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Exploring the Barkas effect with keV-electron scattering
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The energy loss of fast ions at close collision is mainly due to electron-ion collisions. The electrons are
approximately stationary and they collide with a fast-moving ion. Here we study the same collision experimentally,
in a reference system where the ions (or atoms) are stationary and interacting with keV electrons. Scattering
cross sections under these conditions deviate from Rutherford, and we link these deviations, at higher energies,
to the Z3 contributions to the electronic stopping and the related Barkas effect and, at lower energies, also to
quantum interference. The present measurements are well described by partial-wave calculations of the elastic
cross section of electrons scattering from atoms. Encouraged by this agreement we use these calculations to
estimate the Barkas factor for all elements and many energies. A universal curve for the Barkas factor due to
close collisions is obtained for neutral projectiles and similar curves with smaller magnitude are found for ions.
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I. INTRODUCTION

The slowing down of energetic particles in matter has been
an active area of research since the early days of quantum
physics. Bethe formulated a very successful theory describing
the energy loss as the consequence of collisions between
the fast-moving ion and nearly stationary electrons. In this
approach, based on perturbation theory, the energy loss is
proportional to the square of the charge of the projectile, Z2 [1],
and therefore the energy loss is independent of the sign of the
charge. Careful measurements by Andersen and coworkers [2]
indicated that this is not quite true, there were small, but
significant contributions to the stopping proportional to Z3

and Z4. The term proportional to Z3 is intriguing, as it suggest
that the stopping power of a particle may differ from that of its
antiparticle. Indeed this was later confirmed by experiments
comparing the stopping of protons and antiprotons [3–5]

Such effects that depend on the sign of the charge of a
particle have always fascinated scientists since they are a
stringent test of the understanding of the underlying physics.
In general it is not an easy task to perform experiments
with negatively and positively charged projectiles (or targets)
since it involves the production of antimatter. When possible,
these charge-sign-dependent effects provide a key test of our
understanding. The first indications of such a dependence came
from the work of Barkas and coworkers [6], who observed
different ranges for positive and negative pions in matter.
Initially this observation was attributed to a difference in the
pion masses, but latter it was demonstrated that it is due to
higher-order contributions to the energy loss rate or stopping
power [7,8]. From then on a difference that depends on the sign
of the charge is referred to as a Barkas effect. Its origin was
initially ascribed to polarization, as a medium reacts differently
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to positively and negatively charged particles [9]. In this picture
positively (negatively) charged particles attract (repel) the
electron cloud giving rise, in a second-order process, to an
enhancement (a depletion) of the electronic density around
the ion path which in turn increases (decreases) the energy
loss. Several years later Lindhard [10] suggested that projectile
screening also leads to different energy losses depending on the
sign of the charge of the projectile. This means that for close
collisions (when the energy loss is dominated by momentum
transfer of individual electrons from the medium to the
projectile), the sign of the charge of the projectile is important.
There are two reasons for the screening of the projectile
nuclear charge. One is the rearranging of the valence electrons.
This results in a screening length determined by the plasmon
frequency (i.e., the electron density) of the target material.
A second screening mechanism exists for partially ionized
ions, also referred to as dressed ions. Here the remaining core
electrons screen the nuclear charge and, as explained later,
also cause a Barkas effect which is largely independent of the
target electronic structure. We are concerned here mainly with
the latter type of screening.

Apart from a few exceptions [11–16] most of the theoretical
work published after the paper of Lindhard [10] has treated the
Barkas effect as a consequence of close collisions [17–28].
The Barkas effect at close collision not only affects the
stopping power but also manifests itself in other physical
areas, but the corresponding interconnections are less known.
One such example is the binary-encounter-peak enhancement
for partially stripped ions [29–31]. Another example is keV-
electron scattering [32–35]. The latter experiment describes
the scattering in the reference frame where the ion (or atom) is
at rest. Such an experiment is relevant for stopping theory,
as the momentum transfer rate (and as a consequence the
stopping power) is determined by the elastic scattering cross
section of the electrons in the reference frame where the
screened ion is at rest [17]. These scattering experiments are
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used nowadays to characterize thin films and small molecules
[35,36]. They are the electron analog of the well-established
(ion) Rutherford backscattering spectrometry (RBS) [37] and
we refer to it as ERBS (electron RBS). The element selectivity
is based on the recoil energy transferred by the keV electron
under backscattering conditions. As in RBS, the elemental
quantification is accomplished by the differential elastic cross
section dσ/d�, which is determined by the atomic potential.
Conversely if the atomic composition is known we can
compare the ratio of the cross section of two elements to the
calculated one. It turns out that the cross section does not
scale exactly as Z2 and we can use these experiments thus to
elucidate higher-order contributions to the cross section.

