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In this study, accurate static dipole polarizability and hyperpolarizability are calculated for Al+ ground state
3s21S0 and excited state 3s3p 3PJ with J = 0,1,2. The finite-field computations use energies obtained with the
relativistic configuration interaction approach and the relativistic coupled-cluster approach. Excellent agreement
with previously recommended values is found for the dipole polarizability of Al+ ground state 3s2 1S0 and
excited state 3s3p 3P0 as well as the hyperpolarizability of the ground state 3s2 1S0. The recommended values
of the dipole polarizability of the Al+ 3s3p 3P1 and 3P2 and the hyperpolarizability of Al+ 3s3p 3P0, 3P1, and
3P2 are also given. The impacts of the relativity and spin-orbit coupling are elucidated by analyzing the angular
momentum dependence of the dipole polarizability and the hyperpolarizability, and comparing the fully and
scalar relativistic calculated data. It is shown that the impact of the relativity and spin-orbit coupling are small
for the dipole polarizability but become significant for the hyperpolarizability. Finally, the blackbody radiation
shifts contributed by the dipole polarizability and hyperpolarizability, respectively, are evaluated for transitions
of Al+ 3s2 1S0 to 3s3p 3PJ with J = 0,1,2.
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I. INTRODUCTION

The polarizabilities and hyperpolarizabilities are very use-
ful quantities in many areas of atomic and molecular physics.
The recent advance in development of the atomic optical
clock has elevated great interest in the atomic polarizabilities
and hyperpolarizabilities. The dipole polarizability determines
the first-order response of the trapped atom or ion under the
external perturbation, such as the electric field generated by the
electrodes of an ion trap or the probe optical field, which brings
the energy shifts that are main contributions to the frequency
uncertainty budget of the atomic optical clock [1–4]. The
higher-order response of atoms or ions to the applied electric
field also contributes to the energy shift of the optical frequency
standards, being small but not necessarily negligible [5,6].
Increasing order gives more accurate estimates of the polariza-
tion energy shift and the associate uncertainty. There already
are plenty of articles about the dipole polarizabilities of atoms
and ions, most of which are about the ground state or mono-
valent system [7–14]. The angular moment resolved dipole
polarizability of the divalence systems and the hyperpolariz-
ability remain very scarce for the majority of atoms or ions.

One important application of the highly accurate data of
polarizabilities is to estimate the energy shifts in an optical
clock. As one of the highly accurate atomic clocks to date [15],
the Al+ optical clock, based on 3s21S0 → 3s3p 3P0 transition,
has attracted great interest in the study of the polarizability
properties of Al+ [16–18]. The coupling between the angular
and spin momenta determines the multiple structure of the
Al+ 3s3p state, where in addition to 3P0, there are two
other energetically higher lying states, 3P1 and 3P2. The
polarizabilities of the P state are dependent on the different
J components; for example, Fleig has studied the group-13
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atoms, which has shown that the J = 1/2 state differs from that
of the J = 3/2 as it directly depends on the spatial distribution
of the electron density and also the mixing of spin and spatial
degrees of freedom [8].

The relation between the polarizabilities corresponding
to different J components can be determined through basic
vector algebra [3,12,19]. For the heavy elements, the spin
splitting becomes very large and therefore the difference
contributed by the spatial distribution of the electron density
will become more pronounced. Such influence comes from the
scalar relativity, the spin-orbit coupling, and their combination,
causing the possible deviation from the relationship derived by
the basic vector algebra. Furthermore, the dipole polarizability
and the hyperpolarizability are probably of different sensibility
to the relativity. Therefore, it is important to resolve the
polarizabilities for all J components and their magnetic MJ

components directly, where MJ is the projection onto the field
axis, in order to understand the impacts of the relativity and
the spin-orbit coupling on polarizabilities.

In the investigation of the dipole polarizability and hy-
perpolarizability, the finite-field (FF) method can provide
reliable data if the field-dependent energies are calculated
with high precision [20,21]. Recently, the FF method has
been implemented in the relativistic configuration interaction
(CI) and the coupled-cluster (CC) methods based on the
four-component Dirac-Hatree-Fock calculation [7,8,11,17].
The fully relativistic calculation allows us to resolve electron
states by total angular moment J , thus J -dependent properties
can be obtained directly.

