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State-selective and total single-electron capture cross sections in fast collisions of a bare projectile with a
heliumlike target are examined in the four-body formalism. A special emphasis is given to a proper inclusion of
dynamic electron-electron correlation effects. For this purpose, the post form of the four-body boundary-corrected
first Born approximation (CB1-4B) is utilized. With regard to our related previous study, where the prior version
has been considered, in the present work an extensive analytical study of the post-transition amplitude for electron
capture into the arbitrary final states nf lf mf of the projectile is carried out. The post-transition amplitude for single
charge exchange encompassing symmetric and asymmetric collisions is derived in terms of five-dimensional
integrals over real variables. The dielectronic interaction V12 = 1/r12 ≡ 1/|�r1 − �r2| explicitly appears in the
perturbation potential Vf of the post-transition probability amplitude T +

if , such that the CB1-4B method can
provide information about the relative significance of the dynamic interelectron correlation in the collisions under
study. An illustrative computation is performed involving state-selective and total single capture cross sections
for the p-He collisions at intermediate and high impact energies. The so-called post-prior discrepancy, which
plagues almost all the existing distorted wave approximations, is presently shown to be practically nonexistent
in the CB1-4B method. The validity of our findings is critically assessed in comparisons with the available
experimental data for both state-selective and total cross sections summed over all the discrete energy levels
of the hydrogenlike atom formed with the projectile. Overall, excellent performance of the CB1-4B method is
recorded, thus robustly establishing this formalism as the leading first-order description of high-energy single
charge exchange, which is a collision of paramount theoretical and practical importance across interdisciplinary
fields ranging from astrophysics to medicine.
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I. INTRODUCTION

Electron capture from atomic and molecular targets by the
impact of fast ions is a topic of major importance in various
basic branches of physics such as astrophysics and plasma
physics, as well as in applied areas such as radiotherapy
by hadrons and in fusion research. Charge exchange as the
source of energy transfer is also a subject in microbiology. The
present work is focused on the case of single-electron capture
from two-electronic atomic systems interacting with bare ions
where four particles in total are involved. We report on our
theoretical investigation of single-electron capture process in
the typical ZP − (ZT; e1,e2) collision by using the four-body
boundary-corrected first Born (CB1-4B) approximation. The
CB1-4B method is a fully quantum mechanical four-body
formalism, since it explicitly considers each individual particle
and all the interactions among them in the collision under
investigation. The CB1-4B theory goes beyond the usual
independent-particle frozen-core approximations. Moreover, it
strictly preserves the correct boundary conditions in both colli-
sional channels. It is well known that the boundary conditions,
or equivalently, the asymptotic convergence problem [1–4]
are of essential importance for atomic collisions whenever
the aggregates are charged in the asymptotic channels. Such
a conclusion has been rigorously reached in formal scatter-
ing theory (see, e.g., Ref. [4] and references therein). In
general, the correct Coulomb boundary conditions consist
of the simultaneous requirement for the correct asymptotic
behaviors of all the scattering wave functions and their proper

connection with the corresponding perturbation interactions
that must be of short range [1]. The relevance of the Coulomb
phase distortions of the asymptotic channel states has been
established in comparison with experimental data for many
ion-atom collisions.

The first Born approximation with the correct boundary
conditions has been introduced within the three-body formal-
ism [3] (hereafter denoted as CB1-3B). Later, the CB1-3B
model has successfully been applied to many electron-capture
processes [5–19]. These applications of the CB1-3B model
have also shown that a first-order theory could be adequate
for describing single-electron capture, but only provided that
it obeys the proper Coulomb boundary conditions and that
it is associated with a nondivergent series development. The
initial formulation and implementation of the CB1-4B approx-
imation was carried out for double charge exchange [20,21].
Subsequently, the CB1-4B method was adapted and applied to
single-electron capture [22–24]. These computations [20–24]
have been performed for the ground-to-ground-state capture.
In a recent paper [25], we have carried out an extension
of the CB1-4B model in its prior version to encompass
electron capture into arbitrary final states of the projectile.
A number of quantum-mechanical four-body methods have
been proposed to study one- and two-electron transitions
for nonrelativistic fast ion-atom collisions with two actively
participating electrons, as reviewed in Refs. [26–28].

Beyond the essential importance of the correct boundary
conditions, the studies of interelectronic static and dynamic
correlations have also played a central role in atomic collision
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physics for a long time (see, e.g., Ref. [29]). Static correlations
are included in the bound-state wave functions of multielectron
targets. Dynamic correlations are due to interelectron Coulomb
potentials in the perturbation interactions from the transition
amplitudes. In other words, static correlations of electrons are
of the spectroscopic type and, as such, are built for isolated
atoms with no reference to collisions. By contrast, dynamic
correlations are the interelectronic interactions that constitute a
part of the overall perturbation potential responsible for transi-
tions between the initial and final states of the colliding atomic
systems. Helium atoms and negative hydrogen ions have, to a
large extent, been the two most prominent benchmark systems
of such studies. For example, using the four-body modified
Coulomb-Born (MCB-4B), or equivalently, the four-body
continuum distorted wave eikonal initial state (CDW-EIS-4B)
approximation, the static correlations have been shown to be
of a paramount importance for single-electron detachment in
the p-H− collisions from the threshold to the high-energy
Bethe region and beyond [30,31]. Likewise, the dynamic
correlations between electrons have been analyzed by means
of the CDW-EIS-4B model and shown to be very significant
for single ionization in the p-He collisions [32]. Further, for
transfer ionization in the α-He collisions, Belkić et al. [33,34]
used the post version of the four-body continuum distorted
wave (CDW-4B) method, in which the dielectronic interaction
V12 = 1/r12 explicitly appears in the perturbation potential
Vf . Their results [33,34] prove that there is a substantial
improvement of the CDW-4B method over the independent
electron models, implying that this success can be attributed
solely to the dynamic electron correlation effects. Moreover,
the importance of the correlation effects has very recently been
examined in the context of time-dependent density functional
theory of antiproton-helium collisions [35]. Thus, Ref. [35]
has presented the results for single and double ionization in
the impact energy range 5–2000 keV. The conclusion that the
electron correlation effects play a significant role in antiproton
impact ionization of helium has also been reached by Pindzola
et al. [36] by using the time-dependent close-coupling
method. The presence of a negatively charged impact ion in
such reactions removes the necessity of considering charge-
transfer processes.

Electron correlations in single-electron capture have been
analyzed within the CDW-4B theory [37,38] in the p-He,
α-He, and p-Li+ scattering, as well as within the CB1-4B
approximation [24] for the p-He and α-He collisions. In
these studies [24,37,38], the computations have been carried
out only for the ground-to-ground state capture. Additionally,
the obtained results were multiplied by a factor of 1.202 in
order to roughly include a contribution from all the excited
states. Electron transfer into excited states is expected to play
an important role, at least at lower and intermediate impact
energies. The contribution from the e1-e2 interaction during the
collision to single-electron capture into arbitrary final states
of the projectile has not been previously assessed. Therefore,
the main goal of the present work is to examine the relative
significance of the role of the dynamic interelectron correlation
with the help of the CB1-4B theory. We shall focus on the
role of the interelectron (e1-e2) potential V12 = 1/r12 from
a dynamic point of view, with the purpose of determining
whether electronic correlations remain important for capture
into excited states. In order to achieve this goal within the
CB1-4B method, one ought to employ the post formalism with
the explicit allowance of V12 in the complete final perturbation
Vf , which appears in the transition amplitude T +

if .

Atomic units will be used throughout unless otherwise
stated.

II. THEORY

The reactions to be studied are of the following type:

ZP + (ZT ; e1,e2)1s2 −→ (ZP ,e1)nf lf mf + (ZT ,e2)1s , (1)

where ZK is the charge of the Kth nucleus (K = P,T ) and
nf lf mf is the usual set of the three quantum numbers of
hydrogenlike atomic systems. The parentheses in Eq. (1)
denote the bound states. Let �s1 and �s2 (�x1 and �x2) be the position
vectors of the first and second electron e1 and e2 relative to the
nuclear charge of the projectile ZP (target ZT ), respectively.
Further, let �R be the position vector of ZT with respect
to ZP .

