e → −e is equivalent to similar changes
of other vectors of the problem, i.e., (p1,p2) → (−p1, −p2).
Thus, the CEP induces an asymmetry in the AD,

�W = W(p1,p2,e) − W(−p1, −p2,e), (1)

that vanishes after phase averaging and provides a prominent
manifestation of CEP effects in short-pulse DPI.

Although the phenomenological result (1) is very general
and valid for both perturbative and nonperturbative [in the
pulse field F(t)] regimes, the physical mechanisms responsible
for the AD asymmetry, as well as the information on atomic dy-
namics provided by measuring this asymmetry, differ. Specifi-
cally, the infrared lasers used in strong-field physics have small
photon energies and the laser-field coupling with the atom must
be treated nonperturbatively when analyzing CEP-induced AD
asymmetries in single ionization of an atom [5–7]. Moreover, it
is well known that the AD asymmetry in the strong-field regime

stems from interplay of closed classical electron trajectories
originating from neighboring optical half cycles of a strong
laser pulse field [7,8]. Hence the numerous rigorous selection
rules derived for electron ADs resulting from DPI of an atom
by one photon have very limited applicability in strong-field
physics. Consequently, although strong-field experiments on
DPI have demonstrated the sensitivity of the results to the
CEP of a short laser pulse (see, e.g., Ref. [9]) and have
gleaned information on electron dynamics from an analysis
of the DPI angular distributions (see, e.g., Ref. [10]), analytic
interpretations of such experiments are not at present available.

In contrast, owing to the high carrier frequency of XUV
pulses, DPI by a few-cycle XUV pulse can be described
using perturbation theory (PT) in the pulse field F(t). For
single ionization of an atom by a few-cycle XUV pulse, a
PT analysis [11] provides an ab initio parametrization of the
ionized electron AD in terms of the key parameters of the
process: the CEP of the pulse, the pulse polarization, and
the electron momentum direction. This parametrization [11]
for XUV pulse photoionization of He describes accurately
numerical results obtained by solving the time-dependent
Schrödinger equation (TDSE) [12–14]. In general in the PT
regime, the AD asymmetry originates from interference of
first- and second-order PT transition amplitudes to continuum
states with the same energy E but different parities [11]. [Note
that for a long (≈monochromatic) pulse such interference is
forbidden owing to dipole selection rules.] In DPI of He, the
magnitude of the AD asymmetry should thus be sensitive to
interference of opposite-parity two-electron continuum states.
In order that such interference effects can be observed, two
conditions are necessary. First, the peak intensity of the XUV
pulse must be high enough so that the second-order PT
DPI amplitude has a magnitude that allows for significant
interference with the first-order PT DPI amplitude. Numerical
simulations have shown that XUV pulse intensities of order
1 PW/cm2 are necessary in order that the contribution of the
second-order PT transition amplitude is significant [11,12].
Second, the few-cycle XUV pulses must have a sufficiently
large bandwidth �ω so that the electron energy spectra
produced by the first- and second-order PT amplitudes overlap
in energy. Where such overlap may occur can be estimated as
in the following example. Consider the first- and second-order
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PT amplitudes for DPI by absorption of respectively one and
two photons. The energy range above the He ground state for
which the first-order PT amplitude is significant is ω ± �ω,
while the corresponding energy range for the second-order PT
amplitude is 2ω ± 2�ω. Defining the high-energy position
of the first-order PT amplitude by ω1 = ω + �ω and the
low-energy position of the second-order PT amplitude by
ω2 = 2ω − 2�ω, one expects the energy location at which
maximum interference of these first- and second-order am-
plitudes occurs to be in the vicinity of ωav = (ω1 + ω2)/2.
Experimentally, few-cycle XUV attosecond pulses with stable
CEPs have been achieved [15,16]. Although attosecond pulse
intensities at present are low, progress on increasing the
intensities is being made (see, e.g., Refs. [17–24]).

