
PHYSICAL REVIEW A 88, 053401 (2013)

Ehrenfest dynamics and frictionless cooling methods
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Recently introduced methods which result in shortcuts to adiabaticity, particularly in the context of frictionless
cooling, are rederived and discussed in the framework of an approach based on Ehrenfest dynamics. This
construction provides physical insights into the emergence of the Ermakov equation, the choice of its boundary
conditions, and the use of minimum uncertainty states as indicators of the efficiency of the procedure. Additionally,
it facilitates the extension of frictionless cooling to more general situations of physical relevance, such as optical
dipole trapping schemes. In this context, we discuss frictionless cooling in the short-time limit, a complementary
case to the one considered in the literature, making explicit the limitations intrinsic to the technique when the
full three-dimensional case is analyzed.
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I. INTRODUCTION

Cooling quantum systems to the lowest reachable tem-
peratures is a goal with motivations arising both from fun-
damental and practical considerations. The ultimate control
of microscopic systems in the ultracold regime allows for
the full exploitation of quantum technologies as well as the
understanding of the attainability of zero temperature. Much
of the focus in cooling has been on the manipulation of popula-
tions in energy levels, through coupling to external reservoirs,
with the goal of increasing occupancy of the lowest energy
levels. However, an alternative strategy consists of temporally
manipulating a parameter of the system Hamiltonian to reduce
the energy content of each level while keeping occupancy
invariant. These strategies are “adiabatic” in the fullest sense,
both thermodynamic and quantum, as they neither change the
entropy nor the energy distribution of the system.

Usual adiabatic protocols require changing a Hamiltonian
parameter such that the rate of change of the parameter
times its duration is much smaller than its absolute initial
value. This requirement severely constrains the cooling power,
making adiabatic cooling techniques less favorable in those
contexts where, in addition to the intrinsic dynamics, sources
of decoherence and noise exist, hindering desired tasks such
as quantum computation or simulation. Techniques to achieve
shortcuts to adiabaticity relax this condition by only requiring
constancy of entropy at the initial and final times, but not
necessarily at intermediate times. By identifying a global time
invariant, temporal trajectories of the Hamiltonian parameter
can be found such that the final population distribution equals
the initial one while all the energy eigenvalues are scaled
down by a common factor. This cooling technique, known as
“frictionless cooling,” sketched in the conclusions of Ref. [1],
has been extended to an atomic framework [2] leading to
an increasing number of applications [3,4]. Adiabatic or
frictionless cooling does not reduce the entropy of the system
under consideration [5], making it ineffective for situations
in which entropy and phase space density play the leading
role such as in triggering phase transitions. However, these
techniques do reduce the temperature, with all the associated
benefits in terms of state preparation [6]. Examples include

efficient fast decompression of 87Rb atoms in normal [7] and
Bose-condensed [8] states, which have been experimentally
demonstrated, and detailed proposals for efficient fast atomic
transport [9] and optimized sympathetic cooling [10].

In harmonic potentials, frictionless cooling is achieved by
choosing the variability of the trap frequency as specified
by the solution of a second-order differential equation, the
Ermakov equation. In our earlier work [11], we had addressed
the robustness of this protocol to realistic sources of uncer-
tainties and errors, and had shown that the Ermakov solution
leads to minimum uncertainty wave packets at both initial and
final times. Additionally, this protocol resulted in squeezing
of the momentum variance, formally parametrized through
Bogoliubov transformations, during the dynamical evolution.
This allowed us to use the degree of squeezing seen in the
evolved solution as an effective measure of fidelity. However,
the reasons behind the emergence of minimum uncertainty
states at the final time, and not during intermediate times, were
not made explicit. In this paper, we fill in some of these gaps
in understanding this technique by considering the Ehrenfest
dynamics of the Heisenberg operator equations for the time-
dependent harmonic oscillator [12,13]. In particular, the physi-
cal interpretation of variables in the Ermakov construction, the
choice of boundary conditions, and the role of squeezing in the
solution all become manifest. We also extend the construction
to a special case where the dynamics is restricted to the class
of generalized Gaussian states, which results in the so-called
effective Gaussian dynamics (EGD) approach [14,15]. While
both Ehrenfest dynamics and the EGD approach are exact for
quadratic potentials, more generally they are known to provide
approximate but valid results specifically at short times [16],
which makes them well suited for application to frictionless
cooling methods in their fastest regime.