The post form of the transition amplitude for process (1) in
the CB1-4B method is

T +
if (�η) =

∫∫∫
d �x1d �x2d �R(ρv)2iZP (ZT −2)/vϕ∗

nf lf mf (�s1)ϕ∗
T (�x2)

[
ZP

(
1

R
− 1

s2

)
+ (ZT − 1)

(
1

R
− 1

x1

)
+

(
1

r12
− 1

x1

)]
ϕi(�x1,�x2)ei�ki ·�ri+i�kf ·�rf +iξ ln(vR+�v· �R), (2)

where ξ = (ZP − ZT + 1)/v and �ρ is the projection of vector
�R onto the XOY plane ( �ρ = �R − �Z, �ρ · �Z = 0). Furthermore,
�ki and �kf are the initial and final wave vectors, while �η is the
transverse momentum transfer �η = (η cos φη,η sin φη,0) with
the property �η · �v = 0 and �v is the incident velocity vector.
According to Ref. [3], for the purpose of computing total
cross sections, evaluation of the matrix element T +

if (�η) can be
carried out by omitting the phase factor (ρv)2iZP (ZT −2)/v from
the outset. Vector �ri in Eq. (2) is the relative vector of ZP

with respect to the center of mass of (ZT; e1,e2)1s2 , whereas �rf

is the position vector of the center of mass of (ZP ,e1)nf lf mf

relative to (ZT ,e2)1s . The vector of the distance between the
two electrons e1 and e2 is denoted by �r12 = �x1 − �x2 = �s1 −
�s2, so that r12 = |�r12|. The wave function of the two-electron
ground state of the target (ZT ; e1,e2)1s2 is labeled by ϕi(�x1,�x2).
Likewise, the bound-state wave functions of the hydrogenlike
atomic systems (ZP ,e1)nf lf mf and (ZT ,e2)1s are denoted by
ϕnf lf mf (�s1) and ϕT (�x2), respectively.
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We shall use the eikonal hypothesis, since the small-angle
limit applies to heavy particles:

�ki · �ri + �kf · �rf = �α · �s1 + �β · �x1 = −�v · �x1 − �α · �R, (3)

where �α and �β are the linear momentum transfers,

�β = −�η − βz �̂v, �α = �η − αz �̂v,

�α + �β = −�v, αz = v/2 − 	E/v, (4)

βz = v/2 + 	E/v.

Here, �̂v ≡ �v/v and 	E = Ei − Ef , where Ei is the binding
energy of the two-electron target with Ef = −Z2

P /[2(nf )2] −

Z2
T /2. We shall use the general factorized form for ϕi via:

ϕi(�x1,�x2) =
∑
k,l

ϕαk(�x1)ϕαl(�x2), (5)

where ϕαj (�r) = Nαj
exp(−αj r) with Nαj

= aj

√
N (j = k,l)

and N is the normalization constant. The values of the
summation indices k and l, as well as the variationally
determined parameters αj and aj , depend upon on a concrete
choice for the wave function.

The transition amplitude T +
if from (2) for process (1) can

now be written as

T +
if =

∑
k,l

Nkl

{
ZP

[
J

(k,l)
R − J (k,l)

s2

] + (ZT − 1)
[
J

(k,l)
R − J (k,l)

x1

] + [
J (k,l)

r12
− J (k,l)

x1

]}
, (6)

J (k,l)
ω =

∫
d �Re−i �α· �R(vR + �v · �R)iξW (k,l)

ω ( �R); ω = R,x1,s2,r12, (7)

W
(k,l)
R = 1

R
BkAl , W (k,l)

s2
= BkDl , W (k,l)

x1
= LkAl , W (k,l)

r12
= 1

2π2

∫
d �τ
τ 2

Bk,τAl,τ , (8)

Al =
∫

d �x2e
−(ZT +αl )x2 = 8π

(ZT + αl)3
, Bk =

∫
d �x1e

−i�v·�x1−αkx1ϕ∗
nf lf mf (�s1), (9)

Al,τ =
∫

d �x2e
i �τ ·�x2−(ZT +αl )x2 = 8π (ZT + αl)

[τ 2 + (ZT + αl)2]2
, (10)

Dl =
∫

d �x2
e−(ZT+αl )x2

s2
= 2π (ZT + αl)

∫ 1

0
dt1

1 − t1

	3
1

(1 + 	1R)e−	1R, (11)

Lk =
∫

d �x1
e−i�v·�x1−αkx1

x1
ϕ∗

nf lf mf (�s1)=
∫

d �x1
e−i�v·�x1−αkx1

x1

[∫
d �qe−i �q·�s1 ϕ̃nf lf mf (�q)

]∗
, (12)

Bk,τ =
∫

d �x1e
−i(�τ+�v)·�x1−αkx1ϕ∗

nf lf mf (�s1)=
∫

d �x1e
−i(�τ+�v)·�x1−αkx1

[∫
d �qe−i �q·�s1 ϕ̃nf lf mf (�q)

]∗
, (13)

where Nk,l = (ZT)3/2Nαk
Nαl

/
√

π and 	1 = (ZT + αl)
√

1 − t1. In integral J (k,l)
r12

, the well-known Bethe transform can be utilized
via 1/r12 = (2π2)−1

∫
d �ττ−2e−i �τ ·(�x1−�x2). Quantity ϕ̃nf lf mf (�q) in Eqs. (12) and (13) represents the Fourier transform ϕ̃nf lf mf (�q) =

(2π )−3
∫

d�s1e
i �q·�s1ϕnf lf mf (�s1) of the hydrogenlike wave function ϕnf lf mf (�s1). Regarding ϕ̃nf lf mf (�q), it will prove advantageous

to employ this power series representation [39]:

ϕ̃nf lf mf (�q) = (2π )−3N
ZP

f il
f

nr∑
p=0

cp

Ylf mf (�q)(
q2 + a2

f

)p+lf +2
, (14)

N
ZP

f = 16πZP

[
a3

f

nf

(nf + lf )!

nr !

]1/2
lf !(4af )l

f

(2lf + 1)!
, cp = (−nr )p(nf + lf + 1)p

(lf + 3/2)pp!
a

2p

f , (15)

with nr = nf − lf − 1 and af = ZP /nf . Here, symbol Ylm(�q) denotes the regular solid harmonic, i.e., the multipole of the type
Ylm(�q) = qlYlm( �̂q), where Ylm( �̂q) is the usual spherical harmonic, whereas (a)n is the Pochhammer symbol, which is alternatively
called the rising factorial (a)n = 
(a + n)/
(a) = a(a + 1) · · · (a + n − 1) with (a)0 = 1.

In the sequel, we shall generalize the original derivation of Belkić and Taylor [15]. To this end, integrals Bk,τ and Lk are
written as:

Bk,τ = (2π )−3N
ZP

f (−i)l
f

8παk

nr∑
p=0

cpG(τ,2)
k,p , Lk = (2π )−3N

ZP

f (−i)l
f

4π

nr∑
p=0

cpG(0,1)
k,p , (16)

G(τ,2)
k,p =ei �α· �R

∫
d �qe−i �q· �R Y∗

lf mf (�q − �α)(|�q − �α|2 + a2
f

)p+lf +2[|�q + ( �β − �τ )|2 + α2
k

]2
, (17)

G(0,1)
k,p =ei �α· �R

∫
d �qe−i �q· �R Y∗

lf mf (�q − �α)(|�q − �α|2 + a2
f

)p+lf +2(|�q + �β|2 + α2
k

) . (18)
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First, we shall consider integral G(τ,2)
k,p . Using the Feynman parametrization integral:

1

AsBr
= (s + r − 1)!

(s − 1)!(r − 1)!

∫ 1

0
dt

ts−1(1 − t)r−1

[At + B(1 − t)]s+r
(s,r � 1), (19)

it follows,

G(τ,2)
k,p = n(n − 1)

∫ 1

0
dttn−2(1 − t)U (τ )

k,p, U (τ )
k,p = e−i �Qτα · �R

∫
d �qe−i �q· �R Y∗

lf mf

(�q + �Qτα

)(
q2 + 	2

τ

)n+1 , (20)

�Qτα
= �Qτ − �α = (1 − t)(�τ + �v), �Qτ = �Q + (1 − t)�τ , �Q = �αt − �β(1 − t), (21)

	2
τ = |�v + �τ |2t(1 − t) + a2

f t + α2
k (1 − t), n = p + lf + 3. (22)

In order to perform the angular integration over ��q = (θq,φq) in Eq. (20), we shall first apply this addition theorem for regular
solid harmonics [40,41]:

Ylf mf

(�q + �Qτα

) =
lf∑

l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

(
l
f

1 m
f

1

∣∣lf mf
)
Y

l
f

1 m
f

1
(�q)Y

l
f

2 m
f

2

( �Qτα

)
, (23)

where l
f

1 + l
f

2 = lf , m
f

1 + m
f

2 = mf , −l
f

j � m
f

j � l
f

j (j = 1,2) and,

(
l
f

1 m
f

1

∣∣lf mf
) =

[
4π

2lf + 1(
2l

f

1 + 1
)(

2l
f

2 + 1
) (lf + mf )!(

l
f

1 + m
f

1

)
!
(
l
f

2 + m
f

2

)
!

(lf − mf )!(
l
f

1 − m
f

1

)
!
(
l
f

2 − m
f

2

)
!

]1/2

. (24)

Applying once again the addition theorem to Y
l
f

2 m
f

2
( �Qτα

), we have:

Y
l
f

2 m
f

2

( �Qτα

) =
l
f

2∑
l
f

1s=0

l
f

1s∑
m

f

1s=−l
f

1s

(
l
f

1sm
f

1s

∣∣lf2 m
f

2

)
Y

l
f

1sm
f

1s
([1 − t]�τ )Y

l
f

2sm
f

2s
([1 − t]�v), (25)

where l
f

1s + l
f

2s = l
f

2 , m
f

1s + m
f

2s = m
f

2 , −l
f

js � m
f

js � l
f

js (j = 1,2) and,

(
l
f

1sm
f

1s

∣∣lf2 m
f

2

) =
[

4π
2l

f

2 + 1(
2l

f

1s + 1
)(

2l
f

2s + 1
) (

l
f

2 + m
f

2

)
!(

l
f

1s + m
f

1s

)
!
(
l
f

2s + m
f

2s

)
!