In this work we explore the similarities of the Barkas
effect for stopping power with the screening effect found in
keV-electron scattering [33] to quantify the Barkas effect for
near central collisions (impact parameters close to zero). In
these experiments we use targets consisting of two elements
with a well-defined stoichiometry. The elastic peak of both
elements are resolved due to the recoil effect and an enhanced
intensity of the heavy element is observed, which is interpreted
as a sign of the Barkas effect. The results from high-
energy electron-scattering experiments of oxides, water (ice
or gas), and methane (gas) are used to validate the theoretical
calculations from Salvat and coworkers [38,39], which were
used here to calculate the Barkas effect for many elements
with different ionization degrees. The calculated results for
neutral or strongly screened projectiles tend to collapse on a
single universal curve at high velocities and small projectile
charges. However, at high Z and low energies, in contrast
to classical calculations from Ref. [25], the simple scaling
breaks down due to quantum effects. These quantum effects are
also demonstrated experimentally. We also show that, although
there is a single universal curve representing the Barkas effect
for neutral and bare ions, no simple scaling exists for other
projectile charge states.

The remainder of the paper is organized as follows. In
the next section we discuss the physics of ERBS. In Sec. III
we show the connection between the Barkas effect at close
collisions and high-energy electron scattering. Experimental
results for the elastic cross section are shown in Sec. IV. In
Sec. V we present the theoretical method for calculating the
elastic cross section and the Barkas factor. Theoretical results
are shown for neutral ions as well as for ions with different
degrees of ionization. The results are summarized in Sec. VI.
Unless otherwise indicated, atomic units are used throughout
the paper.

II. PHYSICS OF ERBS

In these experiments we measure the energy of electrons
(incoming energy E0) backscattered from an atom (either part
of a molecule in the gas phase or part of a solid), focusing on
energies very close to the incoming energy. Here we separate
the contribution of different elements at high momentum
transfer K (i.e., high incoming energy and large scattering
angles). Under these conditions the impulse approximation
applies [40] and the recoil energy (Erec), transferred to the
scattering atom, can be determined assuming a collision

between free particles (this is the impulse approximation):

Erec = K2

2Ma

= 2E0
me

Ma

(1 − cos θ ), (1)

with Ma and me being the mass of the atom and the electrons,
respectively, and θ being the scattering angle. The energy of the
incoming electron is reduced by the recoil energy. The width of
the elastic peaks is not just determined by the experimental res-
olution but also by Doppler broadening due to the momentum
distribution (thermal vibration) of the scattering atom. This is
well corroborated by experimental outcomes and the obtained
spectra are very similar to neutron-Compton-scattering spectra
at the same momentum transfer [41]. Details of the ERBS
technique can be found elsewhere [33].

It is instructive to consider the ion stopping power dE/dx

in the context of Eq. (1). In the framework of the binary theory
the stopping is due to fast ions scattering from electrons that
are approximately at rest. In the reference frame where the
electron is at rest the recoil energy is Ma/me times larger than
that given by Eq. (1). For an ion with velocity v such that
v0 � v � c (v0 is the Bohr velocity, c is the speed of light)
the stopping power is then given by [17]

dE/dx =
∫

�

N
Ma

me

Erec(θ )
dσ

d�
d� = Nmev

2σtr, (2)

with N being the target electron density. The transport cross
section σtr is defined as

σtr(e
−) =

∫
�

[1 − cos(θ )]
dσ

d�
(e−)d�, (3)

with dσ
d�

(e−) being the differential cross section (DCS) for an
electron scattering from atom Z.

III. SCREENING EFFECT IN HIGH-ENERGY
ELECTRON SCATTERING

In ERBS the electrons do not scatter from a bare nucleus,
and the effect of the atomic electrons on the scattering potential
has to be taken into account. The naive view, generally
encountered, is that the screening will reduce the scattering
cross section as the nuclear charge is partly compensated by
the core electrons, and hence the scattering cross section should
be less.