Note that two-photon DPI of He has become almost a
subfield unto itself owing to recent experiments involving
XUV pulses produced by high-order harmonics [25] or
by free-electron lasers [26–29] that observe this nonlinear
process. Theoretically, there have been a large number of
investigations of two-photon DPI of He involving short
XUV pulses (see, e.g., Refs. [30–46]). Nearly all of these
references provide information on pulse duration effects.
However, only a few of these simulations involve few-cycle
single XUV pulses [30,32,37,38,41,45]. Moreover, several of
these [30,32,38,41] indicate that the final two-electron wave
packet is projected onto states with total angular momenta
L = 0,2 so that effects of the interference with neighboring
odd-order PT amplitudes (i.e., the first order with L = 1 and/or
the third order with L = 1,3) cannot be observed. Finally, all
of these prior investigations of two-photon DPI of He are
for the case of a linearly polarized XUV pulse and none
of the few-cycle investigations include an analysis of CEP
effects.

In this paper we present a parametrization of the nonlinear
attosecond process of DPI of He by a few-cycle XUV pulse.
The result is given in terms of the CEP φ of the pulse and the
key vectors of the problem: the complex pulse polarization e,
and the electron momentum directions p̂1 and p̂2. Analysis
of DPI by a few-cycle XUV pulse permits one to probe
the S-, P -, and D-wave two-electron continua, whereas only
the P wave is accessible in ordinary DPI [1]. In contrast to
single ionization of He treated in Ref. [11], the additional
final-state electron momentum vector in DPI gives a more
complex parametrization. We focus on the CEP dependence
of the AD asymmetries for an arbitrarily polarized pulse.
The parametrized AD is compared with solutions of the two-
electron TDSE for a linearly polarized pulse. The predicted
asymmetries concern more than one particle, as the second
electron is observed to behave differently depending on the
orientation of the first electron with respect to the electric
field. In this regard, we emphasize that our analytical analysis
employs PT only in the XUV pulse interaction with the atom;
the dynamic amplitudes include electron correlation effects
to all orders. Moreover, our numerical simulations of DPI of
He involve the full-dimensional solution of the two-electron
time-dependent Schrödinger equation for the case of a linearly
polarized XUV pulse, so that all electron correlation effects
and interactions of the He atom with the XUV pulse are
accounted for nonperturbatively and exactly to within our
numerical accuracy.

II. THEORETICAL ANALYSIS

We consider the interaction of an atom with a short-
pulse electric field F(t) = F0(t) Re [ee−i(ωt+φ)], where F0(t)
is a smooth envelope function. It is convenient to de-
fine the Fourier transform of F(t): F̂(ε) = ∫ ∞

−∞ F(t)eiεtdt =
eφ F̂ (+)(ε) + e∗

φ F̂ (−)(ε), where eφ ≡ ee−iφ and F (±)(ε) ≡
∫ ∞
−∞ F0(t)ei(ε∓ω)t dt/2. Within PT in the dipole interaction

of an atom with a pulse electric field F(t), the amplitude
A for short-pulse DPI of an initial two-electron bound
1S0 state with energy E0 may be written as A = A1 + A2,
where A1 is the first-order PT amplitude for single-photon
DPI to the continuum P state of the ionized electron pair
with energy E and A2 is the second-order PT amplitude
for a transition (involving two photons) to the continuum
with the same energy E but with total angular momentum
L = 0,2. The DPI probability is thus proportional to |A|2 =
|A1|2 + 2Re(A∗

1A2) + |A2|2. Owing to their different parities,
the interference of the amplitudes A1 and A2, described by
2Re(A∗

1A2), leads to asymmetries in the ADs of the two
electrons. Moreover, as we shall show, these asymmetries
may be controlled by the pulse CEP φ. We neglect spin-orbit
interactions, so that both amplitudes are scalars independent
of the quantization axis. We adopt the same assumptions as in
Ref. [11] (which are appropriate for a pulse bandwidth that is
not too large): (i) the ionization amplitude A1 is assumed to be
dominated by the positive frequency term (F̂ (+)) (describing
photon absorption); (ii) the terms involving two successive
negative frequency components (F̂ (−)) (describing photon
emission) in the second-order PT amplitude A2 are neglected;
(iii) |A2|2 is assumed to be small (except when A1 = 0). For
any geometry and polarization, the TDP for DPI thus equals

W(p1,p2,e) ≈ C[|A1|2 + 2Re(A∗
1A2)], (2)

where C is a normalization factor and E = E1 + E2 is the
kinetic energy of the two electrons.

