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We model the binding energies of rovibrational levels of the RbYb molecule using experimental data from
two-color photoassociation spectroscopy in mixtures of ultracold 87Rb with various Yb isotopes. The model uses
a theoretical potential based on state-of-the-art ab initio potentials, further improved by least-squares fitting to the
experimental data. We have fixed the number of bound states supported by the potential curve, so that the model
is mass scaled, that is, it accurately describes the bound-state energies for all measured isotopic combinations.
Such a model enables an accurate prediction of the s-wave scattering lengths of all isotopic combinations of the
RbYb system. The reduced mass range is broad enough to cover the full scattering lengths range from −∞ to
+∞. For example, the 87Rb174Yb system is characterized by a large positive scattering length of +880(120) a.u.,
while 87Rb173Yb has a = −626(88) a.u. On the other hand 87Rb170Yb has a very small scattering length of
−11.5(2.5) a.u. confirmed by the pair’s extremely low thermalization rate. For isotopic combinations including
85Rb the variation of the interspecies scattering lengths is much smoother ranging from +39.0(1.6) a.u. for
85Rb176Yb to +230(12) a.u. in the case of 85Rb168Yb. Hyperfine corrections to these scattering lengths are also
given. We further complement the fitted potential with interaction parameters calculated from alternative methods.
The recommended value of the van der Waals coefficient is C6 = 2837(13) a.u. agrees with but is more precise
than the current state-of-the-art theoretical predictions [M. S. Safronova, S. G. Porsev, and C. W. Clark, Phys.
Rev. Lett. 109, 230802 (2012)].
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I. INTRODUCTION

Creation of ground-state polar molecules in the submi-
crokelvin regime [1] is one of the most important achievements
in atomic, molecular, and optical physics in recent years. It is
expected that further development of production techniques
for ultracold molecular samples will find many extremely
exciting applications, for example, in quantum information
theory [2], quantum simulations of many-body physics [3],
and high-precision measurements [4–6].

Production of polar molecules with nonzero electronic
spin could open new exciting directions of research. For
example, molecules that contain atoms with very large atomic
number are considered as candidates for investigations of
limits of the electric dipole moment of the electron [7,8].
Paramagnetic polar molecules have also been proposed as
candidates for creating topologically ordered states and a new
class of quantum simulators [9]. Also, paramagnetic polar
molecules could open new pathways in studies of chemical
reactions at ultralow temperatures. In contrast to alkali-metal
dimers in their absolute ground states, paramagnetic and polar
molecular states are magnetically tunable, which with electric
field control might open new possibilities of manipulating
chemical reactions by combined fields [10–12].
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There are ongoing efforts to produce ultracold polar
molecules with nonzero spin directly, such as, for example,
OH, NH, CaH, or SrF by using Stark deceleration [13–15],
buffer-gas cooling [16,17] or, more recently, laser cooling [18].
It has been suggested that a ring decelerator could outperform
traditional Stark decelerators [19]. Despite these efforts direct
cooling of molecules into the microkelvin regime is still not
achieved.

An alternative approach to obtain ultracold paramagnetic
and polar molecules is to produce them from translationally
ultracold atoms with differing numbers of electrons. The
natural candidates for such molecules are pairs, which combine
an alkaline earth, or similar atom, such as Ca, Sr, Mg, Yb, or
Hg, and an alkali-metal atom. For both of these classes of
atoms techniques for magneto-optical and optical trapping, as
well as internal state manipulation are well developed, and
Bose-Einstein condensates have been obtained for most of
these species.

Currently, several systems of mixed alkaline-earth and
alkali-metal atoms are intensely being studied by several
research groups [20–25] and very recently first quantum
degenerate mixtures in such systems have been produced using
Sr and Rb [26]. In the present work our investigations are
focused on the Rb-Yb system. To date Rb and Yb atoms have
been cotrapped in an optical dipole trap or a hybrid trap, which
combines a magnetic trap for Rb with an optical trap for Yb.
The intraspecies scattering lengths for both Rb and Yb are well
known—87Rb has a scattering length a ≈ 100 a.u., while for
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85Rb it is resonant [27,28]; on the other hand, ytterbium iso-
topes span a full cycle of scattering lengths [29]. It was possible
to study the process of mutual thermalization of the two atomic
species, thus allowing estimates of the scattering lengths to
be made for several Rb-Yb isotopic mixtures [30,31]. In
addition, the single-photon photoassociation spectrum near the
Rb(5p) + Yb(5s) asymptote has been investigated [20]. More
recently two-color photoassociation spectroscopy has been
performed for the 87Rb176Yb molecular system [21] paving
the way toward accurate determination of interaction potentials
and scattering lengths of Rb-Yb mixtures.

Another system being actively explored by experimentalists
is the Li-Yb mixture. The group at the University of Washing-
ton [22,23] sympathetically cooled Li atoms by collisions with
ultracold Yb atoms below the Fermi temperature and estimated
the magnitude of the scattering length. The same system was
investigated by the group of Kyoto University [24,25] and
the magnitude of the scattering length found for 6Li174Yb
confirmed the findings of Ivanov et al. [22]. This system,
contrary to Rb-Yb, is limited in its range of available scattering
lengths because of the much smaller range of variation in
reduced mass due to a much larger mass imbalance.

The finding that also in mixtures of alkaline-earth and
alkali atoms a mechanism for magnetic tunability of scattering
lengths via Feshbach resonances exists [32,33] has further
strengthened the interest in such ultracold mixtures. Recently,
a theoretical investigation of Feshbach resonances in ultracold
mixtures of Yb and various alkaline species has been per-
formed [34], which is in part based on the experimental data
[35], which are analyzed and modeled within this manuscript.
However, Feshbach resonances in such systems are predicted
to be very narrow and production of Feshbach molecules in
such systems might be experimentally challenging. On the
other hand, the recently reported formation of Sr2 in electronic
ground state [36] by stimulated Raman adiabatic passage
(STIRAP) from atom pairs trapped on sites of an optical
lattice, demonstrated a possibility to eliminate the necessity
of using magnetic Feshbach resonances as a first step in
production of ultracold molecules and it might be feasible
to apply a similar scheme to RbYb. Both approaches require
the precise knowledge of the molecular structure [37] in the
ground and excited electronic states provided by ordinary
molecular spectroscopy, as well as by one- and two-color
photoassociation spectroscopy [38].