(
l
f

2 − m
f

2

)
!(

l
f

1s − m
f

1s

)
!
(
l
f

2s − m
f

2s

)
!

]1/2

. (26)

Employing the relation Y
l
f

2sm
f

2s
([1 − t]�v) = (1 − t)l

f

2s vl
f

2s Y
l
f

2sm
f

2s
( �̂v) and choosing the velocity vector �v along the Z axes, the

spherical harmonic Y
l
f

2sm
f

2s
( �̂v) in this special case will be nonzero only for m

f

2s = 0, so that Y
l
f

2sm
f

2s
( �̂v) ≡ Y

l
f

2sm
f

2s
(0,φv) =√

(2l
f

2s + 1)/(4π )δ0,m
f

2s
, where δn,n′ is the usual Kronecker δ symbol. In this way, the sum over m

f

1s in Eq. (25) disappears

altogether and, therefore, the formula for Y∗
lf mf (�q + �Qτα

) is reduced to:

Y∗
lf mf

(�q + �Qτα

) =
√

4π

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
(1 − t)l

f

2s �
(
l
f

1s ,�v
)
Y

l
f

1 ,−m
f

1
(�q)Y

l
f

1s ,−m
f

2
([1 − t]�τ ), (27)

�
(
l
f

1s ,�v
) =

(
l
f

1s

∣∣lf2 m
f

2

)
vl

f

2s

√
4π (−1)mf

,
(
l
f

1s

∣∣lf2 m
f

2

) =
[

2l
f

2 + 1(
2l

f

1s + 1
) (

l
f

2 + m
f

2

)
!(

l
f

1s + m
f

2

)
!

(
l
f

2 − m
f

2

)
!(

l
f

1s − m
f

2

)
!
(
l
f

2s!
)2

]1/2

. (28)

The auxiliary integral U (τ )
k,p from Eq. (20) can be cast into the form:

U (τ )
k,p = e−i �Qτα · �R

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
(1 − t)l

f

2s �
(
l
f

1s ,�v
)
Y

l
f

1s ,−m
f

2
([1 − t]�τ )W (τ )

k,p, (29)

W (τ )
k,p =

√
4π

∫
d �qe−i �q· �R Y

l
f

1 ,−m
f

1
(�q)(

q2 + 	2
τ

)n+1 = 4π
5
2 (−i)l

f

1 F (τ )
k,pYl

f

1 ,−m
f

1
( �R). (30)

In Eq. (30), we used the Rayleigh ansatz e−i �q· �R = 4π
∑∞

l=0

∑l
m=−l(−i)ljl(qR)Y ∗

lm( �̂q)Ylm( �̂R), where (2z)1/2jl(z) = π1/2Jl+1/2(z)
and Jν(z) is the νth-order Bessel function of the first kind [42]. Above, the following result from Refs. [15,40] is
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employed:

F (τ )
k,p = 2

πRl
f

1

∫ ∞

0
dq

ql
f

1 +2j
l
f

1
(qR)(

q2 + 	2
τ

)n+1 = k̂ν−1/2(R	τ )

2nn!	
2n−2l

f

1 −1
τ

, (31)

where ν = n − l
f

1 . Here, k̂ν(z) is the reduced Bessel function k̂ν(z) = √
2/πzνKν(z) and Kν(z) is the McDonald function [42].

Therefore, integrals U (τ )
k,p and G(τ,2)

k,p can be mapped to:

U (τ )
k,p = 4π5/2

2nn!
e−i �Qτα · �R

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
(1 − t)l

f

2s �
(
l
f

1s ,�v
)
(−i)l

f

1 Y
l
f

1s ,−m
f

2
([1 − t]�τ )

B
(ν,	τ )

l
f

1 ,−m
f

1

( �R)

	
2n−2l

f

1 −1
τ

, (32)

G(τ,2)
k,p = 4π5/2

2n(n − 2)!

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
�

(
l
f

1s ,�v
)
(−i)l

f

1

×
∫ 1

0
dttn−2(1 − t)l

f

2s+1e−i �Qτα · �R
B

(ν,	τ )

l
f

1 ,−m
f

1

( �R)

	
2n−2l

f

1 −1
τ

Y
l
f

1s ,−m
f

2
([1 − t]�τ ), (33)

where B
(ν,	τ )

l
f

1 ,−m
f

1

( �R) = k̂ν−1/2(R	τ )Y
l
f

1 ,−m
f

1
( �R) is the so-called B−function [43]. Substituting Eq. (33) into Eq. (16) and using

Eqs. (7), (8) and (10), it follows:

J (k,l)
r12

= 2

π2
D

(k,l)
lf

nr∑
p=0

cp

2n(n − 2)!

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
�

(
l
f

1s ,�v
)
(−i)l

f

1

×
∫ 1

0
dttn−2(1 − t)l

f

2s+1
∫

d �τ
	

2n−2l
f

1 −1
τ τ 2[τ 2 + (ZT + αl)2]2

Y
l
f

1s ,−m
f

2
([1 − t]�τ )I

(ν,l
f

1 )
r12 , (34)

D
(k,l)
lf

= 64π9/2(−i)l
f

N
ZP

f (ZT + αl)αk, (35)

I
(ν,l

f

1 )
r12 = 1

(2π )3

∫
d �Re−i �Qτ · �R(vR + �v · �R)iξB(ν,	τ )

l
f

1 ,−m
f

1

( �R). (36)

Integral I
(ν,l

f

1 )
r12 has been calculated in Ref. [25] for the prior CB1-4B method with the result:

I
(ν,l

f

1 )
r12 = (−1)l

f

1 (2i)l
f

1

2π2

(2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr !
	pr

τ G
(1,	τ )

ν,−m
f

1

( �Qτ ), (37)

G
(λ,	τ )

ν,−m
f

1

( �Qτ ) =
pλ∑

k=0

l
f

1∑
l1=|mf

1 |
�kl1

prντ (λ)Z
l
f

1 l1
( �Qτ · �v), pλ = pr + λ, (38)

where for λ = 1 and np = n − l
f

1 − 1, we have,

Z
l
f

1 l1
( �Qτ · �v) = (

l1
∣∣lf1 − m

f

1

)
(−iv)l2Y

l1,−m
f

1
( �Qτ ), (39)

(
l1

∣∣lf1 − m
f

1

) =
[

2l
f

1 + 1

(2l1 + 1)

(
l
f

1 + m
f

1

)
!(

l1 + m
f

1

)
!

(
l
f

1 − m
f

1

)
!(

l1 − m
f

1

)
!(l2!)2

]1/2

. (40)

The remaining quantities appearing in Eq. (38) are defined as:

�kl1
prντ (λ) = (

aλ
τ bλ

τ

)
3F2

(−kλ/2, − kλ/2 + 1/2,1 − iγ1; k + l
f

1 + 1, − pλ − l
f

1 ; 1/Aτ

)
, (41)

aλ
τ = 
(1 + iξ )

(
l
f

1 + 1
)
pλ

(2Dτ )pλFτ(
	2

τ + Q2
τ

)l
f

1

, bλ
τ = (1 + iξ )l1 (−iξ )l2

B
l2
τ

(−pλ)k(iγ2)k(
l
f

1 + 1
)
k

(−1)kCk
τ

k!
, (42)

3F2
(−kλ/2, − kλ/2 + 1/2,1 − iγ1; k + l

f

1 + 1, − pλ − l
f

1 ; 1/Aτ

) =
[kλ/2]∑
u=0

(−kλ/2)u(−kλ/2 + 1/2)u(1 − iγ1)u(
k + l

f

1 + 1
)
u

(−pλ − l
f

1

)
u
u!

(
1

Aτ

)u

, (43)

Aτ = 	2
τ

	2
τ + Q2

τ

, Bτ = 2(v	τ − i �Qτ · �v)

	2
τ + Q2

τ

, Cτ = v

Bτ	τ

− 1, (44)
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Dτ = Aτ

	τ

, Fτ = Biξ
τ

	2
τ + Q2

τ

, (45)

kλ = pλ − k, l1 + l2 = l
f

1 , γ1 = −ξ + il1, γ2 = −ξ − il2. (46)

In Eq. (43), function 3F2 denotes the Clausen generalized hypergeometric polynomial [44] and symbol [kλ/2] is the largest
integer contained in fraction kλ/2. Hence, the dynamic correlation term is reduced to the following four-dimensional integral:

J (k,l)
r12

= D
(k,l)
lf

π4

nr∑
p=0

cp

2n(n − 2)!

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
�

(
l
f

1s ,�v
)
(−1)l

f

1 2l
f

1 M(ν,l
f

1 )
12 , (47)

M(ν,l
f

1 )
12 = (2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr !

∫ 1

0
dttn−2(1 − t)l

f

2s+1H12, (48)

H12 =
∫ ∞

0

∫ π

0

∫ 2π

0

sin θτ dτdθτ dφτ

	
2n−2l

f

1 −pr−1
τ [τ 2 + (ZT + αl)2]2

G
(1,	τ )

ν,−m
f

1

( �Qτ )Y
l
f

1s ,−m
f

2
([1 − t]�τ ). (49)

Applying a similar procedure, the auxiliary integral G(0,1)
k,p from Eq. (18) can be reduced to a real one-dimensional integral. As

such, quantity J (k,l)
x1

from Eq. (7) becomes:

J (k,l)
x1

= D
(k,l)
lf

π2αk(ZT + αl)4

nr∑
p=0

cp

2n−1(n − 2)!

lf∑
l
f

1 =|mf |
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v)
M(ν1,l

f

1 )
x1 , (50)

M(ν1,l
f

1 )
x1 = (2np − 2)!

(np − 1)!

np−1∑
pr=0

(1 − np)pr

(2 − 2np)pr

2pr−np+1

pr !

∫ 1

0
dt

tn−2(1 − t)l
f

2

	2(n−1)−2l
f

1 −pr−1
G

(1,	)
ν1,−mf ( �Q), (51)

	2 = v2t(1 − t) + a2
f t + α2

k (1 − t), ν1 = n − 1 − l
f

1 . (52)

Quantity G
(1,	)
ν1,−mf ( �Q) is defined by Eq. (38) except that all the subsequent expressions should use {	, �Q, �τ = �0, ν1,m

f } instead

of {	τ , �Qτ , �τ , ν,m
f

1 }.
The remaining integrals J

(k,l)
R and J (k,l)

s2
from Eq. (7) have previously been calculated in the prior version of the CB1-4B

method [25] and the results are:

J
(k,l)
R = 2D

(k,l)
lf

π2(ZT + αl)4

nr∑
p=0

cp

2n(n − 2)!

lf∑
l
f

1 =|mf |
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v)
M(ν,l

f

1 )
R , (53)

J (k,l)
s2

= D
(k,l)
lf

2π2

nr∑
p=0

cp

2n(n − 2)!

lf∑
l
f

1 =|mf |
(−1)l

f

1 2l
f

1 �
(
l
f

1 ,�v)
M(ν,l

f

1 )
s2 , (54)

M(ν,l
f

1 )
R = (2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr !

∫ 1

0
dt

tn−2(1 − t)l
f

2 +1

	2n−2l
f

1 −pr−1
G

(0,	)
ν,−mf ( �Q), (55)

M(ν,l
f

1 )
s2 = (2np)!

np!

np∑
pr=0

(−np)pr

(−2np)pr

2pr−np

pr !

∫ 1

0
dt1

(1 − t1)

	3
1

∫ 1

0
dt

tn−2(1 − t)l
f

2 +1

	2n−2l
f

1 −pr−1

[
G

(1,	2)
ν,−mf ( �Q) + 	1G

(2,	2)
ν,−mf ( �Q)

]
, (56)

where 	2 = 	 + 	1. Thus, the final expression for the transition amplitude is given by:

T +
if (�η) =

∑
k,l

nr∑
p=0

Nk,l

cp

2n(n − 2)!

⎧⎨⎩
lf∑

l
f

1 =|mf |
(−1)l

f

1 2l
f

1
�

(
l
f

1 ,�v)
(ZT + αl)4

×
[
ZP

(
2M(ν,l

f

1 )
R − (ZT + αl)4

2
M(ν,l

f

1 )
s2

)
+ 2(ZT − 1)

(
M(ν,l

f

1 )
R − 1

αk

M(ν1,l
f

1 )
x1

)
− 2

αk

M(ν1,l
f

1 )
x1

]

+ 1

π2

lf∑
l
f

1 =0

l
f

1∑
m

f

1 =−l
f

1

l
f

2∑
l
f

1s=|mf

2 |

(
l
f

1 m
f

1

∣∣lf mf
)
(−1)l

f

1 2l
f

1 �
(
l
f

1s ,�v
)
M(ν,l

f

1 )
12

⎫⎬⎭ , Nk,l = Nk,lD
(k,l)
lf

π2
. (57)
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This completes the calculation of the transition amplitude
T +

if in terms of the five-dimensional integral over real variables
t , t1, τ , θτ , and φτ . The entire dependence of the transition
amplitude T +

if (�η) ≡ T +
if (η,φη) upon the azimuthal angle φη is

contained in the single phase factor exp(−imf φη). Therefore,
in order to obtain the total cross sections, the integration over
φη can be carried out analytically, so that:

Q±
if

(
πa2

0

) = 1

2π2v2

∫ ∞

0
dηη|T ±

if (η,0)|2. (58)

The remaining integrations over η, t , t1, τ , θτ , and φτ are carried
out by numerical quadratures. Except for the integration over
φτ ∈ [0,2π ] for which the Gauss-Mehler (GM) quadrature
is employed, the Gauss-Legendre (GL) quadrature is applied
to the other integrations, after the following change of
variables τ = (1 + x)/(1 − x),x ∈ [−1, + 1], cos θτ = u,u ∈
[−1, + 1], η = √

2(1 + y)/(1 − y), and y ∈ [−1, + 1]. The
change of variable in η is the most important, since it
concentrates the integration points near the forward cone
[16], which gives the dominant contributions due to the
eikonal nature of scattering for heavy projectiles. This can
be seen by writing cos θ = 1 − (μv)−2(1 + y)/(1 − y), where
the scattering angle θ is linked to η via η = 2μv sin(θ/2) and
μ is the reduced mass of the incident and target nuclei. The
singularities at x = 1 and y = 1 are only superficial, as they
disappear altogether after factoring out all the powers of 1 − x

and 1 − y.

In the present computations, the orders of the GM and GL
quadratures, i.e., the numbers NGM and NGL of integration
points are varied until convergence to two decimal places has
been attained for state-selective and total cross sections. In
practice, only NGM � 20 for the φτ integrals and NGL � 80
for each of the remaining t , t1, τ , θτ , and η quadratures proved
to be sufficient for the sought accuracy of two decimal places.

From the numerical point of view, it is more convenient
to use the prior form of the CB1-4B method for different
applications. The prior transition amplitude T −

if has recently
been derived [25] in terms of a two-dimensional numerical
quadrature over real variables, whereas the post transition
amplitude T +

if , as presently reported, is reduced to integrals
over five real variables. Nevertheless, these latter integrals are
still advantageous with respect to, e.g., the work of Madison
et al. [45–49] who computed some extremely time consuming
nine-dimensional numerical quadratures for single charge
exchange in proton-helium collisions.

III. RESULTS AND DISCUSSIONS

In the present work, we shall use the four-parameter
wave function of Löwdin [50] for the ground state of the
helium target He(1s2). It is given by ϕi(�x1,�x2) = N (a1e

−b1x1 +
a2e

−b2x1 )(a1e
−b1x2 + a2e

−b2x2 ), where a1 = 2.7626, a2 =
1.9104, b1 = 1.4287, b2 = 2.7022 with the binding en-
ergy Ei = −2.861 525. The normalization constant N is
πN = {a2

1/b
3
1 + a2[a2/b

3
2 + 16a1/(b1 + b2)3]}−1. The pre-

sented algorithm is general, in the sense that it can
be applied to both heteronuclear and homonuclear single
charge exchanges of type (1). As an illustration, numeri-
cal computations are performed for proton-helium charge

exchange:

p + He −→ H(nf lf mf ) + He+(1s), (59)

p + He −→ H(�) + He+(1s), (60)

where symbol � denotes the formation of atomic hydrogen
H(�) in any state. The results of our computations of the
state-selective cross sections for atomic hydrogen formation as
H(2s), H(2p), H(3s), H(3p), H(3d), and H(4s) are summarized
in Tables I–V and Figs. 1–8 at impact energies 20–10 000 keV.
In Figs. 1–3, the full curves represent the state-selective cross
sections that are obtained with the full perturbation Vf in the
T +

if from (2) as:

Vf = 	VP2 + 	VT1 + 	V12, 	V12 = V12 − V ∞
12 ,

V12 = 1

r12
, V ∞

12 = 1

x1
(61)

	VP2 = ZP

(
1

R
− 1

s2

)
, 	VT1 = (ZT − 1)

(
1

R
− 1

x1

)
.

The effect of the dynamic electron correlations is explicitly
included through 1/r12 in Vf . For capture into nf = 4, the
experimental data [57,59,61] are available only for formation
of the H(4s) state, and a comparison with these measurements
is made in Fig. 3. It can be seen from Figs. 1–3 that the
obtained theoretical results for formation of H(2s), H(3s), and
H(4s) are presently found to be in excellent agreement with the
measurements at all impact energies above 60 keV. The cross
sections for electron capture into the 2p and 3p states of atomic
hydrogen are compared with the available experimental data
in Figs. 1 and 2, respectively. These comparisons show that
the theoretical curves slightly overestimate the measurements
especially at lower impact energies, whereas at higher energies
the CB1-4B method converges towards the experimental data.
Such an outcome is anticipated since this is a high-energy
method, which is expected to agree better with experiments at
larger impact energies. A comparison of the CB1-4B method
with the measurements for capture into the 3d state of H is
made in Fig. 2. Therein, it is found that the theoretical curve
overestimates the experimental data at lower impact energies,
but at higher energies the CB1-4B method predicts very well
the corresponding findings from the measurements.