Since the amplitude A1 is linear in the polarization vector e
of the field F(t), it can be expressed in terms of scalar products
of the unit vectors p̂1 and p̂2 of the electron momenta p1 and
p2, with the vector eφ :

A1 = f1(ξ )(p̂1 · eφ) + f2(ξ )(p̂2 · eφ), (3)

where ξ denotes the parameters p1,p2, cos θ = (p̂1 · p̂2). In LS
coupling, the coordinate part of the wave function of the 1S0

initial state is symmetric under particle exchange; hence the
amplitudes are symmetric under the exchange of photoelectron
momenta p1 ↔ p2, i.e., f1(p2,p1, cos θ ) = f2(p1,p2, cos θ ).
Introducing the symmetric (fg) and antisymmetric (fu) func-
tions fg/u = f1 ± f2 and the notations p̂± = (p̂1 ± p̂2)/2, the
parametrization (3) for A1 in terms of fg(ξ ) and fu(ξ ) becomes

A1 = e−iφ[fg(ξ )(e · p̂+) + fu(ξ )(e · p̂−)], (4)

where fu = 0 for equal energy sharing (EES), p1 = p2.
The amplitude A2 may be parametrized similarly and its

CEP dependence may be expressed explicitly as

A2 = e−2iφB(ξ ; p̂+,p̂−,e,e) + B ′(ξ ; p̂+,p̂−,e,e∗), (5)

where B describes absorption of two photons and B ′ describes
two-photon processes involving emission of one photon and
absorption of another. Both B and B ′ are superpositions of
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four ξ -dependent dynamical parameters multiplied by scalar
products of the vectors involved:

B = h(ξ )(e · e) + h+(ξ )(p̂+ · e)2 + h−(ξ )(p̂− · e)2

+h0(ξ ) (p̂+ · e)(p̂− · e), (6)

B ′ = h′(ξ ) + h′
+(ξ )|p̂+ · e|2 + h′

−(ξ )|p̂− · e|2
+h′

0(ξ ) Re {(p̂+ · e)(p̂− · e∗)}, (7)

where e · e = 
 is the degree of linear polarization of F(t).
In accordance with the general considerations discussed

above, the AD of DPI electrons produced by an intense
few-cycle pulse is asymmetric. The asymmetry is defined
by �W = W(p1,p2,e) − W(p1,p2, −e) ≡ W+e − W−e, or,
alternatively, by Eq. (1). The explicit form for the asymme-
try (1) in the PT regime follows upon substituting Eqs. (4)
and (5) into Eq. (2) to obtain

�W(p1,p2,e) = 4CRe{[f ∗
g (ξ )(p̂+ · e∗) + f ∗

u (ξ ) (p̂− · e∗)]

× [e−iφB + eiφB ′]}, (8)

where we have used the invariance of |A1|2 under the
transformation e → −e. Hence the CEP dependence of �W
is given by a linear superposition of sin φ and cos φ terms
[whose coefficients can be found by comparison with Eq. (8)].
According to PT, its dependence on the peak field intensity
I (relative to a reference value Ir ) is �W ∝ (I/Ir )3/2. The
asymmetry (8) is nonzero for both EES (when fu = 0) and
unequal energy sharing (UES) and vanishes only for back-to-
back emission (p̂+ = 0) in the former case (and, of course,
after phase averaging). The selection rules applicable to the
amplitude A1 in Eq. (4) are clearly exhibited in Eq. (8).