In this paper we present experimentally determined binding
energies of the rovibrational levels of the 2�1/2 electronic
ground state of RbYb close to the dissociation limit for
several isotopic combinations. These experimental data, ob-
tained using two-photon photoassociation spectroscopy, are
combined with state-of-the-art ab initio calculations to model
the interaction potential for the Rb-Yb system with an accuracy
high enough to predict scattering lengths for all isotopic
combinations. We explore mass scaling of the phase variation
of the scattering wave function in the ground electronic state
for different isotopic mixtures of the Rb-Yb system. We
propose a model potential of a form similar to the previous
study of the RbSr dimer [32], which employs an ab initio
representation at short range smoothly connected [39] to the
long-range analytical form, which includes C6 and C8 van der

Waals coefficients. However, we use the recorded spectra of the
bound-state energies for several isotopic combinations of the
Rb-Yb system and rotational quantum numbers R = 0,1 to
fix the total number of bound states as well as the position
of the last bound states near the threshold. We provide a
theoretical analysis of C6 and C8 coefficients based on the
experimental data and compare them to the most recent
theoretical calculations [40,41]. Then we use the potential
to interpret previously reported interspecies thermalization in
Rb-Yb mixtures [30,31]. The accurate potential reported will
be very useful for future theoretical and experimental studies of
magnetic and optical Feshbach resonances in Rb-Yb mixtures.

II. EXPERIMENT

To determine the binding energies of rovibrational levels
in the ground state of RbYb we have used two-photon pho-
toassociation spectroscopy. The experimental results, which
are listed in Table I, represent an extension of previous
measurements [21], which only included the binding energies
of weakly bound rovibrational levels of the isotopologue
87Rb176Yb with nuclear rotation quantum number R = 1. Here
also the binding energies for rovibrational levels with R = 0
as well as for other isotopologues of RbYb are included.

The experimental determination of the binding energies
follows the procedure which was already used in Ref. [21]
and is described in detail in Ref. [35]. Two-photon pho-
toassociation spectroscopy is performed in a double-species
magneto-optical trap (MOT) employing a trap-loss technique.
In steady state ≈108 87Rb atoms and ≈ 105 Yb atoms (either
176Yb, 174Yb, 172Yb, or 170Yb) are trapped in the continuously
loaded double-species MOT at a temperature of a few hundred
μK . Since the Rb MOT is operated in a so-called dark-spot
configuration [42], more than 95% of the 87Rb atoms in the
MOT are in the F = 1 hyperfine level of the 2S1/2 ground state.

To study heteronuclear photoassociation, the double-
species MOT is first exposed to a tunable laser (PA-laser) with
a wavelength close to the rubidium 2S1/2 → 2P1/2 transition
wavelength of 795 nm [PA-laser in Fig. 1(a)]. If the frequency
of the PA-laser matches the resonance condition for a transition
from an unbound atom pair to an excited Rb*Yb molecule in a
specific weakly bound rovibrational level of the electronically
excited 2�1/2 state, the same number of Rb and Yb atoms is
removed from the magneto-optical trap [20]. The correspond-
ing reduction of the Yb steady-state atom number is detected
as a reduction of the fluorescence of the Yb MOT operating at
556 nm. In Fig. 1(b), the fluorescence signal of the Yb MOT
corresponding to a transition to the �v′ = −9 vibrational
level [43] is depicted. The spectrum shows a resolved rotational
structure as well as a splitting of the rotational components.
No effect on the Rb MOT due to the formation of excited state
Rb*Yb is observable since the Rb atom number in the MOT
exceeds the Yb atom number by three orders of magnitude.

To measure the ground-state binding energy by two-photon
photoassociation, a specific rovibrational level of the excited
state is used as an intermediate state by fixing the PA-laser
frequency to the resonance frequency for the corresponding
one-photon photoassociation transition. An additional tunable
laser [probe laser in Fig. 1(a)] is then applied to the double-
species MOT. If the frequency difference �2photon between the
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(a) (b)

(c)

FIG. 1. (Color online) (a) Principle of two-photon photoassoci-
ation spectroscopy. (b) One-photon photoassociation spectrum of a
vibrational level of the 2�1/2 state excited state at �PA = −82 GHz.
(c) Two-photon photoassociation spectrum of a vibrational level of
the electronic ground state of 87Rb176Yb with an experimentally
measured two-photon transition frequency of �2photon ≈ 283 MHz.
For this measurement the PA laser is set to the frequency indicated
by the arrow in (b). Thus, the probe laser connects vibrational levels
with a rotational quantum number R = 1.

PA-laser and the probe laser matches the frequency (energy)
difference between unbound atoms and a rovibrational level
of the 2�1/2 ground state of RbYb the production of excited
state molecules is suppressed [44] via an Autler-Townes
mechanism. This results in reduced atom loss and therefore the
fluorescence of the Yb MOT increases. The positions �PA of
the intermediate levels of the 2�1/2 excited state used for each
of the measured ground state energy levels are listed in Table I.
The values and error bars given in Table I are obtained from
a reanalysis of the data presented in Refs. [21,35] including
additional data sets.