In the previous calculations, because the 3P0 component
is directly involved in the optional clock transition, most
calculations are concentrated on this state; for example, Mitroy
et al. and Kallay et al. have provided the dipole polarizability
data of Al+ 3s3p 3P0, while the components with J = 1 and 2
remain unavailable [16,17]. Safronova et al. have provided the
dipole polarizability data of nsnp 3P0 of B+, Al+, In+, Tl+,
and Sr [18,22,23]. Cheng and Mitroy have done calculations
on B+ and Ga+ [24,25]. The polarizability data for the other
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PJ states is scarce for long time. Cheng et al. have calculated
the dipole polarizability of the nsnp 3P1 state of Be, Mg, Ca,
and Sr atoms [26].

In the present work, we investigate Al+ in order to give the
J -resolved dipole polarizability and hyperpolarizability by us-
ing the FF method. The field-dependent energies are obtained
by using the relativistic CI calculation and the relativistic CC
calculation. In addition to the dipole polarizability of 3s21S0

and 3s3p 3P0 and the hyperpolarizability of 3s2 1S0, which is in
excellent consistence with the previously recommended values
[16–18,27], we also give the recommended values of the dipole
polarizability of 3s3p 3P1 and 3P2 and the hyperpolarizability
of 3s3p 3PJ with J = 0,1,2. The differences in the dipole
polarizability and hyperpolarizability for the different compo-
nents of the 3s3p 3P state are studied, including the directional
dependence by resolving the property in the azimuth projection
MJ substrates of the J state, i.e., the anisotropy component.
The impact of the relativistic effect on the dipole polarizability
and the hyperpolarizability are elucidated by analogizing
the J dependence of such properties. The sole effect of
the spin-orbit coupling on the polarizability and anisotropy
components is determined by comparing the spin-dependent
and the spin-free CI calculated data. Finally, the blackbody
radiation shifts by contributions from the dipole polarizability
and hyperpolarizability are evaluated, respectively, for the
transitions of Al+ 3s21S0 to 3s3p 3PJ with J = 0,1,2.

II. COMPUTATIONAL METHOD

The change in energy of an atom or ion upon introduction of
a static, homogeneous, axially symmetric field Fz is given by

�Ed (Fz) = −ᾱF 2
z /2 − γ̄ F 4

z /24 − · · · , (1)

where ᾱ is the dipole polarizability and γ̄ is the hyperpolariz-
ability. We apply the field in the z direction, which allows us
to retain a rotational axis, and therefore our symmetry choice
is the double group C∗

2v in the Dirac-Hartree-Fock calculation
and C∗

2 in the relativistic CI and the relativistic CC calculations.
The ᾱ and γ̄ are obtained by fitting �Eq(Fz) versus Fz with a
fourth-order polynomial relationship. The field-dependent en-
ergies are calculated in an electric field range Fz = [0,0.0045]
a.u. with a 0.0005 a.u. interval. Arbitrarily, more than four
sample points are taken for fitting in order to check and remove
the dependence of the studied properties on sampling. The
reliable finite-field procedure depends on precise energies,
where we converge the energies to 10−10 hartree.

The field-dependent energy is calculated on the different
levels of theory, i.e., the spin-free CI calculation (imple-
mented by the LUCITA module in DIRAC package [28]), the
spin-dependent CI calculation (implemented by the KRCI
module of the DIRAC package), and the spin-dependent CC
calculation (implemented by the MRCC suite [29]). The Dyall’s
Hamiltonian [30] is used in spin-free calculation and the
spin-dependent calculations are based on the Dirac-Coulomb
Hamiltonian. In contrast to the spin-free calculation, all J

components of the 3P (3s3p) state are obtained as unique
eigensolutions in the spin-dependent calculation. The de-
generacy (2L + 1 levels) in the spin-free case, wherein L

is the orbital angular momentum quantum number, and the
(2J + 1 levels) degeneracy in the spin-dependent cases are

broken to be different ML and MJ components upon the
external perturbation, where ML and MJ are the projections
of L and J onto the field axis in the z direction. Therefore,
the polarizabilities of 3P are obtained for each ML and MJ

component. For the spin-dependent case, the dipolarizability
for a specific state |JMJ 〉 can be defined as [3,12,19,31]