Total cross sections Q±(�) for electron capture into all
the final states of H via formation of H(�) are obtained by
applying the Oppenheimer (nf )−3 scaling law via:

Q±(�) = Q±
1s + Q±

2s + Q±
2p + 2.081(Q±

3s + Q±
3p + Q±

3d ).

(62)

This is justified because the contributions from the higher ex-
cited states are found to be negligible. The total cross sections
for the p-He collisions in the energy range 20–10000 keV
are plotted in Fig. 4. Here, the obtained results of the CB1-4B
method are seen to be in excellent agreement with all the avail-
able measurements at a very wide interval of impact energies
where the cross sections vary within ten orders of magnitude.

Potential 	V12 in the complete perturbation Vf from
(61) represents a source of the dynamic electron correla-
tion effect. Specifically, interaction 	V12 is the difference
between the finite (V12) and asymptotic (V ∞

12 ) values of
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TABLE I. Present total cross sections (in units of cm2) as a function of laboratory impact energy E (keV) for electron capture by protons
from He(1s2) in process (59). The post form of the CB1-4B method is applied with the complete perturbation potential Vf by using the helium
ground-state wave functions of Löwdin [50]. The row labeled “Total” represents the cross sections summed over the bound states of the captured
electron H(nf lf mf ) by employing (62). Notation X[−N ] implies X × 10−N .

E (keV)

nf lf mf 20 50 100 150 300 500

100 4.27[−16] 1.05[−16] 2.21[−17] 6.96[−18] 6.33[−19] 7.88[−20]
200 2.37[−17] 1.06[−17] 2.80[−18] 9.36[−19] 8.70[−20] 1.07[−20]
210 3.48[−17] 7.73[−18] 1.35[−18] 3.46[−19] 1.89[−20] 1.48[−21]
211 1.59[−18] 5.40[−19] 1.29[−19] 3.56[−20] 2.02[−21] 1.60[−22]
2p 3.80[−17] 8.81[−18] 1.61[−18] 4.17[−19] 2.29[−20] 1.80[−21]
300 5.89[−18] 2.98[−18] 8.26[−19] 2.80[−19] 2.62[−20] 3.21[−21]
310 1.02[−17] 2.48[−18] 4.60[−19] 1.20[−19] 6.66[−21] 5.24[−22]
311 4.54[−19] 1.60[−19] 4.17[−20] 1.19[−20] 6.99[−22] 5.58[−23]
3p 1.11[−17] 2.79[−18] 5.43[−19] 1.44[−19] 8.05[−21] 6.35[−22]
320 8.04[−19] 1.71[−19] 2.42[−20] 5.11[−21] 1.78[−22] 9.41[−24]
321 8.94[−20] 2.10[−20] 4.55[−21] 1.09[−21] 4.12[−23] 2.20[−24]
322 5.39[−21] 1.91[−21] 4.77[−22] 1.14[−22] 4.17[−24] 2.16[−25]
3d 9.94[−19] 2.17[−19] 3.43[−20] 7.52[−21] 2.69[−22] 1.42[−23]
Total 5.26[−16] 1.37[−16] 2.94[−17] 9.21[−18] 8.15[−19] 9.93[−20]

nf lf mf 750 1000 1500 3000 5000 7500 10000

100 1.29[−20] 3.32[−21] 4.50[−22] 1.23[−23] 7.71[−25] 8.06[−26] 1.58[−26]
200 1.72[−21] 4.37[−22] 5.86[−23] 1.58[−24] 9.79[−26] 1.02[−26] 2.01[−27]
210 1.62[−22] 3.09[−23] 2.71[−24] 3.49[−26] 1.25[−27] 8.51[−29] 1.23[−29]
211 1.76[−23] 3.39[−24] 3.03[−25] 3.98[−27] 1.44[−28] 9.78[−30] 1.41[−30]
2p 1.97[−22] 3.77[−23] 3.32[−24] 4.28[−26] 1.54[−27] 1.05[−28] 1.52[−29]
300 5.15[−22] 1.31[−22] 1.75[−23] 4.64[−25] 2.85[−26] 3.02[−27] 6.11[−28]
310 5.72[−23] 1.09[−23] 9.59[−25] 1.23[−26] 4.43[−28] 3.01[−29] 4.36[−30]
311 6.18[−24] 1.19[−24] 1.07[−25] 1.40[−27] 5.11[−29] 3.47[−30] 5.01[−31]
3p 6.96[−23] 1.33[−23] 1.17[−24] 1.51[−26] 5.45[−28] 3.70[−29] 5.36[−30]
320 7.30[−25] 1.08[−25] 6.47[−27] 4.14[−29] 8.75[−31] 3.87[−32] 4.15[−33]
321 1.71[−25] 2.53[−26] 1.53[−27] 9.99[−30] 2.15[−31] 9.59[−33] 1.03[−33]
322 1.64[−26] 2.38[−27] 1.41[−28] 8.88[−31] 1.87[−32] 8.22[−34] 8.76[−35]
3d 1.10[−24] 1.63[−25] 9.81[−27] 6.32[−29] 1.34[−30] 5.95[−32] 6.39[−33]
Total 1.60[−20] 4.09[−21] 5.51[−22] 1.49[−23] 9.31[−25] 9.72[−26] 1.91[−26]

the same e1-e2 potential 1/r12. The residual potential 1/x1

is the limiting value of 1/r12 at infinitely large x1 and
finite x2 (V ∞

12 = {V12}x1
x2 ≈ 1/x1). Such a circumstance
implies that potential 	V12 is a short-range interaction.
This can be made more explicit by using relation r12 =
|�x1 − �x2| to develop 1/x1 = 1/|�r12 − �x2| in a power series
around �x2 according to 1/x1 = 1/|�r12 − �x2| = 1/r12 − �̂r12 ·
�x2/r2

12 + · · · (�̂r12 = �r12/r12). Thus, 	V12 = 1/r12 − 1/x1 =
γ /r2

12 + · · · (γ = �̂r12 · �x2), where the asymptotic tail γ /r2
12 of

	V12 is of a short range. This series development is justified
by the small value of coordinate x2 (which is of the order
of Bohr radius a0), since electron e2 always remains bound
in the target in process (1). A modulation of V12 by way of
V ∞

12 within 	V12 is a type of screening of the long-range
Coulomb interaction V12 = 1/r12. Due to such a screening
effect, which is responsible for a short range of the combined
potential 1/r12 − 1/x1, the overall relative importance of the
role of dynamic correlations via 	V12 can be quantitatively
different from the customary expectations when only 1/r12

is considered. For example, an increase of the impact energy
would decrease the collision time and this, in turn, would

weaken all the perturbation interactions, including 1/r12 in
Vf . However, what matters in T +

if , where transition i → f is
directly mediated by Vf , is not so much the specific trend and
strength of each individual interaction in the final perturbation,
be it the interelectronic potential or otherwise. Rather, what
counts, in the end, is the overall balance of every participating
interaction. This is dictated by the content of the complete
perturbation Vf , which includes both attractive and repulsive
potentials whose action can lead to constructive as well as
destructive interference in T +

if . The purpose of grouping the
individual Coulomb potentials from Vf into three short-range
interactions 	V12,	VT1, and 	VP2 according to (61) is to
evaluate the relative importance of these potentials, none of
which can produce any distortion of the final unperturbed
state in the exit channel. This permits switching on and off
one or two interactions from the set {	V12,	VT1,	VP2} in Vf

while still fulfilling the requirement of the so-called asymptotic
freedom [1]. According to this crucial principle, an adequate
collision theory must deal only with the unperturbed states in
the asymptotic regions because they are the only ones that are
experimentally accessible in scattering experiments.
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TABLE II. Present total cross sections (in units of cm2) as a function of laboratory impact energy E (keV) for electron capture by protons
from He(1s2) in process (59). The post form of the CB1-4B method is applied without 	V12 in Vf by using the helium ground-state wave
functions of Löwdin [50]. The row labeled “Total” represents the cross sections summed over the bound states of the captured electron
H(nf lf mf ) by employing (62). Notation X[−N ] implies X × 10−N .