Each rovibrational level in the 2�1/2 ground state of RbYb
splits into two hyperfine levels, which can be derived from
the ground-state hyperfine levels of atomic 87Rb. Due to the
absence of any angular momentum in the 1S0 ground state of the
bosonic Yb isotopes that have been used in the present study,
the hyperfine splitting of the dissociation limit in the ground
state of the RbYb molecule may be assumed to be identical
to the hyperfine splitting of atomic 87Rb of 6.835 GHz [45].
Thus, the experimentally determined detuning from the atomic
line �exp corresponding to an observed two-photon-transition
is given by

�exp = �2photon + �HF. (1)

The values for �HF are �HF(F = 1) = 0 GHz and �HF(F =
2) = −6.835 GHz depending on whether the rovibrational
level in the molecular ground state corresponds to the 87Rb
atom being in the F = 1 or the F = 2 hyperfine level of
the electronic ground state. The assignment of the observed
two-photon resonances to the molecular hyperfine state is
made in such a way that the binding energies agree with a
simplified van der Waals model potential in accordance with
the assumption that the hyperfine splitting of the weakly bound
vibrational levels in the RbYb molecule is the same as in

the 87Rb atom. In further analysis, however, we take the r

dependence of the hyperfine splitting into consideration.
Furthermore, the rotational quantum number of the rovi-

brational ground-state level can be selected in two-photon
photoassociation, by addressing a specific rotational level in
the intermediate excited state. The reason is that the very
weakly bound vibrational levels, which are examined here are
only coupled significantly by the probe laser if the rotational
quantum number of the ground and the excited state are equal.

The line centers of two-photon photoassociation spectra as
depicted in Fig. 1(c) are found by fitting the spectra with an
appropriate line-shape function [35,46]. Due to the relatively
large sample temperature we have to take temperature effects
into account, since the collision kinetic energy causes a red
shift of photoassociation lines in the Wigner law threshold
limit. Averaging over a Boltzmann distribution of energies
causes a temperature-dependent shift of the line center, which
in our case is on the order of the natural linewidth, or a few
MHz, depending on the partial wave; see Fig. 5 of Ref. [47].
The temperature shift of the line center will be taken into
account in the data analysis (see Sec. V), as we use the sample
temperature T as a fitting parameter. Temperature effects on
the line shape itself are assumed to be small compared to other
experimental uncertainties, therefore they are neglected for the
determination of the position of the line centers.

In order to determine the absolute value of �2photon, two dif-
ferent methods were used. For �2photon < 2 GHz, a beat signal
of the probe and the PA-laser was recorded in most cases using
a fast photodiode and a spectrum analyzer. For this method the
resulting standard error of �2photon and correspondingly the
line position �exp is estimated to be on the order of 10 MHz.
For �2photon > 2 GHz the frequency difference between the
two lasers was determined by measuring the wavelengths of
the two lasers independently using a home-built wave meter,
that is based on a Michelson interferometer. This method is
significantly less accurate and correspondingly the standard
error for the determination of �2photon is estimated to be a few
hundred MHz. The experimental errors given in Table I are
estimated for each individual data set independently, taking
into account the data quality and the specific experimental
conditions.

III. MASS SCALING

The aim of this work is to obtain accurate values of
the interspecies scattering lengths of all Rb-Yb isotopic
combinations based on the knowledge of the energy levels
of only four such systems. To this end it is necessary to
extrapolate the collisional properties to other isotopologues
via mass scaling, that is, the use of the same interaction
potential V (r) for all isotopic combinations. In this section
we will show the theoretical foundation for such a procedure.
A similar approach has been used in previous determinations of
scattering lengths in, e.g., Sr [48], Yb [29], and Rb atoms [28].

In the limit of zero collision energy the scattering length
for the interaction potential asymptotically dominated by a van
der Waals −C6r

−6 term can be well approximated by [49]

a = ā

[
1 − tan

(
� − π

8

)]
, (2)
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where ā = 2− 3
2

�(3/4)
�(5/4) (2μC6/h̄

2)
1
4 is the characteristic length

scale associated with the interaction strength of the colliding
atoms, C6 is the van der Waals coefficient, μ = (m−1

1 +
m−1

2 )−1 is the reduced mass and � is a zero energy Wentzel-
Kramers-Brillouin (WKB) phase integral, written in terms of
the Born-Oppenheimer (BO) interaction potential V (r):

� =
√

2μ

h̄

∫ ∞

rin

√
−V (r)dr. (3)

In the above equation the integration is taken from the classical
inner turning point rin to infinity. This phase integral is
closely related to the number of bound states supported by
the interaction potential [49]:

N =
⌊
�/π + 3

8

⌋
. (4)

There is also a one-to-one correspondence between the
scattering length and the energy of the last bound state below
the dissociation limit [29,50,51]: in the simplest case [52] of
very large a, E−1 = −h̄2/2μa2.

For systems with large reduced masses and deep potentials,
such as RbYb, the scattering length is very sensitive to the
variation of the BO interaction potential. When we parametrize
� with a uniform, dimensionless, scaling parameter λ, which
scales either the reduced mass of the system or the interaction
potential, then one cycle of the scattering length, where �

changes by π , takes approximately

�λ

λ
≈ 2

N
(5)

for a large number of bound states N . In case of RbYb—as
we will show in Sec. V—a 3% variation of the interaction
potential changes the scattering length from −∞ to +∞ within
one cycle. Similarly, a full cycle of scattering length variation
occurs when the reduced mass is changed by �μ ≈ 2μ/N .

Except for very light, few-electron dimers, such as He2, the
Born-Oppenheimer interaction potential cannot be determined
with current ab initio methods precisely enough to evaluate
the scattering length reliably. In fact, the ab initio methods for
systems involving lanthanides are extremely demanding: the
quantum chemistry treatment needs to use high-quality meth-
ods to include dynamic electronic correlation and relativistic
effects.