〈JMJ |αzz|JMJ 〉 = αJ (MJ ) = ᾱJ + αJ
a

3M2
J − J (J + 1)

J (2J − 1)
,

(2)

where the scalar ᾱJ and the tensor polarizability and αJ
a are

formulated by

ᾱJ = 1

2J + 1

∑
MJ

αzz(J,MJ ),

αJ
a = 5

(J + 1)(2J + 1)(2J + 3)

×
∑
MJ

[3M2
J − J (J + 1)]αzz(J,MJ ). (3)

In the spin-free case, the scalar and tensor polarizabilities
ᾱL and αL

a are also given by Eqs. (2) and (3) with J

and MJ replaced by L and ML. The relation between the
polarizabilities for different MJ components can be given more
explicitly as follows, for J or L = 1:

ML,J = 0 : α(0) = ᾱ − 2αa,
(4)

ML,J = ±1 : α(1) = ᾱ + αa,

and for J or L = 2,

ML,J = 0 : α(0) = ᾱ − αa,

ML,J = ±1 : α(1) = ᾱ − 1
2αa, (5)

ML,J = ±2 : α(2) = ᾱ + αa.

In the LS coupling approximation one finds [3,12,19]

ᾱJ = ᾱL, (6)

αJ
a = αL

a (−1)S+L+J+2(2J + 1)

{
S L J

2 J L

}

×
(

J 2 J

−J 0 J

) (
L 2 L

−L 0 L

)
. (7)

Equations (6) and (7) show the relations between the polariz-
abilities in the J and L representations of an energy level. For
the Al+ 3s3p 3P state, L = 1, S = 1, Eq. (7) can be rewritten
as [3,19]

αJ
a (3P1) = −αJ

a (3P2)/2 = −αL
a /2. (8)

The definitions of the scalar and tensor hyperpolarizability are
the same as Eqs. (2)–(8) with α replaced by γ . For the 1S0

and 3P0 states the dipole polarizability and hyperpolarizability
have only one component, whereas we remain using ᾱ and γ̄

in order to avoid verbose constructions.
The value of the studied properties is convergent with the

basis sets of the progressively larger sizes in the CI and CC
calculations. We choose the hierarchy of the uncontracted aug-
cc-pCVXZ basis set with X = 2, 3, 4, and 5ζ [32], where two
diffusion functions are added to each shell of the X = 2, 3, and
4 basis sets, and 2s3p1d1g are added to the X = 5ζ basis set.
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TABLE I. Dipole polarizability αzz (a.u.) of Al+.

Level of excitation 1S0
3P0

3P1
3P2

MJ = 0 MJ = 1 ᾱJ αJ
a MJ = 0 MJ = 1 MJ = 2 ᾱJ αJ

a

(a) Spin-dependent CI
Basis: 2ζ (16s,12p,5d)
S10(2in4)SD(<100 a.u.) 23.565 24.381 24.829 24.217 24.421 −0.204 24.126 24.314 24.878 24.502 0.376
S10(2in4)SDT(<1 a.u.)SD(<100 a.u.) 23.611 24.370 24.816 24.207 24.410 −0.203 24.117 24.304 24.865 24.491 0.374
Basis: 3ζ (20s,14p,7d,5f )
S10(2in4)SD(<100 a.u.) 23.707 24.505 25.047 24.294 24.545 −0.251 24.155 24.390 25.097 24.626 0.471
S10(2in4)SD(<10 a.u.) 23.862 24.765 25.267 24.576 24.806 −0.230 24.459 24.673 25.317 24.888 0.429
S10(2in4)SDT(<1 a.u.)SD(<10 a.u.) 23.900 24.763 25.263 24.575 24.804 −0.229 24.459 24.672 25.313 24.886 0.427
Basis: 4ζ (22s17p9d7f 5g)
S10(2in4)SD(<100 a.u.) 23.784 24.231 24.891 23.967 24.275 −0.30 23.781 24.073 24.946 24.364 0.582
Basis: 5ζ (23s16p10d8f 5g3h)
S10(2in4)SD(<100 a.u.),PCISD 23.742 24.177 24.835 23.906 24.216 −0.309 23.700 24.000 24.883 24.293 0.590
Error in PCISD ±0.084 ±0.108 ±0.112 ±0.122 ±0.118 ±0.018 ±0.162 ±0.146 ±0.126 ±0.141 ±0.016
�PT 0.038 −0.002 −0.004 −0.001 −0.002 0.001 0.000 −0.001 −0.004 −0.002 0.002
Error in �PT ±0.076 ±0.004 ±0.008 ±0.002 ±0.004 ±0.002 ±0.000 ±0.002 ±0.008 ±0.004 ±0.004