In reality the screening results in an increase of the cross
section, i.e., the elastic cross-section values are larger than
the Rutherford cross section of the bare nucleus [33,36].
The explanation for this enhancement can be found in many
places in the literature dealing with fast ions moving through
matter [10,24,30] and can be expressed, at least partly, in terms
of classical mechanics. Large-angle deflections correspond to
small impact parameters and the main deflection occurs very
close to the nucleus. For a Coulomb potential the electrons are
accelerated as they approach the nucleus, so their velocity near
the nucleus is increased. In the case of a screened potential this
prior acceleration is smaller. Therefore, for a screened nucleus
the electrons will have a lower velocity near the nucleus.
Since the cross section decreases with increasing velocity, the
final effect of screening is an increase of the cross section
relative to Rutherford. The distance of the closest approach
also changes with screening but it can be shown that this effect
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is less important than the change of the local velocity due
to the screening [24]. This mechanism was initially proposed
by Lindhard [10], who used the expansion of the Yukawa
screening potential at small distances to derive an energy offset
that corresponds to the change in the local kinetic energy of
the electrons near the nucleus.

Later, this argument was used to explain the intensity of
energetic electrons ejected in the forward direction when swift,
partially stripped, heavy ions transverse a thin target [30].
From the reference frame in which these heavy ions are at
rest, the target electrons appear as fast-moving projectiles
and the energetic electrons appearing in the forward direction
are due to close collisions between the nucleus and these
electrons (hence the name binary encounter peak). The
electron emission at zero degree for projectiles carrying bound
electrons (“dressed ions”) is much greater than that for bare
ions. This enhancement is also attributed to screening and the
related reduction in velocity of the electrons at very close
proximity to the nucleus.

Our experiment is thus very similar to the one described by
Schultz and Olson [30], but the laboratory frame now coincides
with the frame in which the atom is at rest. We again see an
enhancement of the intensity of electrons scattered over large
angles.

The enhancement of the elastic cross section with screening
is quantitatively well reproduced by quantum mechanical
calculations such as the ELSEPA package from Salvat et al. [38]
(Dirac partial-wave calculation of elastic scattering of elec-
trons and positrons by atoms, positive ions, and molecules).
The calculations also show the opposite effect in the case
of high-energy positron scattering, namely, an elastic cross
section smaller than the one given by the Rutherford formula.
At high energies the Rutherford cross section, which depends
on Z2 only, lies in between the cross sections for electrons and
positrons. This difference, roughly proportional to Z3 at high
energies, can be directly related to the Barkas effect in stopping
power. In fact, it follows from Eq. (2) that the Barkas factor
for the stopping power (RBarkas), which quantifies the Barkas
effect at close collisions, is determined by the transport cross
section of the electron [σtr(e−)] and the transport cross section
of the positron [σtr(e+)] in the reference frame where the ion
is at rest according to [24,25]

RBarkas = σtr(e−) − σtr(e+)

σtr(e−) + σtr(e+)
. (4)

The DCS is determined by the electron-ion potential V

which can be written as [17]

V = − (Z − q)

r
�(r) − q

r
exp(−r/adyn), (5)

where Z and q are the atom (or ion) nuclear-charge and charge-
state, �(r) is the screening function due to the bound electrons,
and adyn is the screening length due to dynamical screening
(about v/ω, where ω is the plasmon frequency and v is the ion
velocity) [17,21].

For neutral atoms or slightly charged ions (the cations
in a chemical compound 0 � q � 6) the similarity between
the Barkas effect and the strong enhancement (reduction)
of the elastic cross section in comparison to the Rutherford
one observed in high-energy electron (positron) scattering is

evident. The interaction potential V for a neutral, moving atom
and for a stationary atom should be nearly the same as far as
high-energy electrons are concerned. In fact, the origin of the
Barkas effect at close collisions is the different influence of
screening on the DCS for positively and negatively charged
particles, which can be measured directly using either an
electron or a positron as a projectile.