III. NUMERICAL RESULTS FOR THE CASE
OF A LINEARLY POLARIZED PULSE

For a general polarization e, solution of the two-electron
TDSE is a numerically difficult, six-dimensional problem. We
thus focus on the case of linear polarization e = e∗ ≡ ẑ, which
reduces the numerical task to a five-dimensional problem.
For simplicity of presentation, our numerical results are for
the “in-plane” geometry, i.e., the vectors p1, p2, and ẑ lie in
the same plane and one of the electron momenta p1,p2 is
collinear with ẑ. Our calculations include four values of L:
0 � L � 3, so that the rather small third-order PT amplitude
effects are included implicitly. We assume a pulse envelope
F0(t) = F0 cos2(πt/T ) with −T/2 � t � T/2, where T ≡
nc(2π/ω) is the total pulse duration and nc = 3 optical cycles.
The temporal full width at half maximum of the pulse intensity
profile is 0.364T = 1.1 cycles, which is comparable to those
of the single-cycle pulses achieved experimentally [15,16].
The spectral width �ω � 1.44ω/nc [41] of the pulse intensity
profile is 31.2 eV for ω = 65 eV (T = 190.9 as) and 40.8 eV
for ω = 85 eV (T = 146 as). Significant asymmetries occur
only at excess energies E at which the PT amplitudes |A1|
and |A2| have comparable magnitudes. Based on the pulse
bandwidth and the DPI threshold energy (≈79 eV), we
estimate the energies at which these amplitudes interfere to
be in the vicinity of E ≈ 30 eV for ω = 85 eV and E ≈ 4 eV
for ω = 65 eV. The peak pulse intensity is 1 or 2 PW/cm2.

The TDP for DPI is calculated by projecting the continuum
part �C(φ) of the two-electron wavepacket solution of the
full-dimensional, two-electron TDSE [47,48] (treating the
electron-electron interaction exactly) onto field-free, uncorre-
lated symmetrized products of two Coulomb functions for Z =
2. Our numerical method for obtaining �C(φ) is described in
Ref. [13], which treats single ionization of He for a pulse carrier
frequency ω = 36 eV. We bypass the necessity of including
correlation in the field-free double-continuum states by waiting
≈20 a.u. after the end of the pulse before projecting our fully
correlated two-electron wave packet onto the field-free states
[35–37,41,44,45,49]. All results were checked for numerical
convergence as in Refs. [35–37,44,45].

A. Influence of the pulse carrier frequency on DPI electron
angular distribution asymmetries

The TDPs for ω = 85 eV and 65 eV (E = 29.6 eV and
4 eV), I = 2 PW/cm2, and a CEP of φ = π/2 are displayed
in Figs. 1 and 2. For each energy E, both EES and UES cases
are shown. In each case, the electron with energy E1 is detected
on the symmetry axis, alternately along +ẑ or −ẑ (i.e., θ1 = 0
or π ). The AD of the electron with energy E2 is then displayed
as a function of θ2 ≡ θ , where 0 � θ � π . For the EES cases
shown in Figs. 1(a) and 2(a), A1 = 0 for back-to-back emission

0

30

60
90

120

150

180

210

240
270

300

330

0 1 2

θ1θ1

(a)

ω=85 eV

E1=E2=14.8 eV

0

30

60
90

120

150

180

210

240
270

300

330

0 2 4 6

θ1=0
θ1=π

θ1
θ1

ω=85 eV

(b)

E1=3.8 eV, E2=25.8 eV

FIG. 1. (Color online) The TDP d3W/dEd�p̂1d�p̂2 (in units of
10−7 a.u.) for DPI of He by a three-cycle attosecond pulse having
a peak pulse intensity I = 2 PW/cm2, a CEP φ = π/2, and carrier
frequency ω = 85 eV for (a) EES and (b) UES. The electron energies
E1 and E2 are specified in each panel. Solid (blue) curve, θ1 = 0
[solid (blue) arrow], 0 � θ2 � π ; dashed (red) curve, θ1 = π [dashed
(red) arrow], 0 � θ2 � π .
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FIG. 2. (Color online) As Fig. 1 but in units of 10−5 a.u. for a
carrier frequency ω = 65 eV for (a) EES and (b) UES.

(θ = π ), since both p̂+ and fu in Eq. (4) are zero. In this
case, Eq. (2) must be replaced by W(p1, − p1,ẑ) = C|A2|2;
it is thus a direct measure of the second-order TDP. Since
|A2|2 is invariant to ẑ → −ẑ, the on-axis values of the two
TDPs for θ2 = 0 and π are equal in both Figs. 1(a) and 2(a).
The two large lobes in these figures originate predominantly
from interference between the amplitudes fg and fu in A1 [3];
however, their angular positions relative to θ1 differ for θ1 = 0
and π , in contrast to the case of a long pulse [3]. In the UES
cases shown in Figs. 1(b) and 2(b), A1 �= 0 in the back-to-back
configuration. For ω = 85 eV [cf. Fig. 1(b)] one sees two large,
asymmetric on-axis lobes along θ2 = 0 and π . In contrast, for
ω = 65 eV [cf. Fig. 2(b)], which has a small excess energy
E = 4 eV, one of the corresponding lobes is significant, but
the other is very small.

