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Role of a short-lived σ ∗ resonance in formic-acid O—H bond breaking
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We review briefly the recent work on dissociative electron attachment (DEA) to formic acid. Using Feshbach
resonance theory we present results calculating the forces on various atoms during resonance processes that
can arise at different electron impact energies. The conclusion is that DEA to formic acid happens through a
short-lived σ ∗ resonance with minimal involvement from π -σ symmetry breaking as suggested elsewhere. We
conclude that rehybridization on a C atom caused by the π -σ mixing is too far from the O—H bond to detect its
effect on the DEA cross section. A recent experimental confirmation is also reported.
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I. INTRODUCTION

Several papers have appeared in the past few years treating
the mechanism for the dissociative electron attachment (DEA)
to HCO2H. Formic acid is the simplest of the carboxylic acids
and is a prototype for that class of substances. In addition the
—COOH group is also present in the biologically important
amino acids. Since the work of Boudaı̈ffa et al. [1] and
Sanche [2] it is now known that low energy electrons can cause
bond breaking in all sorts of biologically important molecules
through the mechanism of DEA, which frequently operates
through interactions of the electron and antibonding virtual
orbitals in the molecule. This motivates a careful examination
of DEA in the simplest of organic acids, formic acid.

In HCO2H DEA results in the breaking of the O—H bond,

HCO2 H + e− −→ H + HCO−
2 ,

which in a planar geometry is a “σ” bond. In the 1970s several
experimental and theoretical works were published showing
that in some molecules DEA to a molecule resulting in a
broken “σ” bond might occur with the intervention of a π

resonance. It was realized that this must happen through a
geometry distortion that destroyed the “π -σ” separation [3,4].

In the following decades, however, it became clear through
the work of Domcke and co-workers [5], that such π -σ
interactions were unnecessary for DEA breaking of σ bonds.
This was clear since many of these new studies involved
diatomic molecules where π -σ symmetry breaking cannot
happen. Nevertheless, it was also clear that the symme-
try breaking, where possible, could enhance cross sections
substantially.

In light of this history, Rescigno et al. [6] reported on the
behavior of the C=O shape resonance in formic acid with a
fixed nucleus approximation (FNA) method at a number of dis-
crete arbitrary geometries. (We return to the specifics of these
geometries in Sec. V.) The energies and lifetimes of molecular
resonances are important ingredients in any rigorous theory
of DEA, which, unfortunately for polyatomic molecules,
is beyond the development of current theory. Nevertheless,
knowing the behavior of resonances as a function of geometry,
i.e., knowing the complex Born-Oppenheimer surface (BOS)
associated with a resonance, can lead to considerable certainty
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about the likelihood of DEA caused by that resonance. It can
go only so far; a full-fledged multiatom treatment is required
to yield an accurate cross section, of course.

On the other hand, there are many parallels in DEA to
formic acid compared with DEA to HCl, in that a single H
atom leaves a stable negative ion. Following up on this idea,
Gallup et al. [7] gave a treatment of DEA to formic acid
approximated as a diatomic system. Using a correct complex
nonlocal nuclear potential, this gave cross sections with a peak
shape and size in reasonable agreement with experiment, but
based on the O—H σ resonance as the driving force, unlike the
procedure of Rescigno et al. This new work also applied the
diatomic method to glycine with even better results. In short
course a Comment [8] and Rely [9] were published, raising a
debate concerning the detailed mechanism of the DEA process
in formic acid,

HCO2H + e− −→ H + HCO−
2 .

The principal controversy is thus between two pictures
of DEA to formic acid, a model involving an out-of-plane
motion of the C—H hydrogen and the C=O resonance posited
by Rescigno et al., and a completely planar model involving
the O—H resonance used by Gallup et al. Rescigno et al.
also suggested that the substitution, C—H −→ C—D, should,
according to their model, reduce the cross section for DEA
because of the greater mass of the deuterium nucleus. Recently,
Janečková et al. [10] have tested this notion experimentally and
have found no detectable (within experimental error) influence
on the cross section from the isotopic substitution in apposition
to the conclusion of Rescigno et al.