IV. ELECTRON RUTHERFORD BACKSCATTERING

A. Experimental procedure

The experimental setup is thoroughly described in
Refs. [42,43]. Two different spectrometers were employed,
one for gas-phase measurements with E0 between 600 eV
and 6 keV and one for surface studies using energies up to
40 keV. In short, an electron beam with a small thermal spread
is obtained using an electron gun with a BaO cathode. Slit
lenses are used to focus and decelerate the electron beam from
the scattering energy to the pass energy of (nominal) 200 eV. A
0.2-mm-wide conical slit aperture, placed 130 mm away from
the sample, determines which electrons enter the analyzer. This
means that the scattering angle is well determined (uncertainty
about 0.1◦). The energy resolution of the system is close to
0.3 eV full width at half maximum.

B. ERBS results

In Fig. 1 we show ERBS spectra for four oxides (Ta2O5,
HfO2, Nb2O5, and SiO2) for an incident energy of E0 =
40 keV taken at normal incidence and a scattering angle of
135.5◦. The corresponding elastic peaks for the Ta, Hf, Nb, Si,
and O atoms are shown. Indeed, as seen in Fig. 1, each ERBS
spectrum consists of two peaks corresponding to the elements
present in the oxide. The huge elastic cross-section difference
between the heavier elements and oxygen is reflected in their
peak heights. From the ratio of the elastic-peak areas we obtain
the ratio of the elastic cross sections taking into account
the nominal stoichiometry of each oxide. This analysis is
complicated by the presence of a background under the small
oxygen peak. This is due to electrons scattered from the cation
that have created also an electronic excitation. The oxygen
peak is at a known energy loss and has a width that is almost
the same for all oxides [33]. The area of the peak is determined
such that after subtracting the O peak from the measured
spectrum one obtains a background [red (solid) curve] that
resembles the loss spectrum as is measured for much lower
E0 values (5 keV) where the O and cation peak virtually
coincide [44]. It is worthwhile to point out that the area ratio
does not depend on the IMFP since this cancels out when taking
the ratio of intensities for homogeneous thick materials. All
films are thick enough so we do not need to consider the signal
of the substrate [36,44].

The ratio of cross sections for each element relative to
oxygen is shown in Fig. 2 for 40 keV and a scattering
angle of 135.5◦. This energy would correspond to projectiles
with about 70 MeV/u. The ERBS results were taken from
Fig. 1 and the error bars represent the uncertainty in the
background subtraction procedure. Note that for oxygen the
ratio is one by definition. The curves correspond to theoretical
calculations using the ELSEPA program [38] using default
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FIG. 1. (Color online) Spectra of 40 keV electrons backscattered
over 135.5◦ from thick layers of SiO2, Nb2O5, HfO2, and Ta2O5.
For all samples, the peaks of the heavy and light elements are well
resolved but the measurement is not always completely background
free. The O elastic peak was subtracted, with an area chosen such that
the resulting background [red (solid) line] is similar in shape to the
energy loss spectrum observed for E0 = 5 keV (not shown here).

options (in particular, no absorption is considered) and, in
the case of electrons, the results are the same as in the NIST
electron elastic-scattering cross-section database [45]. As can
be observed from this figure the calculations from ELSEPA

agree reasonably well with the ERBS results and the calculated
cross section ratios are larger than the simple estimate for the
ratio (Z/8)2 from the Rutherford formula. This shows that
at a large scattering angles the screening effect enhances the
cross section for high values of Z (as for Hf and Ta). ELSEPA

calculations for positrons are also displayed in Fig. 2 and
their cross sections are smaller than the Rutherford prediction.
However, the screening effect for positrons is smaller than for
electrons and indicates that the large enhancement observed
for electrons on Ta or Hf is not totally due to the Barkas effect.

The ERBS technique can be also used at much lower ener-
gies to quantify hydrogen atoms. Figure 3 shows ERBS results
for 2 keV electrons impinging on water ice and vapor (a) and
methane gas (b) with the same scattering angle as in Fig. 1. The
elastic peaks of O and H from Fig. 3(a) [C and H from Fig. 3(b)]
are well resolved. From the ratio of the areas of the elastic
peaks and the number of H atoms in each molecule the ratio
of the O (C) cross sections relative to H was determined for
different electron energies as shown in Figs. 3(c) and 3(d). The
error bars are mainly due to uncertainties in the background