In Fig. 3 we plot as a function of θ2 the difference between
the pair of TDP curves in each panel of Figs. 1 and 2, i.e.,
the asymmetry �W(p1,p2,ẑ), which for the case of linear
polarization is convenient to parametrize as

�W(p1,p2,ẑ) = |K|(I/Ir )3/2 cos(φ + �K ), (9)

where K(ξ,ẑ) ≡ |K| exp(i�K ) is a CEP- and intensity-
independent dynamical parameter, defined by comparison with
Eq. (8). One sees that the shape of �W is insensitive to ω, but
that its magnitude is highly sensitive to ω. This latter sensitivity
stems from the proportionality of �W to the interference
term 2Re(A∗

1A2) in Eq. (2). The results in Fig. 3 show that
although ω = 65 eV is below the 79 eV threshold for DPI,
the bandwidth of the pulse is large enough that overlap of the
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FIG. 3. (Color online) Asymmetry �W for DPI of He by a three-
cycle pulse with peak intensity 2 PW/cm2 and CEP φ=π/2 for two
carrier frequencies ω. Both EES (a) and UES (b) cases are shown.
Results for ω = 85 eV are increased by factors of 71 and 54 in (a)
and (b), respectively.

first- and second-order amplitudes is largest at that frequency.
For EES, �W vanishes for θ2 = π owing to the node in the
A1 amplitude in the back-to-back configuration. In contrast,
for UES, �W takes its maximum value at this angle. The
normalized asymmetry R ≡ �W/(W+ẑ + W−ẑ) at this angle
is 18% for ω = 85 eV and 80% for ω = 65 eV. For the EES
case at θ2 = 136.8◦, R ≈ 52% for 65 and 85 eV.

B. CEP-induced electron angular distribution asymmetries in
DPI of He by a few-cycle XUV pulse

The dependence of the TDP d3W/dEd�p̂1d�p̂2 on the
CEP φ is obtained explicitly upon substituting Eqs. (4) and (5)
into Eq. (2). The results for three CEPs are shown for the EES
case in Figs. 4(a)–4(c) and for the UES case in Figs. 5(a)–5(c).
The sensitive dependence on the CEP shown in these figures
stems from the interference of the first- and second-order PT
amplitudes [cf. Eq. (2)]. This is confirmed in Figs. 4(d) and 5(d)
in which only the first-order term |A1|2 is taken into account
in Eq. (2). Numerically, the results in Figs. 4(d) and 5(d) are
obtained by projecting (long after the pulse) the two-electron
wave packet onto the 1Po final state of two Coulomb functions.
From Eq. (4) one sees that |A1|2 has no dependence on the CEP
and also the ADs for θ1 = 0◦ and θ1 = 180◦ are then mirror
images of one another, unlike the CEP-dependent cases in the
first three panels of Figs. 4 and 5. The effects of the interference

053411-4



CARRIER-ENVELOPE-PHASE-INDUCED ASYMMETRIES IN . . . PHYSICAL REVIEW A 88, 053411 (2013)

0

30

60
90

120

150

180

210

240
270

300

330

0 0.5 1

θ1
θ1

(a)

φ=0
0

30

60
90

120

150

180

210

240
270

300

330

0 0.5 1

(b)

φ=π/3

θ1θ1

0

30

60
90

120

150

180

210

240
270

300

330

0 0.5 1

(c)

θ1θ1

φ=2π/3
0

30

60
90

120

150

180

210

240
270

300

330

0 0.5 1

θ1θ1

(d)

FIG. 4. (Color online) The TDP d3W/dEd�p̂1d�p̂2 (in units of 10−5 a.u.) for DPI of He by a three-cycle XUV pulse with carrier frequency
ω = 65 eV and peak pulse intensity of I = 2 PW/cm2 for three CEPs: (a) φ = 0, (b) φ = π/3, and (c) φ = 2π/3. In (d) we give for comparison
the TDP obtained by including only the first-order PT amplitude. All results are for the EES case with E1 = E2 = 4 eV and the color coding
is the same as in Fig. 1.