E (keV)

nf lf mf 20 50 100 150 300 500

100 3.87[−16] 8.34[−17] 1.62[−17] 4.90[−18] 4.07[−19] 4.64[−20]
200 2.31[−17] 8.30[−18] 2.04[−18] 6.56[−19] 5.62[−20] 6.35[−21]
210 4.30[−17] 8.46[−18] 1.27[−18] 3.05[−19] 1.53[−20] 1.15[−21]
211 2.05[−18] 3.90[−19] 7.14[−20] 1.80[−20] 8.70[−22] 5.97[−23]
2p 4.71[−17] 9.24[−18] 1.42[−18] 3.41[−19] 1.70[−20] 1.27[−21]
300 5.88[−18] 2.32[−18] 6.01[−19] 1.96[−19] 1.70[−20] 1.91[−21]
310 1.26[−17] 2.75[−18] 4.38[−19] 1.07[−19] 5.43[−21] 4.09[−22]
311 5.99[−19] 1.20[−19] 2.33[−20] 6.05[−21] 3.02[−22] 2.09[−23]
3p 1.38[−17] 2.99[−18] 4.85[−19] 1.19[−19] 6.04[−21] 4.51[−22]
320 9.93[−19] 1.98[−19] 2.31[−20] 4.43[−21] 1.39[−22] 7.10[−24]
321 1.23[−19] 1.91[−20] 2.68[−21] 5.66[−22] 1.82[−23] 8.62[−25]
322 7.80[−21] 1.27[−21] 2.25[−22] 4.95[−23] 1.56[−24] 7.06[−26]
3d 1.25[−18] 2.39[−19] 2.89[−20] 5.66[−21] 1.79[−22] 8.97[−24]
Total 5.01[−16] 1.12[−16] 2.20[−17] 6.57[−18] 5.29[−19] 5.90[−20]

nf lf mf 750 1000 1500 3000 5000 7500 10000

100 6.91[−21] 1.65[−21] 1.97[−22] 4.24[−24] 2.25[−25] 2.11[−26] 3.89[−27]
200 9.32[−22] 2.19[−22] 2.58[−23] 5.45[−25] 2.85[−26] 2.63[−27] 4.78[−28]
210 1.22[−22] 2.26[−23] 1.89[−24] 2.14[−26] 6.85[−28] 4.24[−29] 5.80[−30]
211 5.78[−24] 1.01[−24] 7.79[−26] 8.14[−28] 2.59[−29] 1.64[−30] 2.29[−31]
2p 1.33[−22] 2.46[−23] 2.04[−24] 2.30[−26] 7.37[−28] 4.57[−29] 6.26[−30]
300 2.80[−22] 6.58[−23] 7.77[−24] 1.69[−25] 9.03[−27] 7.91[−28] 1.34[−28]
310 4.33[−23] 8.02[−24] 6.69[−25] 7.54[−27] 2.38[−28] 1.44[−29] 1.94[−30]
311 2.03[−24] 3.55[−25] 2.74[−26] 2.86[−28] 9.09[−30] 5.76[−31] 8.07[−32]
3p 4.73[−23] 8.73[−24] 7.24[−25] 8.11[−27] 2.57[−28] 1.56[−29] 2.10[−30]
320 5.46[−25] 8.04[−26] 4.81[−27] 3.01[−29] 6.10[−31] 2.59[−32] 2.72[−33]
321 6.07[−26] 8.36[−27] 4.57[−28] 2.53[−30] 4.87[−32] 2.05[−33] 2.14[−34]
322 4.73[−27] 6.28[−28] 3.25[−29] 1.68[−31] 3.15[−33] 1.31[−34] 1.36[−35]
3d 6.77[−25] 9.84[−26] 5.79[−27] 3.55[−29] 7.13[−31] 3.03[−32] 3.18[−33]
Total 8.66[−21] 2.05[−21] 2.43[−22] 5.18[−24] 2.74[−25] 2.54[−26] 4.66[−27]

In the T matrix element (2), potential 	V12 plays the role of
a perturbation, which can cause capture of electron e1. In other
words, the correlation potential 	V12 can lead to single capture
as a separate and competitive mechanism to the remaining
interactions 	VT1 and 	VP2 that do not directly invoke
the e1-e2 repulsion. In principle, these separate pathways
are indistinguishable and should be added coherently, since
they can produce the same final state. The importance of
the screened dynamic correlations is presently assessed in
the transition amplitude T +

if from (2) by either including or
excluding 	V12 in Vf , as shown in Tables I and II, respectively,
for the post version of the CB1-4B method. The cross sections
without the correlation term 	V12 are also displayed in
Figs. 1–3 by the dashed curves for the state-selective cross
sections, as well as in Fig. 4 for the total cross sections.
The extent to which the screened dynamic electron correlation
	V12 might influence the entire process can at once be seen
on Figs. 1–4. Therein, it follows that above 100 keV, where
the CB1-4B model is expected to be valid, the discrepancy
between the results with the complete perturbation Vf (solid
curves) and the corresponding cross sections without 	V12

(dashed curves) is seen as being large. These discrepancies
increase even further with augmentation of the incident energy.
Such a pattern indicates that the role of the screened dynamic
correlations 	V12 becomes more prominent at higher incident
energies.

Table III shows the corresponding cross sections for the
prior version of the CB1-4B method with the full perturbation
Vi, which does not include directly the electron-electron
correlations. Nevertheless, Vi from T −

if is not entirely free
from electronic correlations. Quite the contrary, an alter-
native mechanism of electronic correlations mediated by
potential −ZP /s2 is also present in Vi , which is given
by Vi = ZP (2/R − 1/s1 − 1/s2). In analogy with Vf , the
complete short-range potential Vi can be expressed as the
sum of two short-range interactions via Vi = 	VP1 + 	VP2

where 	VP1 = ZP (1/R − 1/s1) and 	VP2 is the same as in
Vf , i.e., 	VP2 = ZP (1/R − 1/s2). Regarding the interactions
involving one or both electrons, within the description by
means of T −

if , electron e1 can be captured through either
ZP -e1 or ZP -e2 potentials −ZP /s1 or −ZP /s2, respectively.
Both captures are associated with the kinematical, i.e., the
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TABLE III. Present total cross sections (in units of cm2) as a function of laboratory impact energy E (keV) for electron capture by protons from
He(1s2) in process (59). The prior form of the CB1-4B method is applied with the complete perturbation potential Vi = ZP (2/R − 1/s1 − 1/s2)
where ZP = 1 by using the helium ground-state wave functions of Löwdin [50]. The row labeled “Total” represents the cross sections summed
over the bound states of the captured electron H(nf lf mf ) by employing (62). Notation X[−N ] implies X × 10−N .

E (keV)

nf lf mf 20 50 100 150 300 500

100 3.95[−16] 9.77[−17] 2.11[−17] 6.79[−18] 6.42[−19] 8.20[−20]
200 2.24[−17] 9.69[−18] 2.63[−18] 9.02[−19] 8.78[−20] 1.11[−20]
210 3.54[−17] 7.52[−18] 1.30[−18] 3.35[−19] 1.89[−20] 1.51[−21]
211 1.57[−18] 5.08[−19] 1.26[−19] 3.60[−20] 2.14[−21] 1.73[−22]
2p 3.85[−17] 8.53[−18] 1.55[−18] 4.07[−19] 2.31[−20] 1.86[−21]
300 5.60[−18] 2.72[−18] 7.76[−19] 2.70[−19] 2.65[−20] 3.34[−21]
310 1.03[−17] 2.41[−18] 4.41[−19] 1.17[−19] 6.66[−21] 5.36[−22]
311 4.49[−19] 1.51[−19] 4.09[−20] 1.21[−20] 7.42[−22] 6.05[−23]
3p 1.12[−17] 2.72[−18] 5.23[−19] 1.41[−19] 8.15[−21] 6.57[−22]
320 8.28[−19] 1.71[−19] 2.32[−20] 4.92[−21] 1.77[−22] 9.53[−24]
321 9.01[−20] 1.97[−20] 4.36[−21] 1.08[−21] 4.32[−23] 2.37[−24]
322 5.33[−21] 1.75[−21] 4.57[−22] 1.13[−22] 4.32[−24] 2.29[−25]
3d 1.02[−18] 2.14[−19] 3.29[−20] 7.32[−21] 2.72[−22] 1.47[−23]
Total 4.93[−16] 1.28[−16] 2.80[−17] 8.97[−18] 8.26[−19] 1.03[−19]

nf lf mf 750 1000 1500 3000 5000 7500 10000

100 1.36[−20] 3.50[−21] 4.70[−22] 1.24[−23] 7.48[−25] 7.67[−26] 1.49[−26]
200 1.81[−21] 4.61[−22] 6.12[−23] 1.58[−24] 9.49[−26] 9.69[−27] 1.89[−27]
210 1.68[−22] 3.21[−23] 2.81[−24] 3.51[−26] 1.23[−27] 8.18[−29] 1.18[−29]
211 1.91[−23] 3.66[−24] 3.20[−25] 3.99[−27] 1.40[−28] 9.30[−30] 1.34[−30]
2p 2.06[−22] 3.95[−23] 3.45[−24] 4.31[−26] 1.51[−27] 1.00[−28] 1.44[−29]
300 5.42[−22] 1.38[−22] 1.83[−23] 4.68[−25] 2.78[−26] 2.83[−27] 5.54[−28]
310 5.93[−23] 1.14[−23] 9.94[−25] 1.24[−26] 4.33[−28] 2.89[−29] 4.15[−30]
311 6.71[−24] 1.29[−24] 1.12[−25] 1.40[−27] 4.93[−29] 3.30[−30] 4.74[−31]
3p 7.28[−23] 1.39[−23] 1.22[−24] 1.52[−26] 5.31[−28] 3.55[−29] 5.10[−30]
320 7.48[−25] 1.11[−25] 6.64[−27] 4.16[−29] 8.60[−31] 3.76[−32] 4.00[−33]
321 1.86[−25] 2.73[−26] 1.62[−27] 1.01[−29] 2.09[−31] 9.18[−33] 9.80[−34]
322 1.74[−26] 2.52[−27] 1.46[−28] 8.82[−31] 1.80[−32] 7.84[−34] 8.31[−35]
3d 1.15[−24] 1.71[−25] 1.02[−26] 6.35[−29] 1.31[−30] 5.75[−32] 6.12[−33]
Total 1.69[−20] 4.32[−21] 5.75[−22] 1.50[−23] 9.03[−25] 9.24[−26] 1.80[−26]

velocity matching mechanism. The former proceeds through
the direct ZP -e1 interaction, which is typical of the well-known