FIG. 2. (Color online) Experimental and theoretical values for
the ratio of the elastic cross sections relative to O as a function
of Z for 40 keV electrons and a scattering angle of 135.5◦. The
experimental values for Si, Nb, Hf, and Ta were obtained from Fig. 1
after taking into account the nominal stoichiometry and background
subtraction. The solid curves correspond to ELSEPA calculations for
electrons (thick red line) and positrons (thin blue line). The dashed
line (Rutherford) is a function (Z/8)2. For O the ratio is one by
definition.

subtraction. The experimental ratio of intensities multiplied
by the number of H atoms is compared to ELSEPA calculations
for the cross-section ratio and show the same tendency as
the results for heavy elements at much higher energies. The
screening effect amounts to about 25% for C at E0 = 800 eV
(which corresponds to 1.5 MeV/u for O and C in the reference
frame where the electrons are at rest). In contrast to the cases
in Fig. 2, the screening effect is larger for positrons, and the
average curve between the results for electrons and positrons
lies below the Rutherford curve. This indicates a somewhat
larger Barkas effect for strongly screened 1.5 MeV/u O and C
projectiles at small e−-atom impact parameters of about 40%.
However, for ion stopping measurements there is no impact
parameter selection, so the overall Barkas effect, calculated in
the next section, is expected to be smaller.

The enhancement of the Ta and Hf peak seen in the
ERBS spectra of oxides is in-line with the observation of an
enhancement in the binary peak of the electron spectra near
0◦ for high-energy ion experiments [29–31]. Most of these
experiments are done at considerably lower energy (typically
1 MeV/u) compared to the 73 MeV/u that is the equivalent
ion kinetic energy in the 40 keV e− scattering experiments
described here. Around 40 keV the elastic scattering cross
section is a smooth function of angle, but at lower energies the
situation changes for high Z elements: quantum interference
effects then cause sharp minima in the DCS. There are two
reasons for using the high energy of 40 keV: it is required
for a clear separation of the elements involved but it also
means that the Barkas effect can be studied without the
competition of quantum interference effects. We can obtain
element separation at much lower energies if we use protons as
a reference element rather than oxygen. The low cross section
of H requires that when studying high-Z elements the number
of H atoms present exceeds the heavy atom concentration by
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FIG. 3. (Color online) Upper panels: Measurements of 2 keV electrons with normal incidence backscattered at 135◦ from H2O and CH4

molecules. For a better visualization the H peak was multiplied by 100 in panel (a) and by 30 in panel (b). Lower panels: The ratio of cross
sections relative to H as a function of the electron energy. ELSEPA calculations are also present for electrons (thick red line) and positrons (thin
blue line) as well as the ratio obtained from the Rutherford cross section (dashed line).

at least an order of magnitude. As no suitable compounds
exist such a study is best done using a gas-mixture of suitable
concentrations in a cross beam configuration. By changing the
electron beam energy or scattering angle we can monitor the
quantum interference effects.

We illustrate this for Xe. The elastic DCS of electron
scattering from H and Xe, as obtained from ELSEPA are plotted
in the top panels of Fig. 4. The H cross section is smooth
and always close to Rutherford. The Xe cross section is still
a smooth function at 10 keV (but deviates from Rutherford
mainly as a consequence of the Barkas effect) but this changes
gradually below 2 keV when sharp minima in the calculated
elastic cross section develop. Indeed the dip in the Xe DCS
causes dramatic variations in the H-Xe peak intensity ratio.
The sharp Xe peak at almost zero energy loss is followed by a
much broader H peak at several eV energy loss. At 1.55 keV
the Xe peak area is 7.1× the H peak area, but at 750 eV the
Xe area is only 0.05× the H area. Such a change by a factor of
140 is in good agreement with the expectations based on the
ELSEPA calculation. See Refs. [46,47] for more details about
these gas-phase measurements.

In the ion-frame experiments measurements at the emission
angle corresponding to the minimum in the DCS result in
a splitting of the binary encounter peak [48]. The binary

peak contains a Compton profile of the electron motion. The
motion of the electron before the collision affects the effective
scattering angle. Thus, under these conditions the intensity at
the center of the peak is strongly reduced by the sharp mini-
mum in the DCS, whereas the wings of the Compton profile
(corresponding to slightly different scattering angles) are not.
This causes the apparent split of the binary encounter peak.

We have demonstrated that phenomena playing an impor-
tant role in ion stopping can also be studied in the frame
where the ions are at rest. Now we proceed by using the theory
developed to describe these electron-scattering experiments to
study the Barkas effect in ion stopping.