The paper is organized as follows. In Sec. II we provide a
brief introduction to the general Heisenberg operator approach
and the special EGD case. In Sec. III this formalism is applied
to the important case of harmonic oscillator or quadratic
potential and provide a brief discussion of the resulting set
of equations. In Sec. IV we explicitly show the connection
of our construction to frictionless cooling in the case of
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harmonic potentials. In Sec. V we discuss possible extensions
within the EGD framework, with particular emphasis on the
experimentally relevant case of optical dipole trapping. Finally
we conclude with some qualitative insights on the usefulness
of Heisenberg operator equations to further expand the concept
of frictionless cooling.

II. HEISENBERG OPERATOR EQUATIONS
AND EHRENFEST DYNAMICS

We begin our analysis considering a general time-dependent
Hamiltonian Ĥ = p̂2/2m + V (x̂,t). The associated Heisen-
berg equations are

dx̂

dt
= p̂

m
,

dp̂

dt
= −∂V (x̂,t)

∂x
. (1)

Writing each operator Â = 〈Â〉 + �Â, where 〈. . .〉 denotes the
expectation value so that 〈�Â〉 = 0, one can Taylor expand the
potential V (x̂,t) about 〈x̂〉 resulting in the following pair of
Ehrenfest equations:

d〈x̂〉
dt

= 〈p̂〉
m

, (2)

d〈p̂〉
dt

= −
∞∑

n=0

1

n!
V (n+1)(〈x̂〉)〈�x̂n〉, (3)

where V (n) = ∂nV/∂xn. Writing down the corresponding
evolution equations for 〈�x̂n〉 leads to an infinite hierarchy
of equations. It is worth noting here that the functional form
of V (x̂,t) is important in coupling higher moments to the
evolution of the centroid variables. The infinite set of moment
equations are typically truncated using one of a number of
possible approximations, largely determined by the nature of
the problem being addressed [17].

Of course, one can truncate the infinite equations order by
order which is equivalent to approximating any potential as
a polynomial, where the degree is related to the order of the
correlations that are retained. However, this truncation leads
to the coupling of moments across different orders as soon as
one goes beyond the second order. This results in higher-order
moments becoming dynamically significant even if they were
initially (at t = 0) zero. The only exception to this behavior is
the special case of a quadratic potential where, at each order,
the moment equations depend only on other moments of the
same order. This is readily illustrated by writing down the
second-order contributions

d〈�x̂2〉
dt

= 1

m
〈�x̂�p̂ + �p̂�x̂〉, (4)

d〈�x̂�p̂ + �p̂�x̂〉
dt

= 2

m
〈�p̂2〉 − 2V (2)(〈x̂〉)〈�x̂2〉, (5)

d〈�p̂2〉
dt

= −V (2)(〈x̂〉)〈�x̂�p̂ + �p̂�x̂〉. (6)

The more general result for the evolution equations for higher-
order moments can be readily written down, although with
tedium increasing progressively with each order.

It is clear that straight truncation up to second order may not
be effective for arbitrary, nonquadratic potentials. Improved
accuracy in arbitrary potentials while keeping the number of

Ehrenfest equations finite is desirable. In this regard, another
related method to truncate the infinite hierarchy of moment
equations involves the use of a time-dependent variational
approach in which the state of the system is assumed to remain
in a general Gaussian form. The major implication of the
Gaussian approximation is that higher-order correlations can
be expressed in terms of one- and two-point correlations alone,
leading to a dramatic truncation in the space of variables. Also,
given that arbitrary operators A, B, and C with [A,B] = iC

implies [18]