TABLE IV. Present state-selective cross sections (in units of cm2)
for electron capture into the 4s state of H by protons from He(1s2)
in process (59) obtained by using the helium ground-state wave
functions of Löwdin [50]. Quantities Q+

4s and Q
+(0)
4s refer to the

cross sections in the post version of the CB1-4B method with and
without 	V12, respectively. Similarly, Q−

4s denotes the cross section
in the prior variant of the CB1-4B method. Notation X[−N ] implies
X × 10−N .

E (keV) Q+
4s Q

+(0)
4s Q−

4s

20 2.34[−18] 2.36[−18] 2.23[−18]
50 1.23[−18] 9.61[−19] 1.13[−18]
100 3.48[−19] 2.53[−19] 3.27[−19]
150 1.19[−19] 8.31[−20] 1.14[−19]
300 1.11[−20] 7.19[−21] 1.12[−20]
500 1.36[−21] 8.07[−22] 1.42[−21]
750 2.19[−22] 1.16[−22] 2.30[−22]
1000 5.57[−23] 2.67[−23] 5.86[−23]

first-order Oppenheimer-Brinkman-Kramers approximation.
By contrast, the latter is initially associated with the collision of
ZP with e2, but subsequently e2 manages, through correlations

TABLE V. Relative contributions from 	V12 for different nl

states for process (59). This is quantified via the weighted difference
χ = |Q+

nl − Q
+(0)
nl |/Q+

nl , where Q+
nl and Q

+(0)
nl are the present cross

sections for capture into the nl state with and without 	V12, respec-
tively, obtained by using the helium ground-state wave functions of
Löwdin [50].

E (keV)

nl 100 500 1000 5000 10000

1s 26.70% 41.12% 50.30% 70.82% 75.38%
2s 27.14% 40.65% 49.89% 70.89% 76.22%
3s 27.24% 40.50% 49.77% 68.32% 78.07%
4s 27.30% 40.66% 52.06% 64.32% 73.55%
2p 11.80% 29.44% 34.75% 52.14% 58.82%
3p 10.68% 28.98% 34.36% 52.84% 60.82%
3d 15.74% 36.83% 39.63% 46.79% 50.23%
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FIG. 1. State-selective cross sections Q+
2s and Q+

2p (in units of
cm2) as a function of the laboratory impact energy E (keV) for electron
capture by protons from He(1s2) in process (59). The solid and dashed
curves are the present post cross sections of the CB1-4B method with
and without 	V12 in Vf , respectively, obtained by using the helium
ground-state wave functions of Löwdin [50]. Experimental data: �
(Q2s ,Q2p) Cline et al. [51], � (Q2s ,Q2p) Hughes et al. [52], �
(Q2p) Hippler et al. [53], and � (Q2p) Hippler et al. [54]. Both the
theoretical and experimental cross sections for capture into the 2p

states of H are divided by 10.

FIG. 2. State-selective cross sections Q+
3s ,Q

+
3p , and Q+

3d (in units
of cm2) as a function of the laboratory impact energy E (keV) for
electron capture by protons from He(1s2) in process (59). The solid
and dashed curves are the present post cross sections of the CB1-4B
method with and without potential 	V12 in Vf , respectively, obtained
by using the helium ground-state wave functions of Löwdin [50].
Experimental data: � (Q3s) Conrads et al. [56], ◦ (Q3s) Cline et al.
[51], � (Q3s ,Q3p,Q3d ) Ford and Thomas [55], � (Q3s ,Q3p,Q3d )
Brower and Pipkin [57], � (Q3p,Q3d ) Cline et al. [58], and • Edwards
and Thomas [60]. Both the theoretical and experimental cross sections
for capture into the 3p and 3d states of H are divided by 10 and 1000,
respectively.

FIG. 3. State-selective cross sections Q+
4s (in units of cm2) as

a function of the laboratory impact energy E (keV) for electron
capture by protons from He(1s2) in process (59). The solid and dashed
curves are the present post cross sections of the CB1-4B method with
and without 	V12 in Vf , respectively, obtained by using the helium
ground-state wave functions of Löwdin [50]. Experimental data: �
(Q4s) Doughty et al. [59], � (Q4s) Brower and Pipkin [57], and ◦
(Q4s) Hughes et al. [61].

with e1, to transfer the energy received from the projectile to
e1, which is finally captured by ZP via the velocity matching
mechanism. As stated, potential −ZP /s2 is also present in
Vf from the post form T +

if of the transition amplitude for
process (1). Our computations using T −

if and T +
if show that the

contributions from 	VP2 in these two matrix elements are the
same, both in magnitude and the shape of the cross-section
curves as a function of impact energy, as it must be. Further,
within T +

if , potentials 	V12 and 	VP2 exhibit a comparable
influence onto electron capture at intermediate impact energies
20–200 keV. However, at higher energies above 200 keV,
electron capture by way of 	V12 becomes more important
than that via 	VP2. On the other hand, potential 	V12 is
dominated by 	VT1 at energies 20–200 keV, but the yield
from these two interactions becomes completely comparable
above 200 keV and below 1000 keV. Above 1000 keV, the
contribution from 	V12 is significantly more important than
that from 	VT1. Overall, relative to both 	VP2 and 	VT1,

potential 	V12 increases its importance with augmentation of
the impact energy.

As an illustration, the relative contributions of the corre-
lation term assessed by χ = |Q+

nl − Q
+(0)
nl |/Q+

nl for electron
capture into the given nl state at four impact energies are
summarized in Table V. Here, Q+

nl denotes the cross section
for capture into the nl state in the case with 	V12 
= 0, whereas
Q

+(0)
nl refers to the corresponding results with 	V12 = 0 in

Vf from the transition amplitude (2). It can be noticed that
for the given impact energy and the orbital quantum number
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FIG. 4. Total cross sections Q+(�) (in units of cm2) as a function
of the laboratory impact energy E (keV) for single capture from
the ground state of helium by protons to all states (�) of atomic
hydrogen H(�) in process (60). The solid and the dashed curves
are the present cross sections Q+(�) from (62) in the post CB1-4B
method with and without 	V12 in Vf , respectively, obtained by using
the helium ground-state wave functions of Löwdin [50]. Experimental
data: � Shah et al. [62], � Schryber [63], ◦ Shah and Gilbody [64], �
Horsdal-Pedersen et al. [65], ♦ Berkner et al. [66], 	 Williams [67],
� Martin et al. [68], and • Welsh et al. [69].

l, the values for χ are nearly equal for different principal
quantum numbers n, especially for lower impact energies. For
example, at 100 keV, χ � 27% for the 1s,2s,3s, and 4s states.
As a test of such a trend, we have performed a computation
of parameter χ at 100 keV for the 5s state, in which case the
value χ = 26.97% is obtained.

Next, we examine the so-called post-prior discrepancy,
which arises from the unequal perturbation potentials (Vi 
=
Vf ) in the transition amplitudes, as well as from the unavail-
ability of the exact bound-state wave function of heliumlike
atomic systems. Figure 5 depicts the prior and post total cross
sections of the CB1-4B approximation using the same helium
wave function of Löwdin [50]. The top pairs of the curves
refer to the inclusion of the complete perturbation potentials
Vi and Vf . Despite the obvious discrepancy between Vi and
Vf , the difference between the results for the post and prior
cross sections is very small, as can be seen from Fig. 5. This
is an excellent property of the CB1-4B method, since the
same physical assumptions are involved in the prior and post
forms of this theory. Such a property also holds true for the
state-selective cross sections, as can be observed in Figs. 6
and 7, where the post and prior cross sections are plotted for
the 2s,2p and 3s,3p,3d states, respectively. Similar results
showing a noticeably weak post-prior discrepancy are also
obtained for the 4s state, as documented in Table IV. It is

FIG. 5. Total cross sections Q±(�) (in units of cm2) as a function
of the laboratory impact energy E(keV) for single capture from the
ground state of helium by protons in process (60). The pairs of the top
and bottom curves are the present post (solid curves) and prior (dashed
curves) cross sections Q+(�) and Q−(�) of the CB1-4B method,
obtained by using the helium ground-state wave functions of Löwdin
[50]. The prior cross sections in the top and bottom pairs are both
with the full perturbation potential Vi. The post cross sections on the
top and bottom pairs are with and without 	V12 in Vf , respectively.
Both sets of the results for the bottom pair are divided by 100.

important to emphasize that the post-prior discrepancy would
persist in the CB1-4B method, if the correlation term −ZP /s2

is ignored from Vi and Vf and/or if 1/r12 is neglected in Vf .