V. TRANSPORT CROSS-SECTION CALCULATIONS

The theoretical calculations shown in Figs. 2 and 3 were
performed at a specific scattering angle, namely 135.5◦, for
which the high-energy electron-scattering experiments were
performed. For the evaluation of the Barkas factor related to
the stopping power of ions in matter Eq. (4) we have to evaluate
the transport cross section σtr which depends on all scattering
angles. Formally this should be done in the center-of-mass
frame but this is well approximated by the frame in which
the atom is at rest. Using the default options for the ELSEPA
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(deg) (deg)

FIG. 4. (Color online) The top panels shows the calculated DCS
for Xe and H atoms (in a.u.) at the energies indicated. The four
panels at the left show the elastic peak of a Xe-H2 mixture at 750 eV
at the angles as indicated. The right panels show the elastic peak
of a (different) Xe-H2 mixture taken at 135◦ and at the energies as
indicated.

program (in particular, without considering absorption), we
calculated σtr of electrons and positrons for all elements and
several energies ranging from 0.1 to 40 keV for neutral ions
(q = 0) and the screening function �(r) given by Hartree-Fock
(HF) densities as detailed in Ref. [38]. From these transport
cross sections we obtain the Barkas factor (RBarkas) according
to Eq. (4). Figure 5 shows the results as a function of the
dimensionless parameter η defined as

η = Z/ξ

E0
= 2Z

ξv2
, (6)

FIG. 5. (Color online) Barkas factor according to Eq. (4) as a
function of the dimensionless parameter defined in Eq. (6). The
calculations were done using the ELSEPA code for all elements and
using HF densities for neutral atoms. The energies indicated are the
kinetic energies of electrons scattering from a stationary nucleus;
1 keV corresponds to 1.836 MeV/u in an ion beam experiment.

where ξ is a screening length. The Z/ξ term is a constant,
which has a dimension of energy, and can be obtained, as
described by Lindhard [10], from the expansion of the potential
for small distances r , where the screened interaction potential
can be described as a Coulomb potential shifted uniformly
by Z/ξ . Thus the scattering near the nucleus is described
as scattering from a bare Coulomb potential, but with the
kinetic energy of the scattered particle changed by Z/ξ

(corresponding to an decrease for electrons and an increase
for positrons). η is this change normalized by the incoming
kinetic energy.

For ξ we used the screening length from the
Brandt-Kitagawa (BK) statistical model [49], namely ξ =
	BK(Z,q = 0), where

	BK(Z,q) = 0.48(1 − q/Z)2/3

Z1/3[1 − 1/7(1 − q/Z)]
. (7)

This gives (in eV) an offset energy Z/ξ of ≈48.6Z4/3 for
q = 0. First we compare our estimate of the Barkas factor
based on ELSEPA with recent calculations based on classical
mechanics [25]. For η < 1 the Barkas factor, when plotted as
a function of the dimensionless parameter η, falls on a single
curve as in the classical calculation of Ref. [25]. However,
for large values of η, the scaling breaks down in the present
calculation because of quantum effects. As a matter of fact
local minima are observed in the differential cross section for
particular scattering angles for energies smaller than ≈2 keV
and large nuclear charge Z [38]. For the transport cross section,
oscillations are also found as a function of Z [22] due to
interferences and shell effects. Nevertheless, for low values
of η (in the so-called perturbative regime), a single universal
curve can be obtained. A best fit to calculations is given by

RBarkas = aη

1 + bη0.25 + cη + dη2
, (8)
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TABLE I. Values obtained for the constants in the “universal
curve” given in Eq. (8) for neutral atoms and charged ions using
either a Hartree-Fock (HF) derived electron density or the density of
the Brandt-Kitagawa (BK) model for neutral atoms and ions.

Model a b c d

HF (neutral) 2.1 2.8 3.4 0.035
BK (neutral) 0.9 0 1.4 0.04
BK (ion) 0.9 0 1.4(Z/N )1.5 0.04(Z/N )2.5

with values of a, b, c, and d as given in Table I. Similar
curves were obtained in the framework of classical mechanics
in Ref. [25] for neutral ions and in Refs. [24,25] for bare ions,
where the screening length ξ should be replaced by a value
proportional to the adiabatic radius v/ω.