〈A2〉〈B2〉 � 1
4 〈C〉2 + 1

4 〈AB + BA〉2, (7)

the general Gaussian form obeys the uncertainty relation

〈�x̂2〉〈�p̂2〉 = h̄2

4
+ 1

4
〈�x̂�p̂ + �p̂�x̂〉2, (8)

which helps to simplify the Ehrenfest equations. The resulting
EGD is represented by [14,15]

dx

dt
= p

m
, (9)

dp

dt
= −

∞∑
n=0

V (2n+1)(x)
ρ2n

n!2n
, (10)

dρ

dt
= �

m
, (11)

d�

dt
= h̄2

4mρ3
−

∞∑
n=0

V (2n+2)(x)
ρ2n+1

n!2n
, (12)

where x ≡ 〈x̂〉 and p ≡ 〈p̂〉 are the expectation values of
position and momentum, respectively. Here, odd cumulants
are identically zero and even cumulants can be written in terms
of variable ρ as 〈�x̂2n〉 = ρ2n2n!/(2nn!). We also introduce
a new variable � = 〈�x̂�p̂ + �p̂�x̂〉/2ρ which, as is clear
from its definition, reflects the correlation between �x̂ and
�p̂. Together, the four equations of motion fully describe the
evolution of both the centroid and the spreading of the wave
packet.

Before considering the case of the time-dependent har-
monic oscillator which serves as a useful paradigm for
frictionless cooling methods, an important difference between
EGD and the second-order truncation methods is worth noting.
The second-order truncation consists of locally approximating
an arbitrary potential by an effective quadratic one and, in
keeping with the Heisenberg picture, places no restrictions
on the wave function. By contrast, the EGD method assumes
a Gaussian state which in terms of the potential results in a
polynomial approximation involving only even powers. Thus,
in the general case, these two approximations are different and
are valid for differing evolution times. As we see in the next
section, an exception is the case of a harmonic potential where
the two methods converge.

III. EHRENFEST DYNAMICS FOR
A HARMONIC OSCILLATOR

Given our motivation of connecting the Ehrenfest equations
to those seen in frictionless cooling methods, we specifically
consider the case of a harmonic trap with a time-dependent
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angular frequency, i.e., V (x,t) = 1
2mω2(t)x2. In this instance,

both the more general approach, Eqs. (2)–(6), and the EGD
yield identical and considerably simplified relations,

dx

dt
= p

m
, (13)

dp

dt
= −mω2(t)x, (14)

dρ

dt
= �

m
, (15)

d�

dt
= h̄2

4mρ3
− mω2(t)ρ. (16)

It is clear that in this specific case of the harmonic oscillator,
Eqs. (13) and (14), and Eqs. (15) and (16) are completely
decoupled, and one can look at the evolution of the mean
position and momentum completely independently of the
evolution of the respective fluctuations, allowing for an easy
numerical integration. Also, it is interesting that, due to the
structure of the equations, Eq. (16) can describe the case of an
external potential that includes up to a linear term in position
via an arbitrary, in general time-dependent, constant β(t), i.e.,
V (x,t) = 1

2mω2(t)x2 + β(t)x.
The decoupling of the centroid and fluctuation relations

allows the recasting of the problem in terms of a higher-
dimensional system where the fluctuation and average vari-
ables are treated on an equal footing. In terms of the canonical
variable pairs (x,p) and (ρ,�), the extended Hamiltonian
Hext ≡ 〈H 〉 is given by Hext = Hpx + H�ρ where

Hpx = p2

2m
+ 1

2
mω2(t)x2, (17)

H�ρ = �2

2m
+ h̄2

8mρ2
+ 1

2
mω2(t)ρ2. (18)

A number of remarks are now in order. First, the extended
Hamiltonian has a centrifugal barrier which prevents ρ → 0
except in the trivial, classical limit in which we can assume
h̄ → 0. Second, the quantum correction preventing null po-
sition fluctuations is proportional to the second power of the
Planck constant, consistently with the osmotic term present
in the Madelung-Bohm form of the Schrödinger equation
[19]. Third, it is simple to show that the effective potential
for the fluctuating part—if expanded around the minimum
for an oscillator with constant frequency—generates small
fluctuations with average value oscillating harmonically in
time (“breathing” modes) with frequency twice the oscillator
frequency. This fact is exploited in stroboscopic quantum
nondemolition measurements of position [20,21]. Finally, the
decoupling of the first and second moments is a particular
case, for a single particle, of Kohn’s theorem valid in the more
general situation of an interacting many-body system [22].