P = PCISD + �PT

Composite 23.780 24.175 24.831 23.905 24.214 −0.308 23.700 23.999 24.879 24.291 0.588
Error ±0.150 ±0.112 ±0.120 ±0.124 ±0.122 ±0.020 ±0.162 ±0.148 ±0.134 ±0.145 ±0.020
Uncertainty (%) 0.63 0.46 0.48 0.52 0.50 6.49 0.68 0.61 0.54 0.60 3.40

(b) Spin-dependent CC
CCSD (<10000 a.u.)-2ζ 24.007 24.818 24.666 24.589 24.765 25.293 24.941 0.352
CCSDT (<1000 a.u.)-2ζ 23.876 24.768 24.633 24.572 24.732 25.200 24.887 0.313
CCSD (<10000 a.u.)-3ζ 24.164 24.977 24.770 24.637 24.869 25.565 25.101 0.464
CCSD (<10000 a.u.)-4ζ ,PCCSD 24.238 24.656 24.632 24.182 24.478 25.367 24.774 0.593
Error in PCCSD ±0.148 ±0.642 ±0.276 ±0.910 ±0.782 ±0.396 ±0.653 ±0.257
�P5ζ

a −0.042 −0.054 −0.067 −0.081 −0.073 −0.063 −0.071 0.010
�PT −0.131 −0.050 −0.033 −0.017 −0.033 −0.093 −0.054 −0.039
Error in �PT ±0.262 ±0.100 ±0.060 ±0.034 ±0.066 ±0.186 ±0.108 ±0.078

P = PCCSD + �PT

Composite 24.065 24.552 24.532 24.084 24.372 25.211 24.650 0.564
Error ±0.410 ±0.742 ±0.342 ±0.944 ±0.848 ±0.582 ±0.760 ±0.178
Uncertainty (%) 1.70 3.01 1.39 3.92 3.47 2.31 3.08 31.56

(c) Spin-free CI
1S 3P

ML = 0 ML = 1 ᾱL αL
a

S10(2in4)SDT(all orbits)-3ζ 23.742 23.614 25.053 24.573 0.480
S10(2in4)SDT(all orbits)-4ζ 23.816±0.074 23.092±0.52 24.880±0.170 24.280±0.293 0.600±0.293
Ref. [16] 24.140 24.622
Ref. [17] 24.137 24.614
Ref. [18] 24.048 24.543
a�P5ζ is the correction to the basis set enlarging from X = 4ζ to 5ζ obtained from CISD calculation.

The details of the basis sets are given in Tables I and II. The CI
calculations are implemented in the general active space [33]
and the details of the CI treatment are illustrated in Tables I
and II, where “S10” means the single excitation is allowed
from ten core electrons (1s22s22p6), and “(2in4)SD” means
the reference states are generated by two valence electrons
distributing all possible ways in 3s3p orbits, allowing the
single and double (SD) excitations to the virtual orbits with
energy less than a given cutoff (for example, <100 a.u.).

The triple excitation into part of the virtual orbits (less than
1 a.u.) is considered for the small basis sets X = 2ζ and 3ζ

within spin-dependent CI calculations in order to extract the
correction of the triple excitation to polarizibilities. The higher
level of electron correlation is considered within the spin-free
CI calculation, which includes the single (S) excitation in the

core shell, and the single, double, and triple (SDT) excitations
from core and valence shells into all virtual orbits. In the spin-
dependent CC calculations, the electron correlation of single
and double (SD) excitations into virtual orbits with a cutoff
10 000 a.u. is considered within the basis set of X = 2, 3, and
4ζ . The triple excitation is considered for the small basis set
X = 2ζ in order to extract the correction of the polarizabilities
due to the triple excitation.