A model potential with the correct number of bound states
can be worked out thanks to extra information provided by the
experiment. The most useful data can be provided by two-color
photoassociation, which probes the bound states from the top
of the interaction well. For a series of experimental bound-state
energies for a single isotopomer we can obtain a series of
potentials, which correspond to states with a similar value of
tan � (and consequently the scattering length), but with the
number of bound states differing by ±1, ± 2, . . . from the real
potential. The crucial assumption needed to completely back
out the information about the real potential and the phase shift
integral is that the product μV (r), which appears in Eq. (3)
be linear in mass and that V (r) be mass independent. This
assumption is fulfilled extremely well for diatomic molecules
with large reduced masses, where mass-dependent corrections
to the Born-Oppenheimer potentials are small. In such case

one can assume that for all isotopic combinations the only
dependence on reduced mass in Eq. (3) is due to the

√
μ

whereas the integral in Eq. (3) is identical for all isotopic
pairs, thus the �/

√
μ ratio can be found. Hence, two-color

photoassociation spectroscopy performed for two or more
isotopic combinations can fix exactly the �/

√
μ ratio and,

consequently, the number of bound states supported by the
interaction potential and the positions of few highest bound
states for all possible isotopic combinations.

IV. MODEL POTENTIAL

Apart from fixing the real number of vibrational states we
also provide a potential physically valid both at short and
long ranges of interaction. To this end we introduce a model
based on quantum chemistry ab initio calculation at short-
range Vsh(r) connected smoothly to the long-range analytical
form of −C6r

−6 − C8r
−8:

V (r) = dVsh(r)[1 − f (r)] − f (r)(C6r
−6 + C8r

−8) (6)

using the switching function f (r) introduced by Janssen et al.
[39]:

f (r) =
⎧⎨
⎩

0 r � a
1
2 + 1

4 sin(πx/2)[3 − sin2(πx/2)] a < r < b

1 b � r

(7)

with x = ((r − a) + (r − b))/(b − a). The parameters a and
b define the switching range.

The original short-range ab initio potential can be scaled by
a factor d in order to set the potential depth De. We vary d and
the C6, C8 coefficients to minimize the least-squares fitting
error between the calculated and measured photoassociation
line positions. The short-range part is sampled on a fine grid
and interpolated using cubic splines to calculate the values of
the potential at arbitrary points. The switching distance has
been optimized by hand [53] and ranges from a = 17 a.u. to
b = 20 a.u. Below we give details of tests and calculations of
the short-range interaction potential as well as the discussion
of its long-range part.

A. Ab initio calculations

The ab initio calculations for molecules such as Rb and
Yb are very demanding for several reasons. First, since there
are many electrons moving around the very heavy nuclei
one can predict that the “dynamic” electronic correlation
effects will be very large, therefore we have to employ
the most accurate affordable quantum-chemistry ab initio
methods known. Coupled-cluster theory including singly and
doubly excited states with noniterative inclusion of triply
excited states, abbreviated as CCSD(T), is therefore the
most reasonable choice. Secondly, a common problem with
species containing ns2 atoms, such as alkaline earth atoms,
is a strong contribution of nondynamic electronic correlation,
related to the 6s-6p orbital mixing. Thus, the reliability of
coupled-cluster calculations needs to be carefully monitored
using the so-called T1 diagnostic test of Lee and Taylor [54].
Another difficulty is the lack of a correlation-consistent family
of gaussian basis sets for both Yb and Rb atoms, in order to
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systematically follow the error of the interaction energy caused
by incompleteness of the basis-set expansion of the molecular
wave function. For the same reason predicting the interaction
energies at the limit of a complete basis set is still impossible
for this system. Finally, it is also essential to include in such
calculations the relativistic effects, due to the extremely large
charge of the Yb nucleus.

In a previous study of the RbYb system Sørensen and
coworkers [55] have used a full four-component relativistic
coupled-cluster method to extensively study the ground state of
this system with aug-cc-pVTZ type basis set of Dyall [56,57].
The difference between their counterpoise-corrected well
depth (De = 749 cm−1) and the noncounterpoise corrected
one (De = 870 cm−1) suggests a strongly imbalanced basis
set. The error due to basis set incompleteness might be quite
large—if the difference between CP-CCSD(T) and CCSD(T)
were taken as an error bound, the uncertainty of the number
of bound states could be as large as 5–6. Thus, further
studies of ab initio potentials are essential to reduce this
discrepancy.

In this work we have used two independent approaches
to calculate the ab initio interaction potentials at short range.
In the first approach we have employed the calculations based
on the ECP28MDF pseudopotential for the Rb atom [58,59]
and the relativistic medium-core (60 electron frozen, 10 active)
pseudopotential of Wang and Dolg [60] for Yb. We have
modified the original basis set provided with the ECP28MDF
pseudopotential by taking out completely the contraction
coefficients extending the basis set by adding (manually
optimized) functions with additional exponents f = 0.061 86,
g = 1.36, and h = 1.12, and adding additional diffuse s-h
functions using the even-tempered scheme implemented in
MOLPRO. In a similar manner we have modified the original
basis set for the Yb atom: we have uncontracted the original
functions, and added respectively 5, 3, 2 outermost f,g,h

exponents from the ANO-RCC basis set [61], and finally,
diffuse s-h even-tempered functions. To better account for
dispersion effects, which are crucial in RbYb (which is
unbound without the dispersion) we have added the bond-
ing functions in the center of molecule (spd = 0.9,0.3,0.1;
fg = 0.6,0.2). Using such basis sets and ECPs we have
calculated counterpoise corrected interaction energies using
the coupled-clusters method, which includes singly and dou-
bly excited determinants with noniterative triples correction
[CCSD(T)]. We have correlated 19 electrons (Yb: 5s25p66s2

Rb: 4s24p65s1) in this calculation. Since this approach is
relatively inexpensive and we could afford to calculate many
distances with a fine grid, this method was our ultimate choice
for the equilibrium-range representation of the potential. The
obtained potential curve is shown in Fig. 2, labeled Ab initio I
and this is the base short-range ab initio curve used to fit to the
experimental data.