Now we consider the Barkas factor as a function of the ion
charge state. In order to generate the curves displayed in Fig. 6
we used the interaction potential from Eq. (5) with the BK
screening function �(r) = exp[−r/	BK(Z,q)] that depends
on Z and q according Eq. (7). In addition we considered adyn =
v/ω, with ω = 16 eV. The charge density corresponding to the
BK screening function was used as input for the ELSEPA code.
In addition we turned off the exchange for this calculation.
The calculations were performed for different energies (from
0.5 to 5 keV) and plotted using the average screening length ξ

defined as

Z

ξ
= Z − q

	BK(Z,q)
+ q

adyn
. (9)

This expression is based on the small r expansion of Eq. (5).
From Fig. 6 we find that for q < Z/2 the Barkas factors

obtained for different energies still fall on a single curve
when plotted as a function of η, but the curves for different
charge states do not coincide, and the magnitude of the
Barkas factor decreases with q. Further inspection of this
figure shows that RBarkas values for different projectile charge
states all merge with the curve for neutral atoms at high
velocities (small η values). Here the dynamical screening
is less important compared to the screening due to bound
electrons. The breakdown of the scaling for different projectile
charge states at larger η values is due to the interplay between
the two screening functions contributing to Eq. (5), each with
a different characteristic length.

For the limiting cases of a neutral atom and a fully stripped
atom there is only a single screening length resulting in a
simple Yukawa type potential and hence the graphs for q = 0
and q = Z are identical in Fig. 6, but the respective values of ξ

are totally different. Thus there is a single universal curve for
the Barkas factor (here for η < 1) and in classical calculations
(for all η values) [25] for the neutral atom and the fully stripped
ions, but for partially stripped ions the curves are q dependent.
For partially stripped ions there are two Yukawa-type screening

FIG. 6. (Color online) Barkas factor as a function of the dimensionless parameter defined in Eq. (6) using the average screening length
from Eq. (9). The calculations were done using the ELSEPA code for all elements and for projectile charge states as indicated using the atomic
potential according to the BK model. The net charge of the ion is screened using adyn = v/ω with ω = 16 eV. This approach is successful in
mapping RBarkas for different energies on a single curve for charge states up to q = Z/2. The last panel shows the fit based on Eq. (8) for charge
states up to q = 3Z/4 and the fully stripped ion.
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functions: one describing screening by bound electrons and
one the dynamical screening. The scaling proposed in Eq. (9),
which combines both screening types, describes the Barkas
factor for different E0 values quite well as long as the charge
of the ion is less than Z/2.

Only for a fully stripped ion is η proportional to Z. This is
the behavior expected for the Z3 contribution to the stopping
power, which results in a Barkas effect proportional to Z. For
neutral atoms and partial stripped ions these calculations indi-
cate a more complicated dependence of the Barkas effect on Z.

VI. CONCLUSIONS

In this work we explore the connection between the Barkas
effect in the stopping power of ions and the screening-
induced enhancement of the differential cross section in high-
energy electron-scattering experiments. ERBS measurements
at 40 keV for Ta2O5 and HfO2 show a large screening-induced
enhancement(a factor of ≈2 relative to Rutherford) for Ta and
Hf. For water and methane at 0.75 to 6 keV the enhancement
for O and C is ≈1.25. The results are in agreement with
calculations of the elastic cross section from the ELSEPA

program [38]. In combination with ELSEPA results for keV
positron scattering we can extract the Barkas factor in the ion
stopping power at MeV/u energies. At 70 MeV/u ion energy

(corresponding to an electron-scattering energy of 40 keV) the
Barkas effect is about 50% for (nearly) neutral Ta and Hf ions.
A similar value was found for 1.5 MeV/u O and C (nearly)
neutral ions. For ions with a substantial charge the Barkas
effect at close collisions is smaller.

The ELSEPA code was also used to investigate if it is possible
to describe approximately the size of the Barkas effect for
a range of different conditions with a simple formula. For
this purpose the Barkas factor was calculated for all elements
at many different energies. A universal curve was found for
(nearly) neutral projectiles based on a dimensionless parameter
η except for large Z and low energies, where quantum
interference effects are important. For ions with a large charge
the Barkas effect is smaller than that derived from the curve
for (nearly) neutral ions, but up to q = Z/2 the Barkas factor
can be described quite well by a simple formula.
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