IV. CONNECTION TO FRICTIONLESS COOLING

The goal of this section is to derive from the Ehrenfest
perspective the results of frictionless cooling as described
in [2]. In order to make this contribution self-consistent, we
briefly recall that the Ermakov trajectory, prescribing the time

variation of the harmonic trapping frequency necessary for
frictionless cooling, arises from the Lewis-Riesenfeld invariant
I (t) = 1/2[π2/m + mω2

0(q/b)2], where π = bp − mḃq. The
invariant is obtained, as first shown by Ermakov [23], by
introducing an auxiliary equation to the Newtonian equation
for the harmonic oscillator, which determines the evolution of
a scaling factor b related to the position variable x = q/b. The
resulting Ermakov equation is given by

b̈ + ω2(t)b = ω2
0/b

3. (19)

In order for the invariant I (t) to commute with the
Hamiltonian [given as Eq. (3) in [2]] it is necessary that
at t = 0, b(0) = 1 and ḃ(0) = 0. Also the choice b̈(0) = 0
ensures that ω(0) = ω0. At t = tf the conditions b(tf ) =
(ω0/ωf )1/2, ḃ(tf ) = 0, and b̈(tf ) = 0 are imposed. These make
sure that I (t) commutes with the Hamiltonian at t = tf and
that ω(tf ) = ωf . These six boundary conditions suggest a
fifth-order polynomial ansatz for b(t), facilitating a solution of
the Ermakov equation for b(t), and subsequently the explicit
Ermakov trajectory for the angular frequency ω(t).

The scaling factor b(t) is proportional to the standard
deviation of the wave function σ (t), such that for the ground
state n = 0, b(t) = σ (t)/(h̄/2mω0)1/2, i.e., the standard de-
viation expressed in harmonic oscillator length units, a0 =
(h̄/2mω0)1/2 [2]. This allows us to make the identification with
the parameter ρ in Eqs. (15) and (16) a0b(t) ≡ ρ(t) ≡ σ (t).
In particular, one can condense the four equations Eqs. (13)
and (14), and Eqs. (15) and (16) into two second-order
differential equations,

d2x

dt2
= −ω2(t)x, (20)

d2ρ

dt2
= h̄2

4m2ρ3
− ω2(t)ρ, (21)

where, again, Eq. (20) is completely decoupled from Eq. (21).
The first is nothing but the Newton equation for the harmonic
oscillator while the equation for the spreading of the wave
packet, Eq. (21), can be rearranged as

ρ̈ + ω2(t)ρ = (h̄2/4m2)/ρ3, (22)

which coincides with the Ermakov equation by identify-
ing ω2

0 = h̄2/(4m2a4
0) along with b = ρ/a0. Therefore the

Ermakov equation obtained through a proper, but less physi-
cally insightful, identification of an invariant naturally emerges
here from the Ehrenfest formulation [24]. The identification
of b with ρ also means that is not possible to impose Dirichlet
boundary conditions, since ρ cannot be zero. Solving the
equations under Neumann boundary conditions makes clear
the underpinning for the minimum uncertainty state seen at
t = tf .

Additionally, one can identify ma0ḃ(t) = �(t). The bound-
ary conditions imposed ḃ(0) = ḃ(tf ) = 0 translate into �(0) =
�(tf ) = 0. In our earlier work [11], we found that the Ermakov
trajectory requires a minimum uncertainty wave packet at
both initial and final times t = 0 and t = tf which, in the
terminology of the moments, equates to � = 0 at these times.
So when we follow the Ermakov trajectory ω(t) it is now
not surprising that a minimum uncertainty state is achieved at
t = tf , as this is enforced by the unique choice of boundary
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FIG. 1. Generalized phase-space plots of the Ehrenfest dynamics
in the case of the harmonic oscillator. Here and in all the subsequent
figures, all variables are given in harmonic oscillator units, with h̄ =
m = 1. By definition � has units of harmonic oscillator momentum.
In the top row we depict the case of a harmonic oscillator driven
through a Ermakov trajectory, with the solid line corresponding
to tf = 25 ms, and the dashed line to a faster frictionless cooling
occurring in tf = 6 ms (see also Fig. 4 in [28]). On the left we report
the centroid dynamics, p vs x, on the right column the fluctuation
dynamics, � vs ρ. For comparison, in the bottom row we report
the same quantities for the case of a linear ramping down of the
frequency occurring in the same time durations, showing that in the
25-ms case the harmonic oscillator performs several cycles with
respect to the corresponding Ermakov trajectory. Notice that the
Ermakov trajectories in the fluctuational phase space always lead to a
final minimum uncertainty state � = 0, unlike the linear ramp-down
trajectories.