Nevertheless, the cross-section calculations of Gallup et al.
did use a diatomic model. More realistically, the H atom can
recede from the ion in several directions. So in this article
we examine a broader range of motions, still within the FNA
and, thus, obtain more information about the complex BOS
associated with the O—H antibonding orbital and the forces
of the atom due to a resonance. For completeness we also
make Feshbach calculations for the C=O resonance to study
the forces on the atoms for the C=O resonance.

II. GENERAL COMPUTATIONAL DETAILS

We use Feshbach resonance theory [11–13] to determine
portions of the complex BOS in the FNA at the neutral
geometry and at a number of distorted geometries, and we
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use these results to make certain predictions concerning DEA
to HCO2H.

The finite element discrete model (FEDM) approximation
has been used to solve the Feshbach equations, and its use is
thoroughly described by Nesbet [14] and the current author
[15,16]. In line with our standard procedure, we use the
conventional Pople 6-31G(d) Gaussian basis set and standard
MP2 techniques to represent the Feshbach quasibound state
(QBS) and its energy.

The FEDM involves a set of pseudocontinuum (PC) orbitals
to provide the singly occupied molecular orbitals (SOMOs) for
the PC states required in the theory. Details concerning these
will be given in the sections devoted to the O—H and C=O
antibonding orbitals discussed.

III. TIME DELAY AND FORCES ON THE NUCLEI

A basic idea of the Feshbach resonance theory is splitting
the continuum space of a scattering problem into a finite-
dimensional part, spanned by L2 functions, and its orthogonal
complement. Taking the case where the L2 part is one
dimensional, let the L2 function be denoted φ. We then
construct the projections

Q = |φ〉〈φ|, (1)

P = I − Q, (2)

and

� = Q� + P�, (3)

where

H� = E�. (4)

� is an outgoing wave, steady-state solution to the scattering
problem. As such, |�|2 may be interpreted as a flux density.
Consider a finite volume sphere, SC , with center at C and the
integral,

FC(E) = (1/V )
∫

SC

|�|2dV, (5)

which gives the average flux density for the volume in the
sphere centered at C and at the energy, E. If all points in
SC are at great distance from the scattering center, FC(E) is
independent of the position of C.

If φ is now chosen as a QBS function for the current
Feshbach-FEDM procedure, the quantity 〈�|Q|�〉/FC(E) is
a measure of a possible relative electron probability buildup
at the scattering center compared to that in the asymptotic
region. This is the time-independent picture of the time delay
phenomenon discussed in connection with time-dependent
scattering descriptions [17]. The probability amplitude in the
FNA at the scattering center is

Q�√
FC(E)

= a(E)φ, (6)

where a(E) is a function of E with the expected “bell shape”
absolute value. If an appropriately placed spherical integral

[1/FC ′(E)]
∫

SC′
|P�|2dV
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FIG. 1. (Color online) The intersection with the xy plane of the
ion stability surface for the O—H resonance in formic acid. The blue
squares show the equilibrium positions of the atoms, and the red
squares with the connecting line shows the intersection. The numbers
beside the intersection show the angle in degrees between the O—H
line and the x axis.

is small at the resonance center, then one is assured that Q�

alone is a good representation of the relative wave function at
that E.

When this argument is generalized to the multielectron
wave function, we can say

In the FNA at the neutral molecule geometry, the forces
on the nuclei near the resonance center are determined
only by the SOMO of the scattering wave function. If, on
the other hand, we are treating a distorted geometry, the
differences between the ion and neutral forces must be
taken.

We show these forces graphically in each of the separate
sections on the two antibonding orbitals.

IV. ION STABILITY POINTS FOR THE O—H RESONANCE

As the O—H distance increases during a geometry dis-
tortion the complex energy of the resonance changes with
the real part decreasing and the imaginary part decreasing in
magnitude. At some point the imaginary part becomes zero
and, at greater distances, remains zero. We will call this the
ion stability point, and the surface of these points is expected
to be somewhat “umbrella” shaped around the original O—H
line. Figure 1 shows, in relation to the atoms in the molecule,
a graph of the intersection of this surface with the xy plane.