In our second approach we employed high-level methods
of quantum chemistry combined with an all-electron basis
set. Benefiting from the work of Sørensen [55], where
the CCSD(T) calculations with the Dirac hamiltonian were
performed, one can notice that the correlation is the most
important part in the description of the RbYb ground state
and the relativistic effects can be saturated by using so called
spin-free Hamiltonians. Following their conclusions, our main
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FIG. 2. (Color online) Theoretical RbYb interaction potentials.
Our two ab initio potentials are shown as blue and orange triangles
corresponding to the calculated potential points. Ab initio I is the base
short-range curve used in the potentials fitted to the experimental data,
while Ab initio II is used as a benchmark of the obtained value of
the potential depth De. The best potential obtained by fitting to the
experimental data (see Sec. V) is shown as a black solid line. In terms
of potential depth, it is in very good agreement with our benchmark
potential Ab initio II. Additionally, we show two other fitted potentials
supporting one fewer and one more vibrational bound states than the
best fit potential as dashed lines. We use the other two potentials to
evaluate possible systematic errors in our analysis.

effort was put in recovering the correlation. Therefore, the
CCSD(T) approach with 23 (Yb: 4f 146s2, Rb: 4p65s1)
correlated electrons and the full virtual space was used.
As for basis sets we have used the ANO-RCC basis sets
[61], however, we have uncontracted them for both atoms.
Additionally, the midbond functions (sp = 0.9,0.3,0.1; df =
0.6,0.2) were used to improve the description of the molecular
wave function. In order to avoid problems with basis set
superposition error, the potential was counterpoise corrected.
Finally, relativistic effects were included by applying the
DKH3 Hamiltonian [62]. Calculations in an all-electron basis
set approach were performed with the help of the NWCHEM

package [63]. The calculations in this second approach are
much more expensive: the total basis set size was over 500
basis functions and we were able to investigate only the region
near the bottom of the interaction well. Thus, they served
only as the benchmark data with respect to De extracted from
experiment. The resulting potential curve is shown in Fig. 2,
labeled Ab initio II.

B. Long-range interactions

The asymptotic form of the interaction between two atoms
takes the form

Vint(r) = −C6r
−6 − C8r

−8 − · · · . (8)

It is usually difficult to obtain the Van der Waals constants
C6, C8 directly from ab initio calculations due to their large
inaccuracy in the long range. They can, however, be related to
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monomer properties via Casimir-Polder-type integrals:

C6 = 3

π

∫ ∞

0
αA(iu)αB(iu)du (9)

and

C8 = 15

2π

( ∫ ∞

0
αA(iu)βB(iu)du +

∫ ∞

0
αB(iu)βA(iu)du

)
.

(10)

In above equations α denotes the dipolar polarizability,
while β is the quadrupole polarizability. In order to eval-
uate these integrals we need both quantities evaluated at
imaginary frequencies. The calculations of these quantities
at present is routine for closed-shell systems with the so-
called time-independent coupled-cluster (TI-CC) response
function [64,65] implemented efficiently in the MOLPRO [66]
package. Using this code and the ECP60 basis set described
in the previous section we have evaluated α(iu) and β(iu)
for the ytterbium atom at 50 frequencies corresponding to
Gauss-Legendre quadratures given by Derevianko et al. [67].
The TI-CC response function in the static limit gives dipolar
polarizability, which is at the top of the error bound limit of
best estimates of Dzuba and Derevianko [68]. The C6 value for
the Yb dimer calculated with TI-CC dynamic polarizabilities
gives 2165 a.u. which is 12.2% more than the value derived
from experiment by Borkowski et al.. In order to fix this
inaccuracy we divided the dipolar polarizability αYb(iu) by√

2165/1929 ≈ 1.059. For the Rb atom we have used the
dynamic polarizabilities given by Derevianko et al. [67]. The
value of C6 for the Rb-Yb interaction obtained with these
functions was found to be 2826 a.u. This value has been used
in our potential as a starting value for the least-squares fitting
procedure. The C8 coefficients can be evaluated with smaller
confidence: the quadrupole dipole polarizability of Rb atom
has been taken from Ref. [69] where it has been constructed

from pseudostates obtained from multireference configuration
interaction calculations. This quadrupole polarizability gives
the static limit of 6876 a.u., which overestimates the reference
value of Mitroy and Bromley [70] by 6.1%. We have rescaled
the Rb quadrupole polarizabilities to obtain the correct static
limit and used them with Yb (corrected) dipole and quadrupole
response functions to calculate C8 = 3.38 × 105 a.u. for
Rb-Yb interaction. A comparison between the calculated
parameters and ones obtained previously in literature is shown
in Table II.

V. DATA ANALYSIS

The photoassociation data obtained from the experiment
enable us to produce a theoretical potential curve that we
could later use to calculate the interspecies scattering lengths.
As discussed earlier, this requires both that the long-range
part of the potential is correct and also that the phase
integral, or the number of states be correct, so that mass
scaling is well satisfied. In our data analysis we have
satisfied both of these conditions, first by fitting a series of
potentials which all have the correct long-range interaction,
but support different numbers of bound states, and then
by selecting the potential that best describes the different
isotopes.

A. Least-squares fitting procedure

The best-fit potentials were obtained by fitting the theo-
retical line positions �th,i to those obtained experimentally,
�exp,i , using the least-squares method weighted by the exper-
imental uncertainties u(�exp,i). The theoretical energy levels
are produced by numerically solving the radial Schrödinger
equation

− h̄2

2μi

d2

dr2
�(r) + V (C6,C8,De; r)�(r) + VHF(Fi ; r)�(r) + h̄2

2μir2
Ri(Ri + 1)�(r) = Eth,i�(r) (11)

for the trial potential V (C6,C8,De; r), rotational quantum
number Ri and angular momentum Fi . The eigenvalue
closest to the corresponding experimental value is chosen for
comparison, and as long as the trial potential is good enough,
this provides the correct eigenvalue selection. The line position
is then calculated via �th,i = Eth,i/h − kT (R + 1/2)/h [47],
where T is the fitted sample temperature and k and h are
the Boltzmann and Planck constants respectively. The three
parameters of the potential, C6, C8, and potential depth, are
optimized using the well known Marquardt-Levenberg fitting
algorithm along with the sample temperature T . Here we
assume that the temperature of the atoms has not varied
significantly for all measured two-photon resonances. This
assumption is reasonable since all experimental measurements
were performed under similar conditions. In addition, the

temperature of Yb is expected to be independent of the isotope
since the four bosonic isotopes used in the context of the work
reported here are all lacking hyperfine structure. The limitation
of the Levenberg-Marquardt fitting method is that it requires
that the initial potential already reproduces the experimental
energy levels closely enough that the correct eigenvalues can
be selected as the theoretical values.