conditions. Notice also that the momentum variance, related
to the temperature of the ultracold gas, can be written in terms
of ρ and � as 〈�p̂2〉 = h̄2/(4ρ2) + �2, from the uncertainty
relation Eq. (8), which shows that momentum fluctuations are
reduced if ρ is made large and, simultaneously, � = 0. This
relationship makes it clear that a mere increase of the position
variance ρ (e.g., by directly relaxing the trap frequency)
with the goal of reducing the corresponding momentum
variance does not necessarily work unless the system reaches
a minimum uncertainty state at the final time. Removal of
squeezing correlations through � = 0 is therefore the key step
in a frictionless cooling scheme.

Furthermore, the boundary conditions b̈(0) = b̈(tf ) = 0
imply �̇(0) = �̇(tf ) = 0, and Eq. (21) then gives the width
ρ consistent with the eigenstate of a harmonic trap with the
correct angular frequencies at t = 0 and t = tf , as it should.
It is worth noting that in the true adiabatic limit one starts
with a minimum uncertainty wave packet [associated with the
initial frequency ω(0)] and it remains a minimum uncertainty
packet for all times during the evolution. This requires � = 0
and d�/dt = 0 for all t . Any deviation from this leads to
diabatic transitions which can be countered by nonzero values
of �. It is interesting that this is precisely the counterdiabatic
anticommutator term found in other approaches to achieve
shortcuts to adiabaticity [25–27].
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FIG. 2. Plot of � vs p and x for the cases shown in Fig. 1. The left
column corresponds to tf = 25 ms, the right column to tf = 6 ms,
the top row is for the Ermakov trajectory, the bottom row for the
corresponding linear ramping with the same tf . An increasing � as
seen in the linear ramping cases leads to larger squeezing of the final
wave function and an increasing departure from the desired minimum
uncertainty state.

We have explicitly confirmed the validity of the Ehrenfest
dynamics and EGD for the time-dependent quadratic potential
by using the numerically obtained Ermakov trajectory as
the input for ω(t) in Eqs. (13)–(16). The time evolution of
the variables was found to be identical to those obtained by
numerically integrating the full Schödinger equation. This
agreement holds even for trajectories involving short tf which
includes an antitrapping stage. The Gaussian ansatz of EGD
implies that the wave function remains a coherent state even
in the presence of an inverted trap as the time is too short for
the wave function to start breaking up.

The phase space diagrams for x vs p and ρ vs � are shown
in Fig. 1 for different cooling protocols. As in our previous
work [10,11], we consider two representative final times in all
of our simulations −tf = 25 ms and tf = 6 ms—where the
6-ms case involves an antitrapping stage while the 25-ms case
does not. We compare the Ermakov trajectory (top row) to the
case of a quasiadiabatic protocol obtained with a linear ramp
of the frequency in the same time interval (bottom row). As
expected, the Ermakov trajectory gives � = 0 at the end of the
run, implying that the state returns to the minimum uncertainty
state as a consequence of the imposed boundary conditions,
while the linear ramp case shows nonzero final �. A three-
dimensional plot is presented in Fig. 2 to show more explicitly
the evolution of squeezing along the trajectories. A more direct
representation of this dynamics in terms of the corresponding
Wigner function has been discussed in Ref. [29].

V. EXTENSIONS TO OPTICAL DIPOLE TRAPPING
USING GAUSSIAN BEAMS

Fast expansion methods have also been discussed in the
more realistic case of optical Gaussian-beam traps in Ref. [30].
This is a more intriguing case than usual magnetic traps since,
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unlike the latter, trapping frequencies along the radial and
axial direction (in the almost universally adopted confinement
geometry with radial symmetry) cannot be independently
controlled. Nevertheless, optical dipole traps enjoy several
advantages in ultracold atom experiments, among these the
possibility to trap spinor condensates, the flexibility in in-
dependently using magnetic fields (for instance to exploit
magnetic Feshbach resonances), the possibility to trap atoms
with no permament magnetic moment, and the possibility for
atomic control with higher spatial and temporal resolution. It
is therefore worthwhile to discuss to what extent frictionless
cooling techniques may be applied to this important class of
trapping schemes. We will deal with the simplest situation of
a single Gaussian beam of wavelength λ red-detuned with
respect to the dominant atomic transition λat. Taking into
account the intensity profile of a Gaussian laser beam in the
paraxial approximation, and identifying a symmetry axis in
the direction of the light propagation along the z axis, the
effective potential energy felt by the atoms is given, in terms
of the radial and axial coordinates r and z, as