term 2Re(A∗
1A2) on the TDP [cf. Eq. (2)] are more pronounced

in the UES cases shown in Fig. 5.
Qualitatively and regardless of energy sharing, in each panel

one can identify the two twin lobes of the AD originating from
the |A1|2 term in Eq. (2), which is modified by the addition
of the CEP-dependent interference term 2Re (A∗

1A2). Both the
magnitude and the angular shift of these twin lobes depend
sensitively on the CEP. The on-axis lobe at θ = 180◦ in each
panel originates mainly from the second-order PT amplitude
A2. [In the EES cases, since A1 vanishes at θ = 180◦, the
on-axis lobes seen in Figs. 4(a)–4(c) are due to |A2|2, which
although not included in Eq. (2) is included implicitly in our
numerical calculations.] The lobe at θ = 180◦ in each of the
EES and UES cases attains its maximum magnitude at φ ≈
π/6. For the EES case, the lobe has its minimum magnitude
at φ ≈ π/2 [cf. Fig. 2(a)].

When changing φ → φ ± π or ẑ → −ẑ and compar-
ing W−ẑ(p1,p2,φ) with W+ẑ(p1,p2,φ) [see Figs. 4(a)–4(c)
and 5(a)–5(c)] one finds a significant difference between the
electron ADs, leading thus to large CEP-induced asymmetries
in �W [cf. Eq. (8)], whose CEP dependence is shown in
Fig. 6 for three different geometries. As is seen in Fig. 6, the
asymmetries �W at φ = 0 and φ = π differ only in their sign.

This originates from the fact that the replacement φ → φ ± π

is equivalent to the inversion of the photon polarization vector
e → −e, which, in turn, results in the inversion of the sign of
�W .

Confirmation of the validity of PT for DPI of He by a
few-cycle XUV pulse with the parameters we have employed
is obtained by fitting the PT parametrization of �W in Eq. (9)
to our full-dimensional, two-electron TDSE results. The results
of fits for three cases are shown in Fig. 6. The fitted PT
curves are in excellent agreement with the TDSE results.
The dynamical parameters K ≡ |K| exp(i�K ) for those three
configurations and one other are given in Table I for two peak
pulse intensities. One sees that the magnitude |K| is invariant
to a doubling of the peak intensity to within �5%, while the
phase �K is invariant to within ≈3◦.

C. CEP dependence of electron angular distributions in the
orthogonal geometry

In the orthogonal geometry (for any energy sharing) the
two ionized electrons are ejected perpendicular to the plane
of the laser pulse polarization ellipse (or to the direction of
the polarization vector for a linearly polarized pulse field).
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FIG. 5. (Color online) As in Fig. 4 but for the UES case with E1 = 0.7 eV and E2 = 3.3 eV.

For this geometry, as one can see from Eq. (4), the first-order
PT DPI amplitude vanishes since p̂+ · e = 0 and p̂− · e = 0.
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FIG. 6. (Color online) CEP dependence of the asymmetry �W
for DPI of He by a three-cycle pulse with ω = 65 eV, and I =
2 PW/cm2. Three geometries with E = 4 eV are shown, including
both EES and UES cases, as specified in the figure legend. The
symbols give our TDSE results. The lines are fits of the TDSE results
to the PT parametrization (9).

Hence, the DPI probability is given by the absolute square of
the second-order PT amplitude A2, i.e., by C|A|2. From Eq. (5)
one sees that the DPI probability is sensitive to the CEP of the
pulse. This geometry thus provides a means to directly measure
the CEP dependence of the second-order PT amplitude. For a
given ω, the CEP dependence has the parametrization:

C|A2|2 = αω(I ) + βω(I ) cos(2φ) + γω(I ) sin(2φ), (10)

where αω(I ), βω(I ), and γω(I ) are CEP-independent, but
intensity-dependent, dynamical parameters, defined by com-
parison with Eq. (5). (The intensity dependence is proportional

TABLE I. Dynamical parameters |K| (10−5 a.u.) and �K for
ω = 65 eV obtained by fitting the PT parametrization in Eq. (9) to
our TDSE results for �W (with I1 = 1 PW cm−2 and I2 = Ir ≡
2 PW cm−2). EES cases: θ2 = (a) 136.8◦ and (b) 133.2◦. UES cases:
θ2 = (c) 180◦ and (d) 136.8◦.