Finally, the interaction potential is complemented by a
hyperfine interaction potential VHF(F ; r), which takes into
account the r-dependent change in the hyperfine constant in
the RbYb molecule. This potential is explicitly dependent on
the F state of the molecule (bearing in mind that the Rb atom
is in the 2S1/2 and the Yb atom is in the 1S0 state):

VHF = s 1
2 [F (F + 1) − I (I + 1) − S(S + 1)]�ζ, (12)
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TABLE II. A comparison of potential parameters: long-range
van der Waals coefficients C6 and C8, the potential depth De, the
harmonic constant at equilibrium ωe calculated for 87Rb176Yb and the
equilibrium distance Re. The first three rows list RbYb ground-state
potential parameters reported previously in the literature: the ab initio
potential of Sorensen et al. [55], the recent long range coefficients
from Porsev [41] and those reported by Brue and Hutson [34], which
were based on a previously published subset of the photoassociation
data reported here. The values in the Semiempirical row were
calculated from atomic polarizabilities [Eqs. (9) and (10)]. Ab initio
I and Ab initio II are values obtained directly from our two ab initio
calculations. Finally, Experimental fit row lists the values obtained
from our best fit potentials.

C6 C8 De ωe Re

(a.u.) (105 a.u) (cm−1) (cm−1) (a.u.)

Sorensen et al. [55]a – – 749 27.95b 8.93
Porsev et al. [41] 2837(57) 3.20(7) – – –
Brue and Hutson [34] 2874.7 7.57c 719.1 – 9.28
Semiempirical 2825.9 3.38 – – –
Ab initio 1 – – 704.46 26.58 9.02
Ab initio 2 – – 785.80 28.81 8.85
Experimental fit 2837(13) 4.6(0.9) 787(18) 29.7(4) 9.02

aData taken from Table IV in Ref. [55] calculated with the
counterpoise-corrected CCSD(T) with 23 correlated electrons.
bValue rescaled to a reduced mass corresponding to the 87Rb176Yb
pair.
cCalculated from a C8/C6 ratio.

where �ζ is a molecular hyperfine correction function calcu-
lated analogously to Ref. [32], s is an isotope dependent scaling
factor proportional to the atomic hyperfine splitting. The
electron spin S = 1/2, while nuclear spin I = 5/2 for 85Rb
and I = 3/2 for 87Rb giving total atomic angular momentum
F = 2,3 or F = 1,2 respectively.

We find that the impact of the hyperfine corrections on
the energy levels is small and on the order of few MHz, as
shown in Fig. 3. As such, it was not critical for the quality of
the fit—the inclusion of these effects causes the χ2 to change
by no more than 0.2. On the other hand, the inclusion of the
temperature shift into the fitting reduced the χ2 factor of our
best fit potential by over 35%.

B. Number of states

Table III lists the parameters of ten best-fit potentials, each
supporting a different number of vibrational states or, equiva-
lently, � differing by an integer kπ . The parameters shown are
their depth De, the van der Waals coefficients C6 and C8 and the
fitted sample temperature T . The quality of the fit is determined
by the χ2 factor. Finally, for each potential we give the number
N of bound states supported for the case of 87Rb176Yb and
R = 0. Also, each of the fitted parameters is paired with its
corresponding statistical error calculated from the fit.

The long-range parameters C6 and C8 are to a great
extent fixed by the level spacings alone (even data for one
isotope would suffice). The main difference between the fitted
potentials is their depths, which vary from 656.0 cm−1 to
903.6 cm−1. Most of our photoassociation data has been
recorded for the 87Rb176Yb pair, which fixes the long-range
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FIG. 3. (Color online) The impact of the hyperfine interaction on
the bound-state energies calculated for ten of the highest lying states
of the ground-state 87Rb176Yb molecule. The molecular hyperfine
shift EHF was calculated by solving the radial Schrödinger equation
[Eq. (11)] with and without the hyperfine terms.

part of the potential very well. The remaining 13 lines, recorded
for 87Rb combined with 170Yb, 172Yb, and 174Yb enable us to
choose the potential that best reflects the mass scaling behavior
of the RbYb molecule. The best fit quality is obtained for the
787.4 cm−1 potential that supports N = 66 bound states (for
87Rb176Yb and R = 0). The selected potential clearly has the
lowest χ2. Since, however, it is only 13% lower than that of
the N = 65 potential and 40% lower than with the N = 67
potential, we believe that the N = 66 potential has to be
treated with caution. We will therefore use the differences
in parameters and scattering lengths calculated from the best
fit and the two second best fit potentials as a measure of an
additional systematic error. Thus, the reported experimental
uncertainties will reflect our uncertainty of the number of

TABLE III. A list of ten fits of the potential parameters to the
experimentally determined line positions. Each of these fits supports
a different number of bound states (ranging from N = 61 to N = 70).
The potential with the lowest χ 2, N = 66, is the one that mass scales
best. We use the neighboring potentials (N = 65 and N = 67) as a
measure of the systematic (or model-dependent) error on the reported
potential parameters.