Vopt(r,z,t) = V0(t)

[
1 − w2

0

w2(z)
e−2r2/w2(z)

]
, (23)

where V0(t) = 3I0(t)λ3/(16π2cτδ), with I0(t) the instanta-
neous beam intensity, τ the lifetime of the excited state,
δ = λ − λat the detuning between the light wavelength and
the atomic transition wavelength, w0 the beam waist, and
w(z) = w0

√
1 + (z/zR)2 the spot size at location z, where

zR = πw2
0/λ is the Rayleigh range.

On applying the EGD to this effectively two-dimensional
(2D) situation, one gets two sets of equations, Eqs. (9)–(12),
for the radial and axial directions. In each direction, the
expectation values and two-point correlations decouple and
each gives rise to its own Ermakov-type fluctuation equations.
Explicit EGD equations are given by evaluating Eqs. (10)
and (12) using the Gaussian optical potential of Eq. (23) for the
experimentally reasonable case of 〈r〉 = 〈z〉 = 0. From now
on, we shall use the simplified notation r ≡ 〈r〉 and z ≡ 〈z〉.

In the radial direction, the infinite series can be eval-
uated using the properties of Hermite polynomials to give
V

(2n+1)
opt (r) = 0 for all n. By using various identities involving

the generalized Laguerre polynomials the series that includes
the partial derivatives V

(2n+2)
opt (r) can, after some work, be

evaluated to finally yield

d2r

dt2
= 0, (24)

d2ρr

dt2
= h̄2

4m2ρ3
r

− 4V0(t)

mw2
0

ρr

[
1 +

(
2ρr

w0

)2]−3/2

. (25)

In the axial direction, we have instead a Lorentzian function in
z as our Vopt(r,z,t) and it turns out that, again, V

(2n+1)
opt (z) = 0

for all n, while the partial derivatives V
(2n+2)

opt (z) are found to
simplify to give

d2z

dt2
= 0, (26)

d2ρz

dt2
= h̄2

4m2ρ3
z

− V0(t)

mz2
R

ρz

∞∑
n=0

(2n + 2)!

n!

(
− ρ2

z

2z2
R

)n

. (27)

The Newtonian relations (24) and (26) make it clear that
the expansion is around the equilibrium point r = z = 0. The
corresponding extended Hamiltonians in the �-ρ space are
given by

H�rρr
= �2

r

2m
+ h̄2

8mρ2
r

− V0(t)

[
1 +

(
2ρr

w0

)2 ]−1/2

, (28)

H�zρz
= �2

z

2m
+ h̄2

8mρ2
z

+ V0(t)

z2
R

∞∑
n=0

(2n + 1)!

n!

×
(

− 1

2z2
R

)n

ρ2n+2
z . (29)

In the limit of small ρr and ρz (or large w0 and zR) one
can approximate Eqs. (25) and (27) to rederive the Ermakov
equations

d2ρr

dt2
= h̄2

4m2ρ3
r

− 4V0(t)

mw2
0

ρr, (30)

d2ρz

dt2
= h̄2

4m2ρ3
z

− 2V0(t)

mz2
R

ρz. (31)

Comparing with the general form for the Ermakov equation,
we get the equivalent Ermakov angular frequencies ω2

r (t) =
4V0(t)/mw2

0 and ω2
z (t) = 2V0(t)/mz2

R . These are exactly the
forms obtained by Muga and collaborators [30] and despite
the decoupling of the radial and axial coordinates, ω2

r (t) and
ω2

z (t) are related through V0(t),

ω2
z (t) = w2

0

2z2
R

ω2
r (t). (32)

This implies that optimal fast-adiabatic cooling can only be
achieved in either one of the radial and axial directions for a
given run, i.e., the other direction may not be simultaneously
cooled optimally, hopefully undergoing a sort of indirect,
passive frictionless cooling.