EES (eV) K (a) I1 (a) I2 (b) I1 (b) I2

E1,E2 |K|: 0.96 1.00 0.96 1.00
2.0,2.0 �K : 45.9◦ 48.5◦ 44.6◦ 47.4◦

UES (eV) K (c) I1 (c) I2 (d) I1 (d) I2

E1,E2 |K|: 1.81 1.73 1.41 1.42
0.7,3.3 �K : 316◦ 313◦ 26.2◦ 29.5◦
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TDSE results and the blue lines are fits of the TDSE results to the PT
parametrization in Eq. (10).

to I 2, as our numerical results, not shown, confirm.) For the
case of linear polarization, it is convenient to parametrize the
TDP in Eq. (10) as

C|A2|2 = αω(I )[1 + β̃ω cos(2φ + �ω)], (11)

where β̃ω and �ω are defined by comparing with Eq. (10).
In Fig. 7 we present the CEP dependence of the DPI

TDP for two UES cases involving back-to-back electron
emission in the plane orthogonal to the direction of linear
polarization of an XUV pulse. In Fig. 7(a) the UES results
are for E1 = 3.8 eV and E2 = 25.8 eV, corresponding to
an XUV pulse carrier frequency of ω = 85 eV, whereas in
Fig. 7(b) the UES results are for E1 = 0.7 eV and E2 = 3.3 eV
and a carrier frequency of ω = 65 eV. Note that the results
for ω = 85 eV are about two orders of magnitude smaller
than those for ω = 65 eV and both results are significantly
suppressed (by about three orders of magnitude) compared to
the case of the “in-plane” geometry. In each case the TDSE
numerical results (indicated by the filled circles) are fitted to
the parametrization in Eq. (11), giving excellent agreement
between the numerical and parametrized CEP dependence.
The extracted dynamical parameters obtained from the fits for

these two configurations for I = 2 PW cm−2 are respectively
α85 = 1.05 × 10−10 a.u., β̃85 = 0.72, �85 = 260.6◦; and α65 =
96.9 × 10−10 a.u., β̃65 = 0.80, �65 = −5.68◦. One sees that
in contrast to the phase shift �ω, the amplitude β̃ω of the
CEP-dependent term in Eq. (11) is only slightly sensitive to
the carrier frequency.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a parametrization of two-
electron ADs for DPI of He by an intense, few-cycle XUV
pulse based on PT. Owing to the broad bandwidth of the
pulse, first- and second-order PT amplitudes are nonzero over
an overlapping range of electron kinetic energies E. Their
interference produces asymmetric electron ADs that can be
controlled by the CEP of the pulse. For most geometries,
the ADs are proportional to the first-order DPI amplitude,
so that selection rules for various experimental configurations
known from single-photon DPI are applicable also to DPI
by a few-cycle pulse. For linear polarization of the pulse,
our PT parametrization is in excellent agreement with results
of solutions of the full-dimensional, two-electron TDSE,
validating the PT approach. These numerical results show that
the normalized asymmetry in DPI significantly exceeds that
for single ionization of He for I = 1–2 PW/cm2 [12,13] and
are comparable to that for single ionization plus excitation of
He to He+(2s,2p) [14]. We have also investigated the CEP
dependence of the AD for the special case of orthogonal ge-
ometry for which the first-order amplitude vanishes, providing
a means to directly investigate the CEP dependence of the
second-order PT amplitude. In general, our analytic results
here indicate for any geometry how to control ionized electrons
spatially by means of the XUV pulse parameters (ω, CEP, and
polarization). Other geometries and pulse polarizations will be
analyzed elsewhere. A similar analysis for DPI of He involving
overlap between the second- and the third-order transition
amplitudes leading to asymmetric ADs [�W(p1,p2,e) ∝
(I/Ir )5/2 for the peak field intensity I relative to a reference
value Ir ] can be readily performed. Note finally that if and
when intense, few-cycle attosecond pulses become available,
experiments for DPI of He are likely to be among the first
performed owing to the availability of reaction-microscope
techniques for electron momentum spectroscopy [50].
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