De S(De) C6 S(C6) C8 S(C8) T S(T )
(cm−1) (a.u.) (105 a.u.) (μK) χ 2 N

656.0 6.2 −2746.1 8.2 −3.80 0.82 172 162 38.1 61
681.1 6.3 −2765.3 8.2 −3.98 0.84 196 162 25.6 62
706.8 6.5 −2784.0 8.2 −4.15 0.85 220 162 16.1 63
733.1 6.7 −2802.2 8.3 −4.32 0.87 244 162 9.6 64
759.9 6.8 −2820.0 8.3 −4.47 0.88 270 162 6.0 65
787.4 7.0 −2837.2 8.3 −4.62 0.89 296 162 5.3 66
815.4 7.2 −2854.0 8.4 −4.75 0.90 323 162 7.5 67
844.2 7.3 −2870.3 8.4 −4.86 0.91 350 162 12.4 68
873.5 7.5 −2886.2 8.4 −4.97 0.92 377 162 20.1 69
903.6 7.6 −2901.6 8.5 −5.05 0.93 404 162 30.5 70
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TABLE IV. Error budget for the fitted potential parameters—the
depth De and the two van der Waals coefficients C6 and C8. The
uncertainty given is calculated using method B from the fit uncertainty
(as the statistical error) and the systematic error, which is calculated
from the difference between the parameters in the chosen best fit
potential and parameters for potentials supporting one less, and one
more vibrational state. See text.

p S(p) �p u(p) Recommended

De (cm−1) 787.36 7.00 28.07 17.66 787(18)
C6 (a.u.) 2837.19 8.33 17.24 12.98 2837(13)
C8 (105 a.u.) 4.62 0.89 0.15 0.90 4.6(0.9)

bound states as well. The value for the temperature obtained
from the fit is consistent with the experimental conditions.

A comparison of experimental and theoretical bound state
energies is shown in Table I. The model describes the
experimental data well within the error bars in most cases,
as evidenced by the very low χ2 = 5.3. The expected value in
our case is 47, which suggests that the experimental error bars
may have been estimated very conservatively.

C. Error analysis

For each parameter or scattering length, the systematic error
was calculated by taking the value predicted by our chosen
best fit model and comparing it to one predicted by best fit
potentials supporting one less and one more bound state as
discussed earlier. The difference (whichever larger) was then
taken as a measure of the systematic error. The dependence
of the potential parameters on the number of supported states
N is shown in Table III. The statistical error for the potential
parameters was directly computed by the fitting procedure,
along with their correlation matrix ρ. It should be noted that

all three fitting parameters, i.e., the potential depth De, C6, and
C8 tend to shift the energy levels down when their magnitude
is increased. This causes significant correlation between them
and, in fact, the correlation matrix for the respective parameters
(De, C6, C8) of the chosen best fit potential reads:

ρ =
⎛
⎝ 1 −0.282 134 −0.998 663

−0.282 134 1 0.232 436
−0.998 663 0.232 436 1

⎞
⎠ . (13)

The correlation between the potential depth and C8 is es-
pecially striking. The explanation is that the energy level
spacing for the measured states is mostly determined by the
van der Waals interaction parameter C6. While C8 provides an
important correction to this spacing, it also strongly influences
the phase integral �, as does the potential depth. The complete
error budget for the potential parameters has been laid out in
Table IV.

To calculate the statistical uncertainty S(a) of a scattering
length a (see Sec. VI), one also has to take into account those
correlations. We use a standard expression for a combined
statistical error applied to a scattering length a posed as a
function of fitted parameters De, C6, and C8:

S2(a) =
∑
i,j

∂a

∂pi

∂a

∂pj

ρi,j SiSj , (14)

where pi denote the potential parameters.
The derivatives in the above expressions were evaluated

numerically. It turns out that the inclusion of the three
covariance terms is necessary for an accurate determination of
the statistical uncertainties of the scattering lengths, otherwise
they are overestimated by about an order of magnitude.
The final combined uncertainty u(a) is evaluated as usual:
u2(a) = S2(a) + �a2/3, where �a is the systematic error
discussed earlier.

TABLE V. Scattering lengths in the RbYb system. For each isotopic pair we give the value of the scattering length calculated by solving the
Schrödinger equation (column a) without the hyperfine term in order to provide a hyperfine independent value. We also show the error budget
for each reported value by giving the statistical error S(a), the systematic error �a and the resulting standard Method B uncertainty u(a). The
resulting data is in agreement with the qualitative experimental data [30,31].

�aHF(F )

Rb Yb a S(a) �a u(a) Expt. Recommended F = 2 F = 3

85 168 229.80 5.13 18.08 11.63 +230(12) −0.21 0.15
85 170 139.87 1.67 4.89 3.28 +139.9(3.3) −0.07 0.05
85 171 117.33 1.30 3.34 2.32 +117.3(2.3) −0.05 0.04
85 172 99.65 1.07 2.52 1.81 +99.7(1.9) −0.04 0.03
85 173 84.30 0.97 2.05 1.53 +84.3(1.6) −0.04 0.03
85 174 69.86 0.97 1.78 1.41 +69.9(1.5) −0.04 0.03
85 176 38.98 1.23 1.58 1.53 +39.0(1.6) −0.05 0.03

F = 1 F = 2

87 168 39.19 1.21 1.58 1.51 +39.2(1.6) −0.12 0.07
87 170 −11.45 2.31 1.78 2.52 0 −11.5(2.5) −0.22 0.13
87 171 −58.90 4.17 2.16 4.35 −58.9(4.4) −0.40 0.24
87 172 −160.70 10.84 3.07 10.98 −161(11) −1.05 0.62
87 173 −625.67 87.41 5.88 87.48 −626(88) −8.58 5.05
87 174 880.26 114.33 17.53 114.77 +500 +880(120) −11.02 6.76
87 176 216.85 4.41 2.49 4.64 +216.8(4.7) −0.44 0.26
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FIG. 4. (Color online) Mass dependence of the scattering length.
The black line is the scattering length numerically calculated as a
function of the reduced mass of the RbYb molecule. In the theoretical
treatment introduced by Gribakin and Flambaum this dependence is
given by the tangent function [49] [see Eq. (2)] shifted by a quantity
called the mean scattering length ā (blue dashed line). The dashed
black lines are similar predictions based on potentials supporting one
less and one more vibrational state (in 87Rb176Yb).