We numerically simulate the full EGD relations, Eqs. (25)
and (27), and consider two cases, which are motivated by the
relationship between axial and radial trap frequencies. The first
is the master radial case when ω2

r (t) is set to be the Ermakov
trajectory [and hence ω2

z (t) follows a modified trajectory as
given in Eq. (32)], and the second is the master axial case
for the inverse situation. For illustrative purposes, we shall
consider here the less ideal case of small w0 and zR , i.e., away
from the Ermakov limits of Eqs. (30) and (31) in our numerical
simulations. We shall take the minimum Rayleigh length that
permits paraxial approximation, zR = 2w0 (typically zR is
much larger, for example zR = 24w0 in [30]). Also we choose
the small beam waist of w0 = 20 and 200 harmonic oscillator
lengths, based on the fact that the size of a typical beam waist
can range from w0 = 8μm (as in [30] which is of the order 53
harmonic oscillator lengths for 87Rb atoms) to sizes of order
0.3 mm (corresponding to roughly 2000 harmonic oscillator
lengths).

Figure 3 shows the � vs ρ phase diagram, where the top
row presents the phase-space diagram for the radial variables
�r and ρr and the bottom row is for the axial variables �z

and ρz. In the left column the master radial case is depicted,
while the right column is describing the master axial case.
Figure 4 has the same arrangement as Fig. 3 except that the
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FIG. 3. Ehrenfest dynamics for the optical dipole potential as in
Eq. (23) expressed through the fluctuative components in the � vs ρ

phase diagram. The top row represents the radial variables �r and ρr ,
the bottom row is for the axial variables �z and ρz. In the left column
the Ermakov driving ω2

r (t) is imposed on the radial frequency, in
the right column the axial frequency is instead Ermakov driven with
ω2

z (t). We have chosen a beam waist of w0 = 20a0, and as usual we
consider two different times tf = 25 ms (solid line) and tf = 6 ms
(dashed line).

momentum variance time evolution is presented. The results
shown in Figs. 3 and 4 are obtained for a beam waist w0 =
20a0. A tenfold increase in the beam waist results in the same
qualitative behavior and the corresponding values for 〈�p̂2〉
and � are presented in Table I.

From the results we can see better master axial performance
both in terms of the reduction in the momentum variance and
the restoration of the minimum uncertainty state indicated by
� approaching zero. The results are practically indistinguish-
able from simulating the Ermakov limit, Eq. (31). This is to be
expected, since, even with the deliberately less ideal choice of
w0 = 20a0 and zR = 2w0, the magnitudes of the coefficient of
ρ2n

z in the series of Eq. (27) quickly drops to zero for increasing
n. For instance, up to n = 5 the magnitudes are 2, 7.5 × 10−3,
3.52 × 10−5, 2.05 × 10−7, 1.44 × 10−9. On the other hand,
for efficient cooling in both directions, the master radial case
with tf = 25 ms works better since the performance in the axial
direction is not as severely compromised as in the inverse case.
In general the tf = 25 ms cases yields better results in terms
of cooling, being closer to � = 0.
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FIG. 4. Time evolution of the momentum variance for the same
arrangement as in Fig. 3.

We notice that in the top right-hand panel of Fig. 3 (�r vs ρr

for the master axial arrangement) the phase-space trajectory
for tf = 6 ms covers a relatively large area compared to the
corresponding counterpart in the bottom-left panel (�z vs ρz

for the master radial arrangement). This can be understood
from the difference in the extended Hamiltonians, Eqs. (28)
and (29). If plotted, the potential for the axial Hamiltonian
overlaps very closely to the case of a quadratic potential,
while the potential for the radial Hamiltonian deviates from
the quadratic case as ρr becomes larger, such that the potential
decreases with a greater (negative) slope compared to the
quadratic case. This makes it easier for the ρr variable to
extend to a greater distance from the origin, especially with an
antitrapping stage included in the tf = 6 ms case.