In order to present the accurate data of ᾱ and γ̄ , we adopt
the same composite scheme as suggested in Ref. [17], which
is evaluated by

P = PSD + �PT, (9)

where P means the studied properties, �PT = PSDT − PSD,
and PSD and PSDT are the CI or CC calculated values with SD
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TABLE II. Hyperpolarizability γzz (103 a.u.) of Al+.

Level of excitation 1S0
3P0

3P1
3P2

MJ = 0 MJ = 1 γ̄ J γ J
a MJ = 0 MJ = 1 MJ = 2 γ̄ J γ J

a

(a) Spin-dependent CI
Basis: 2ζ (16s,12p,5d)
S10(2in4)SD(<100 a.u.) 2.411 6.591 0.589 9.874 6.779 3.095 6.544 3.252 0.570 2.838 −2.473
S10(2in4)SDT(<1 a.u.)SD(<100 a.u.) 2.463 6.591 0.599 9.932 6.821 3.111 6.615 3.284 0.583 2.870 −2.495
Basis: 3ζ (20s,14p,7d,5f )
S10(2in4)SD(<100 a.u.) 2.651 12.186 3.871 16.845 12.520 4.325 11.303 6.657 3.897 6.482 −2.905
S10(2in4)SD(<10 a.u.) 2.729 11.907 3.990 16.287 12.188 4.099 12.183 7.817 4.032 7.176 −3.410
S10(2in4)SDT(<1 a.u.)SD(<10 a.u.) 2.849 11.904 4.007 16.284 12.192 4.092 12.259 7.912 4.029 7.228 −3.461
Basis: 4ζ (22s17p9d7f 5g)
S10(2in4)SD(<100 a.u.) 2.290 12.779 3.548 18.074 13.232 4.842 9.825 4.551 3.586 5.219 −2.058
Basis: 5ζ (23s16p10d8f 5g3h)
S10(2in4)SD(<100 a.u.),PCISD 2.505 13.537 3.314 19.173 13.887 5.286 8.610 3.074 3.536 4.366 −1.318
Error in PCISD ±0.428 ±1.516 ±0.468 ±2.200 ±1.622 ±0.578 ±2.430 ±2.954 ±0.100 ±1.706 ±1.481
�PT 0.120 −0.003 0.016 −0.003 0.004 −0.006 0.077 0.095 −0.003 0.052 0.047
Error in �PT ±0.24 ±0.006 ±0.032 ±0.006 ±0.0008 ±0.012 ±0.154 ±0.19 ±0.006 ±0.104 ±0.095

P = PCISD + �PT

Composite 2.625 13.534 3.330 19.171 13.891 5.280 8.687 3.169 3.533 4.418 −1.365
Error ±0.648 ±1.522 ±0.50 ±2.206 ±1.63 ±0.59 ±2.584 ±3.144 ±0.106 ±1.81 ±1.576
Uncertainty (%) 25.45 11.24 15.01 11.5 11.73 11.17 29.75 99.21 3.00 40.96 115

(b) Spin-dependent CC
CCSD(<10000 a.u.)-2ξ 2.513 6.105 9.802 7.141 3.967 0.637 3.270 −2.810
CCSDT(<1000 a.u.)-2ξ 2.523 6.473 9.245 7.330 3.636 0.743 3.218 −2.709
CCSD(<10000 a.u.)-3ξ 2.881 12.146 17.129 11.653 7.057 3.803 6.675 −3.173
CCSD(<10000 a.u.)-4ξ ,PCCSD 2.538 13.728 20.682 9.930 3.683 3.404 4.821 −1.944
Error in PCCSD ±0.686 ±3.165 ±7.106 ±3.447 a ±0.799 ±3.707
�PT 0.010 0.735 −0.557 0.189 −0.330 0.107 −0.052 0.101
Error in �PT ±0.020 ±1.470 ±1.147 ±0.378 ±0.660 ±0.214 ±0.104 ±0.202

P = PCCSD + �PT

Composite 2.548 14.463 20.126 10.119 3.353 3.511 4.769 −1.843
Error ±0.786 ±4.463 ±8.253 ±3.825 ±1.013 ±3.811
Uncertainty (%) 27.70 32.04 41.01 37.80 28.85 79.91