VI. RESULTS AND DISCUSSION

The values of the scattering lengths along with their
respective error budgets are given in Table V. These were
evaluated by directly solving the same Schrödinger equation
[Eq. (11)] as used during fitting, except for the hyperfine
term. This way, a spin-independent value is obtained. The
range of values covered by various 87Rb-xYb combinations
includes both large magnitudes, as it is in the case of the
large negative scattering length of the 87Rb-173Yb pair, as well
as the highly repulsive case of 87Rb and 174Yb, where the
interaction is so large, that it can cause severe distortion of
the atomic cloud when both species are trapped together, as
confirmed in experiment [30]. On the other hand 87Rb and
170Yb are characterized by a very small negative scattering
length, which explains their extremely inefficient sympathetic
cooling.

A different situation is seen in 85Rb-xYb combinations,
where the scattering lengths are all moderate and positive—
they only range from 36.7 a.u. to 212 a.u. and are all situated
around the mean scattering length ā (see Fig. 4). It is worth
noting that when the scattering length is close to ā, as it is the
case in 85Rb-173Yb and 85Rb-174Yb, then according to Gao’s
theory [50], there is a d-wave shape resonance close to zero
scattering energy.

For completeness, we have also calculated the hyperfine
corrections �aHF(F ) to the scattering lengths. They are also
listed in Table V for the possible values of the total spin F .
In our case these corrections are all significantly smaller than
the error bars of the scattering lengths themselves and they
are much larger in 87Rb-xYb pairs than 85Rb-xYb because
of the smaller hyperfine splitting in the latter systems. The
spin-dependent scattering length can be evaluated via a(F ) =
a + �aHF(F ).

We have also calculated the thermalization rates for the
RbYb system in order to compare the predictions of the model
with experiment. The elastic scattering cross sections for a
given collision energy ε are

σ (ε) = 4πh̄2

2με

∞∑
R=0

(2R + 1) sin2(ηR), (15)

where ηR is the scattering wave function phase for a the partial
wave R. The calculation of the scattering cross sections has
been carried out using the MOLSCAT [71] package. To obtain
the thermalization rates in a thermal cloud we have calculated
the thermal average of the cross sections using the Boltzmann
distribution

〈σ 〉 = 1

kBT

∫ ∞

0
σ (ε) exp(−ε/kBT )dε. (16)

The experimental data on the thermalization rates [31] was
only given relative to the thermalization rate in the 87Rb176Yb
pair. Since the thermalization rate is directly proportional to
the elastic scattering cross section, we can compare the ratio
〈σ 〉/〈σ176〉 to the experimental data. In the experiment the tem-
perature was estimated to be T = 50 μK. Note that the ther-
malization measurements were performed in a conservative
optical trap at a significantly lower temperature than the pho-
toassociation measurements reported here that were performed
in a magneto-optical trap. We have found that the theoretical
predictions agree with experimental data qualitatively—the
calculations confirm that the scattering cross section between
87Rb and 170Yb is very small, about three orders of magnitude
lower than the 87Rb176Yb pair, as evidenced by their extremely
low thermalization rate. On the other hand, the scattering cross
section between 87Rb and 174Yb is two to three times larger
and in an experiment performed in a conservative optical
trap, the large interaction causes distortion of the atomic
cloud [30].

VII. CONCLUSION

In this paper we have determined an accurate model
potential of the ground state of RbYb dimer and the scattering
lengths for all possible isotopic combinations. To this end
we have introduced a potential, which at short range uses
ab initio data, which are smoothly connected to the analytic
long-range form −C6r

−6 − C8r
−8. The short-range potential

has been parametrized with a uniform scaling parameter
d, which rescales the ab initio data. With data provided
from two-color photoassociation spectroscopy for 87Rb176Yb,
87Rb174Yb, 87Rb172Yb, and 87Rb170Yb isotopic mixtures (for
R = 0,1 rotational states), we have optimized the C6, C8 and d

parameters of the model potential to minimize the least square
error between predicted top-bound states and the experimental
values. In the calculation of line positions we have included
both the temperature and molecular hyperfine effects. The
recommended potential has the well depth De = 787.4 cm−1

in very good agreement with our state-of-the-art ab initio
calculation based on the Douglass-Kroll-Hess approximation
(786 cm−1) and previous, fully relativistic calculations of
Sørensen and coworkers [55].

The scattering lengths in all RbYb systems span a broad
range of values. For two of isotopic combinations, 87Rb174Yb
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and 87Rb173Yb, are nearly at the pole of scattering length:
the first is large and positive, the latter, large and negative.
The previous experimental value of the scattering length
of 87Rb170Yb has also been confirmed by these studies. On
the other hand the isotopic combinations involving 85Rb all
have moderate scattering lengths close to the mean scattering
length for this system. Thus, stable quantum-degenerate
Rb-Yb mixtures (either Bose-Bose or Bose-Fermi) should be
possible using 85Rb, if the intraspecies scattering length of
85Rb is tuned to a positive value near a homonuclear Feshbach
resonance [72].

Two systems, 85Rb173Yb and 85Rb174Yb have their scat-
tering length very close to ā, which is a condition for the
shape resonance in the d partial wave. This feature can be
exploited in future experiments: for example for these specific
isotopic mixtures one could expect shape-resonance enhanced
photoassociation from the rotationally excited state (R = 2)
of the RbYb molecule. The model potential derived here is
important for exploring the possibilities of manipulation of
collisional properties of the RbYb system: we will use it in

future investigations of magnetically and optically tunable
Feshbach resonances in the RbYb system.

ACKNOWLEDGMENTS

This work has been partially supported by the Foundation
for Polish Science TEAM Project Precise Optical Control
and Metrology of Quantum Systems and the Foundation for
Polish Science Homing Plus Programme No. 2011-3/14
cofinanced by the European Regional Development Fund.
The project is a part of an ongoing research program
of the National Laboratory FAMO in Toruń, Poland. The
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