Another observation is the attainment of negative � in
Fig. 3 for tf = 25 ms in the “subordinate” cases (axial under
master radial situation and vice versa). One can understand
the negative � from the extended Hamiltonian as a function
of � and ρ, where, in the � direction the function is simply
parabolic and not multiplied by the Ermakov trajectory ω(t).
Initially � = 0 then it grows over time due to squeezing � >

0, i.e., rolls “uphill” and then it turns around to roll back
down. For the longer nonoptimal time of tf = 25 ms, it seems
reasonable that there is enough time to roll up to the other
side of the hill attaining � < 0. Physically, from the evolution
equations, negative � is seen to result in a decrease in the
corresponding ρ variable. This means a reduction in the spatial

TABLE I. Final radial and axial 〈�p̂2〉 and � for the master radial and master axial cases. All variables are given in harmonic oscillator
units, with h̄ = m = 1. In particular, the beam waist w0 is expressed in units of the harmonic oscillator length a0 = (h̄/2mω0)1/2 which, with
ω0/2π = 250 Hz, corresponds to a0 = 0.95 μm and 0.49 μm in the most representative examples of 23Na and 87Rb atoms, respectively.

Master radial Master axial
w0 tf (ms)

〈
�p̂2

r

〉
�r

〈
�p̂2

z

〉
�z

〈
�p̂2

r

〉
�r

〈
�p̂2

z

〉
�z

20 25 0.0202 0.1285 0.0764 0.2699 0.9337 −0.4687 0.0060 0.0386
20 6 0.0627 0.2425 0.1864 0.4283 1.3265 1.1516 0.0104 0.0759
200 25 0.0050 0.0017 0.0769 0.2711 1.0618 1.0268 0.0050 0.0004
200 6 0.0050 0.0035 0.1733 0.4128 34.5122 5.8745 0.0050 0.0009
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width or the “contractive” behavior associated with the so-
called twisted coherent states introduced in [31] (see also [32]
for the contractive behavior of Schrödinger cat states). The
negative values of � do not impact the uncertainty relation
since the latter depends on �2.

VI. CONCLUSIONS

We have discussed frictionless cooling in terms of the
Ehrenfest dynamics, getting more physical insight into the
detailed nature of the cooling process, and analyzed the rel-
evant example of an optical dipole trap in the short-time
duration regime which is complementary to the analysis
reported in [30]. This approach is also a simpler alternative to
the search for Ermakov invariants in higher dimensional spaces
as discussed in [33] since in our framework the time-dependent
frequencies are related to second derivatives of the potential
evaluated at the expectation values.

The fact that the Ermakov equation emerges for the
case of a harmonic potential via the application of EGD in
which a Gaussian wave-packet ansatz is imposed throughout
the evolution is consistent with the concept of adiabatic
following, where an energy eigenstate remains so throughout
the evolution. One may therefore view the EGD as generating a
subspace of solutions that “simulate” the behavior of adiabatic
following. Alternatively, it can be viewed as a way to naturally
include the counterdiabatic term in the Hamiltonian [25–27].
Formally, one should be able to generalize this idea to any
arbitrary eigenstates and trapping potentials. As mentioned
above, the Gaussian wave packet in a quadratic potential is

the only case that involves a small number of tractable, closed
set of equations as an infinite chain of equations involving
all cumulants results in other situations (for instance see [34]
for the application to a double-well system). However, it is
reassuring that higher order cumulants do not play a significant
role for short times, and therefore should not make invalid the
dynamics in situations in which a very short duration of the
protocol is chosen. In this sense, and noting that solutions
which are less than absolutely optimal may be sufficient for
some cooling situations, we suggest that this “ansatz-enforced”
shortcut to adiabaticity may be applicable in more general
situations. The procedure would start by truncating the Taylor
expansion around the centroid in the Ehrenfest equations to N

terms, with the truncation being exact for potentials described
by an N th order polynomial. This would result in a finite
number of moment equations to be satisfied, instead of a single
Ermakov equation as in the case of a Gaussian ansatz in a
harmonic potential. One can proceed by solving iteratively a
truncated set of cumulant equations with an appropriate ansatz
imposed, using progressively more equations for higher accu-
racy. The high-order moments could additionally be controlled
by the imposition of appropriate boundary conditions.

Finally, it is noted that having ω(0) � ω(tf ) one should also
obtain a “fast-adiabatic heating” effect, and this observation
is more transparent in the Ehrenfest framework as this
corresponds to generalized phase-space trajectories for the
cumulants related to fast-adiabatic cooling via time reversal.
The added ability to deal with more general potentials and
targeted final thermal states may be relevant to recent research
activity in the context of quantum engines [35–37].
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