These calculations used 60 PC orbitals consisting of ten
each s, px , and py atomic orbitals (AOs) at each nucleus of
the O—H bond. The pz is not involved in the A′ symmetry.
The expectation values of the kinetic energy range from
0.05 to ≈20 eV for these AOs. Figure 2 gives an orbital
picture of the QBS SOMO. We call attention to the node
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FIG. 2. (Color online) The probability amplitude of the O—H
QBS function. The node in the middle of the O—H bond is clearly
visible.

between the C- and H-atom positions, providing the basic
driving force for the DEA. Nevertheless, the orbital is quite
asymmetric about the middle and will have a sizable “s”
character with respect to the node’s position. This results
in the “short-lived” characterization of this resonance by
Gallup et al. [7]. Relative to the neutral energy minimum
(no zero-point energy), the complex energy at the equilibrium
geometry is (3.386 − 4.827i) eV. This translates into a lifetime
at the middle of the resonance of 1.36 × 10−16 s.

Table I gives several data about the geometries of the five
points on the ion stability curve at the different 	 xOHs. These
are ROH, the distorted O—H distance; energy, the energy of the
BOS (which is real at this point); �ROH, the distance between
the distorted H and equilibrium H positions; and Fall, the ratio
of real energy decrease to the distance H traveled during the
distortion. This last column gives a qualitative picture of the
actual force of dissociation of the O—H bond.

Figure 3 shows a diagram of the molecule with arrows
attached to the atom centers, the length and direction of which
show the forces on the atoms from the delayed charge density,
as discussed in Sec. III.

This resonance is short lived, but in the 30◦ direction the fall
is quite large. If we assume the energy of the orbital behaves
with bond length like a particle in a box model, we expect the
energy to vary ∝(length)−2 and the Fall ∝ −(length)−3. Thus,
in classical language, very short antibonding orbitals may have
short lifetimes, but nevertheless live long enough for the nuclei
to move quickly to the nearby ion stability point. In actuality, a
proper treatment of the nonlocal complex BOS would average
over many motions and could certainly produce quantitative
changes in this picture.

TABLE I. Distances and real energies at various points in Fig. 1.

Angle ROH (Å) Energy (eV) �ROH (Å) Fall (eV/Å)

40◦ 1.266 2.101 0.511 −1.796
30◦ 1.276 2.172 0.389 −3.121
20◦ 1.333 2.363 0.383 −2.671
10◦ 1.391 2.754 0.368 −1.717
0◦ 1.506 3.277 0.681 −0.160
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FIG. 3. (Color online) The directions and the relative sizes of the
forces on the atoms during the temporary negative ion arising from
the O—H resonance. The scales on the figure are in angstrom so
the lengths of the force vectors are relative, but the absolute value
of one is shown on the graph for calibration. It is seen that there
are strong relative forces tending to lengthen the O—H bond. In the
actual molecule these will be modified by the value of |a(E)|2 from
Eq. (6).

V. C=O RESONANCE

In their analysis of the effects of the C=O resonance,
Rescigno et al. [6] devise a number of geometry points along
what they call the “reaction coordinate,” which is the abscissa
in the lower panel of their Fig. 4. In this panel they mark eight
different points along the path for special attention. Table II
shows the bond lengths at these points. For completeness we
note that point 8 along the reaction coordinate is of a character
different from the others. The O—H bond is extended until

FIG. 4. (Color online) Two views of the QBS function at point 7.
It is seen from the O—H view that there is no significant probability
amplitude at the O—H H atom, and from the other side that most of
it is around the C—H H atom.
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TABLE II. Eight special geometry points along a reaction coor-
dinate. Point 1 is the neutral molecule geometry shown in Fig. 1 [6].
Points 2–7 are given as increments added to point 1 values. Distances
are in angstrom and angles in degrees. The last column refers to the
dihedral angle between the C—H bond and the O-C-O plane. Further
comments concerning point 8 are in the text.

RC=O RC—O D	 H

1 Neutral formic acid geometry
2 0.02 0.04 0
3 0.04 0.08 0
4 0.08 0.16 0
5 0.08 0.16 20
6 0.08 0.16 30
7 0.08 0.16 40
8 Point 7 plus unspecified further

extensions of the O—H bond length

the distance is outside the conical intersection point of the
planar system. To the right of point 7 their Fig. 4 converts
from plotting adiabatic energies to plotting computed diabatic
energies, and point 8 is set at the crossing. No details are given.