(c) Spin-free CI
1S 3P

ML = 0 ML = 1 γ̄ L γ L
a

S10(2in4)SDT(all orbits)-3ζ 2.760 19.697 3.905 9.169 −5.264
S10(2in4)SDT(all orbits)-4ζ 2.457±0.606 19.152±0.544 3.594±0.311 8.780±0.777 −5.186±0.293
Ref. [27] 2.368
aHere, we fail to estimate the error of PCCSD because of the anomalous value for 3P2, MJ = 2 at the basis set of X = 3ξ .

and SDT excitation, respectively. Within the spin-dependent
CI calculation the values of PSD and �PT are taken from the
X = 5ζ and X = 3ζ basis sets, respectively. Within the spin-
dependent CC calculation the values of PSD and �PT are taken
from the X = 4ζ and X = 2ζ basis sets, respectively. The error
of PSD is computed by 2(PSD|5ζ − PSD|4ζ ) in the spin-dependent
CI calculation and 2(PSD|4ζ − PSD|3ζ ) in the spin-dependent
CC calculation. The error of �PT is roughly estimated with
twice itself in both spin-dependent CI and CC calculations.
The composite value is determined by Eq. (3) with its error
being the sum of errors of PSD and �PT. The uncertainty of
the composite data is assessed by the error divided by the
composite data.

III. RESULTS AND DISCUSSION

Consider the dipole polarizability first. Table I summarizes
the dipole polarizabilities of the Al+ ground state 3s2 1S0

and three lower-lying excited states 3s3p 3P0, 3P1, and 3P2,
as obtained by the different levels of electron correlation
calculations. The spin-dependent CI and CC calculations give
the J -resolved polarizability data for each MJ component;
then the scalar and tensor polarizabilities ᾱJ and αJ

a are
obtained in terms of Eq. (3). The spin-free CI calculation gives
the scalar relativistic data of ᾱ for Al+ 3s21S0 and 3s3p 3P

states and αa for the Al+ 3s3p 3P state.
For the Al+ 3s21S0 and 3s3p 3P0 states, there are already

accurate dipole polarizability data available. Mitroy and co-
workers have given the first reliable data, ᾱ = 24.140 a.u.
for 3s21S0 and 24.622 a.u. for 3s3p 3P0 [16]. Based on
the large basis set up to X = 5ζ and the high-leveled
treatment of the electron correlation up to quadruple ex-
citation within the coupled-cluster calculations, Kalläy and
co-workers have recommended ᾱ = 24.137 a.u. for 3s21S0

and ᾱ = 24.614 a.u. for 3s3p 3P0 [17]. Within another cal-
culation that the electron correlation is handled elaborately
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within the CI plus CC procedures, Safronova and co-workers
have recommended ᾱ = 24.048 a.u. for 3s21S0 and ᾱ =
24.543 a.u. for Al+ 3s3p 3P0 [18]. These previously recom-
mended data [16–18] provide a good benchmark criterion
for comparison to prove the accuracy of our calculated
results.

The quality of the spin-dependent CI results is demonstrated
in direct comparison with the spin-dependent CC results. We
find an overall trend that the spin-dependent CI values are
lower than their corresponding spin-dependent CC values at
the same level of the basis set. With the basis set expanding to
5ζ , the spin-dependent CI calculation arrives at the composite
value ᾱ = 23.780 a.u. for 3s21S0 and ᾱ = 24.175 a.u. for
3s3p 3P0. These results are within 2% error, as compared with
the previously recommended data [16–18].

The electron correlation is more completely considered in
the spin-dependent CC calculations, and therefore to prove
our accuracy, the most direct comparison is between our CC
results and the previously recommended data [16–18]. Our
CC calculation is truncated to the X = 4ζ basis set due to our
limited computer power, which may lead to the decrease of
accuracy of the CC calculation. However, we find that our
CI and CC results change almost the same quantity with
increasing basis set, therefore, it is possible to improve our
CC results by adding the basis set correction from X = 4ζ to
5ζ obtained from our CI calculation. Finally, our CC results
present ᾱ = 24.065 a.u. for 3s21S0 and ᾱ = 24.552 a.u. for
3s3p 3P0. As compared with the previously recommended data
[16–18], our CC data is closest to Safronova’s data [18] with
agreement up to the first decimal place. This means that our
CC data have already arrived at sufficient accuracy. However,
we have to admit that such truncation of the basis set at X = 4ζ

enlarged the uncertainty margins of our calculated results as
compared with the previous benchmark calculations [16–18].