In other words, all the potentials must be kept throughout,
especially including the correlation effects stemming from the
direct electron-electron potential (1/r12 in T +

if ) and indirect
electron-electron interaction mediated by way of the projectile
(−ZP /s2 in T ±

if ) . Although the difference between the post and
prior results with the complete perturbations Vi and Vf is very
small, it should be noticed that the two curves are not entirely
parallel to each other. This indicates that the post and prior
versions of the CB1-4B method exhibit a minor difference in
shape for the energy dependence of the cross sections shown
in Figs. 6 and 7.

The bottom pairs of the curves in Fig. 5 cast a familiar and
quite a different light on the post-prior discrepancy. Here, the
prior and post cross sections are divided by 100. The dashed
curve is for the full perturbation Vi in the prior version of the
results that are, this time, compared with their post counterpart
in which, however, the screened dynamic correlation 	V12 is
discarded from Vf . A very significant post-prior discrepancy is
present with the two bottom curves, in sharp contrast with the
corresponding top curves. For charge exchange, precisely this
kind of comparison has been the usual practice in the literature
for a very long time, when it comes to the alleged detection of
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FIG. 6. State-selective cross sections Q±
2s and Q±

2p (in units of
cm2) as a function of the laboratory impact energy E (keV) for
electron capture by protons from He(1s2) in process (59). The solid
and dashed curves are the present post {Q+

2s ,Q
+
2p} and prior {Q−

2s ,Q
−
2p}

cross sections in the CB1-4B method with the complete perturbation
potentials Vf and Vi, respectively, obtained by using the helium
ground-state wave functions of Löwdin [50].

FIG. 7. State-selective cross sections Q±
3s ,Q

±
3p and Q±

3d (in units
of cm2) as a function of the laboratory impact energy E (keV)
for electron capture by protons from He(1s2) in process (59). The
solid and dashed curves are the present post {Q+

3s ,Q
+
3p,Q+

3d} and
prior {Q−

3s ,Q
−
3p,Q−

3d} cross sections of the CB1-4B method with the
complete perturbation potentials Vf and Vi, respectively, obtained by
using the helium ground-state wave functions of Löwdin [50].

FIG. 8. State-selective cross sections Q±
1s (in units of cm2) as a

function of the laboratory impact energy E (keV) for electron capture
by protons from He(1s2) in process (59). The pairs of the top and
bottom curves are the present post and prior cross sections of the
CB1-4B method with the complete perturbation potential Vf and Vi ,
respectively. The solid and dashed curves correspond to the helium
ground-state wave functions of Löwdin [50] and Silverman et al. [70],
respectively. Both sets of the results for the bottom pair are divided
by 100.

the post-prior discrepancy in a number of approximations (see,
e.g., Refs. [71] as well as [72–74]). However, such detections
of the post-prior discrepancy could have been an artifact, which
the studied method might not possess at all, if the electron-
electron repulsion 1/r12 were a constituent part of the final
perturbation Vf in the exit channel of process (1). In the case of
the CB1-4B method, this is clearly exemplified by juxtaposing
the bottom to the top pairs of the curves in Fig. 5. The post-prior
discrepancy, which is considerable without 	V12 in Vf of
the post form (the solid curve in the bottom pair), practically
disappears altogether when 	V12 is included in Vf (the solid
curve in the top pair). Naturally, better physics prefers the full
Vf with 	V12 in the post version of the CB1-4B method, as
opposed to the choice where 	V12 is ignored, as is usually done
for the reason of computational convenience. This preference
coheres with experimental data that systematically agree with
the post version of the CB1-4B method, where the complete
potential Vf contains 	V12, as seen in Fig. 4. The message
conveyed by Fig. 5 is that no valid theory for the ZP -(ZT ; e1,e2)
collisions involving electron capture could be established for
the post formalism by leaving out the interelectron interaction
from the final perturbation potential Vf in the exit channel.

As mentioned earlier, the other reason for the existence of
a post-prior discrepancy in theoretical descriptions of charge
exchange is the lack of the exact bound-state heliumlike wave
function. In order to test the sensitivity of the CB1-4B method
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to the choice of the approximate wave functions for the ground
state of the helium target for single-electron capture by protons
into the 1s state of atomic hydrogen, we refer to Fig. 8. Here,
it is seen that the curves obtained by the CB1-4B method
using the wave functions of Löwdin [50] and Silverman et al.
[70] are nearly indistinguishable from each other. Moreover,
as is clear from Fig. 8, this conclusion is valid irrespective
of whether the post or prior version of the CB1-4B method
is employed. The same findings also extend to the excited
H(nf lf ) states formed in the p-He charge-changing collisions,
as can be confirmed by comparing the present Table III with
Table I from our earlier work [25] using the wave functions
of Löwdin [50] and Silverman et al. [70], respectively. This is
yet another appealing feature of the CB1-4B method, which
is only marginally sensitive to the choice of the approximate
wave function for the helium target in (59) and (60).

All the present findings about the relative importance of
screened dynamic correlations 	V12 for total cross sections
integrated over all scattering angles, as computed by means
of the CB1-4B method, are fully concordant with the cor-
responding evaluations using the CDW-4B method [37] for
single charge exchange involving heliumlike targets. Such a
high degree of coherence between the CB1-4B and CDW-
4B methods achieved at intermediate and relatively high
impact energy is a very important cross validation of the
present results, especially given that we are using a first-order
perturbation theory. Therefore, it can be concluded that the
CB1-4B method is capable of providing a consistent and
systematic quantitative description of single-electron capture
in process (1) in good agreement with experimental data at
intermediate and high impact energies.

IV. CONCLUSION

We have investigated the problem of single charge exchange
in collisions between bare nuclei and heliumlike atomic
systems by means of the four-body boundary-corrected first
Born (CB1-4B) approximation. An extensive analytical study
of the post version of the transition amplitude for electron
capture into the arbitrary nf lf mf final states of the projectile is
carried out. The post form of the transition amplitude is derived
in terms of five-dimensional real integrals for numerical
computations. For both the ground- and excited-state capture
processes, special attention has been devoted to assessing the
role of screened dynamic correlations of the two electrons
played by the short-range potential 	V12 = V12 − V ∞

12 . Inter-
action V12 is the interelectron Coulomb repulsion 1/r12, which
is in the short-range potential 	V12 screened by V ∞

12 . Potential
V ∞

12 is the asymptotic tail of 1/r12 attained at large distances
of the captured electron from the remaining bound electron in
the target rest.

An illustrative computation is performed involving the
state-selective and total single capture cross sections for the
p-He collisions at intermediate and high impact energies.

Thorough comparisons are made between the obtained the-
oretical results and the related experimental data for electron
capture into the excited states of atomic hydrogen, including
H(2s), H(2p), H(3s), H(3p), H(3d), and H(4s), as well as
for capture into all the final states of atomic hydrogen H(�).
Overall, it is found that the CB1-4B method excellently
predicts the corresponding findings from the measurements.

The importance of the screened dynamic correlations has
been studied by either including or excluding 	V12, which
appears in the complete perturbation potential Vf of the post
variant T +

if of the transition amplitude. The ensuing results
indicate that these electronic correlations are very important
for capture to the ground state, as well as to the excited
states. Moreover, we proved that the contribution from 	V12

increases with augmenting impact energy relative to the role
of the remaining potentials in Vf .

The so-called post-prior discrepancy for charge exchange
is a very undesirable feature of many theoretical methods.
Its origin is twofold and lies with the unequal perturbation
potentials in the entrance and exit channels, as well as with
the nonexistence of the exact bound-state wave function of
heliumlike atomic systems. The literature on fast-ion atom
collisions treated by many methods is abundant on the
allegedly detected post-prior discrepancy, which is, however,
often an artifact of the adherence to easier computations that
neglect the interelectron interaction in the full perturbation
potential Vf from the post transition amplitudes. In order to
assess the status of the CB1-4B approximation with regard to
this important issue, we computed the prior cross sections as
well, and compared them with the associated results in the post
version of the same method. Despite the existing discrepancy
between the initial and final perturbation potentials (Vi 
= Vf ),
our computations show that the results for the prior and
post cross sections (both state selective and total) are nearly
identical, provided that the electron-electron potential 1/r12 is
taken into account in Vf . Moreover, no appreciable difference
is found between the cross sections computed with two
different approximate wave functions for the ground state of
helium, irrespective of whether the prior or post variant of
the CB1-4B method is employed. These findings constitute
excellent properties of the CB1-4B approximation, especially
given that huge post-prior discrepancies often plague nearly
all the available distorted wave approximations.
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