In the next few paragraphs we compare our Feshbach theory
results with some of those in Rescigno et al. [9]. In looking at
their Fig. 4 energies we emphasize that they plot total energy,
while we report energies relative to the energy of the neutral
molecule at each geometry.

The PC orbitals we use for the C=O resonance are pz AOs
centered at the two nuclei at either end of the C=O antibonding
orbital. There are 20 at either end, and their kinetic energies
range from 0.05 to ≈20 eV. We examine here the results of
applying the Feshbach method to their designated geometries,
points 1 and 7.

The point 1 geometry is the equilibrium point of neutral
formic acid. Thus the resonance position should be that
measured in the laboratory. The current FEDM procedure gives
1.73 eV as the resonance center and 0.118 eV as the width
at the center. Aflatooni et al. [18] give the center as 1.73 ±
0.05 eV in remarkable agreement. Rescigno et al. obtain
≈1.90 eV for the center, which they consider reasonable
agreement, and ≈0.14 eV for the width (estimated from their
Fig. 4) (see also Trevisan et al. [19]).

At the geometry of point 7 the present FEDM procedure
gives 0.125 eV as the center of a near-zero energy resonance,
while Rescigno et al. report a slightly negative result (in this
case relative to the neutral molecule energy) without giving
its value. Previous experience with the Feshbach-FEDM has
found agreement with experiment within ≈±0.15 eV. Thus,
our result and that obtained by Rescigno et al. previously
should be considered equivalent [20].

In light of the arguments in Sec. III, the QBS of the
Feshbach theory is expected to give a qualitative picture
of the relative charge distribution over the molecule at an
energy close to the resonance or the stable negative ion
geometrically nearby. Figure 4 shows two views of the
probability amplitude for the SOMO in the Feshbach QBS
function. This shows the charge distribution is mainly centered
around the O=C—H end of the molecule rather than near
the O—H bond. From this one concludes that the π -σ
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FIG. 5. (Color online) See the caption of Fig. 3 for an explanation,
Clearly the forces tending to lengthen the C=O are much larger here
at point 7—hardly a surprise, of course, since the resonance is based
upon a C=O antibonding orbital. The calibration number for the force
is for the full length, but close to one-third is out of the plane.

interaction could enhance DEA to formic acid having the H
split from C rather than O, were not the asymptotic energy
too high for that process at ≈1.73 eV. The resulting carbanion
would be 1.95 eV less stable than the common formate ion,
HCO2

−.
Figure 5 shows a diagram of the forces on the atoms along

the same line as with Fig. 3. The main difference between the
two presentations is that, unlike the earlier figure, the forces
here are not all in the plane of the drawing. The perpendicular
components are not large in most cases.

It is seen from the diagram that the force on the O—H H
atom is too small to show direction at this scale. The value
for the total is 0.44 eV/Å and the vector is approximately 45◦

out of the plane. We conclude that there should be very little
enhancement of the expected DEA process in formic acid due
to the C=O resonance.

VI. CONCLUSION

The application of the Feshbach resonance theory to formic
acid shows that the π -σ interaction caused by out-of-plane
motions of the C—H H atom should have little involvement in
the DEA process:

HCO2H + e− −→ HCO2
− + H.

This should also be true for glycine, NH2CH2CO2H, as shown
in Gallup et al. We expect similar behavior in other simple
organic acids.

As discussed in Sec. I, there are certainly cases where π -σ
interactions operate, but relatively few examples are known
where an H atom leaves C in a C-containing ion. One such,
however, is the theoretical study of DEA to acetylene, by
Chourou and Orel [21] on H leaving H—C≡C−. This was
carried out as a wave-packet study with a local complex BOS.
Here the H atom moves out of linearity with the remainder
of the ion. The obvious geometric difference between formic
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acid and acetylene is the location of the leaving H atom. In
acetylene it is leaving the actual C atom whose hybridization
is modified by the bending. In formic acid it is leaving
an O atom at least one step away from the rehybridization
activity.
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