The overall agreement between our calculated results and
the previously recommended data [16–18] for the Al+ 3s21S0

and 3s3p 3P0 states gives us confidence in the accuracy
of our results for the other two energetically higher-lying
excited states, 3s3p 3P1 and 3P2, that have no recommended
data available yet, to the best of our knowledge. Here,
we expect that the results of 3s3p 3P1 and 3P2 are of the
same precision and reliability because they are obtained
together with 3s21S0 and 3s3p 3P0 in one calculation with
the same energy convergence threshold. The spin-dependent
CI calculation arrives at ᾱJ = 24.214 a.u. for 3s3p 3P1 and
ᾱJ = 24.291 a.u. for 3s3p 3P2. The spin-dependent CC
calculation yields ᾱJ = 24.650 a.u. for 3s3p 3P2 (the ᾱJ value
for 3s3p 3P1 is not obtained because the MJ = 0 component
fails to be found). The tensor polarizability αJ

a = −0.308 a.u.
(spin-dependent CI value) for 3s3p 3P1, and αJ

a = 0.588 a.u.
(spin-dependent CI value) and 0.564 a.u. (spin-dependent CC
value) for 3s3p 3P2. The deviation of ᾱJ for the 3s3p 3P2

state between our CI and CC calculations is less than 1.7%,
within error margins 1.5% obtained for the ground state
3s2 1S0 and 1.8% obtained for the lowest-lying excited state
3s3p 3P0. The good agreement in such comparison confirms
that our calculations for 3s3p 3P1 and 3P2 have delivered a
good description of the spin-orbit components.

The relativistic effect in the four-component relativistic
calculation can be understood as a combination of the spin-

orbit coupling effect and contraction or decontraction of radial
electron density, i.e., the so-called scalar relativistic effect. The
relativistic effect is discussed through analyzing the J depen-
dence of the scalar and tensor polarizability in this study. In our
calculations, the difference ᾱJ (3P0) − ᾱJ (3P1) is −0.039 a.u.
(spin-dependent CI data), which amounts to only 0.16% of
ᾱJ (3P0). The difference ᾱJ (3P0) − ᾱJ (3P2) is −0.117 a.u.
(spin-dependent CI data) and −0.098 a.u. (spin-dependent CC
data), which are 0.47% and 0.40% of ᾱJ (3P0), respectively.
Such variations of ᾱJ for different J components are minor
and therefore negligible. The 3P0 component is of spherically
symmetric electron density, and therefore the difference of
ᾱJ (3P0) with respect to the scalar polarizability obtained from
the spin-free CI calculation, i.e., ᾱL(3P ) − ᾱJ (3P0), can be
regarded as the impact of the spin-orbit coupling only on the
polarizability [8]. This difference is only 0.105 a.u., indicating
a weak spin-orbit coupling effect on the dipole polarizability.

Furthermore, the tensor dipole polarizability represents
αJ

a (3P1) ≈ −αJ
a (3P2)/2 ≈ −αL

a /2, which is in accordance with
Eq. (8). The J -resolved ᾱ and αa both comply with the basic
vector algebra, i.e., Eqs. (6) and (7), implemented under the LS

approximation, which reflects a weak impact of the relativity
effect on the dipole polarizability of the Al+ 3s3p 3P state. The
J dependence of the dipole polarizability of Al+ is similar to
the Al atom. In Ref. [8], Fleig has found the difference of dipole
polarizability between the J = 1

2 and J = 3
2 components of

the Al atom is small, only 0.002 a.u., and therefore the Al atom
is justified to be essentially nonrelativistic.

Consider the hyperpolarizability. Table II presents the
results of hyperpolarizability, as computed in the same way
as the dipole polarizability. Available hyperpolarizability
data are scarce, because such high-order property is hard
to obtain due to more critical computational demand than
that for dipole polarizabilities. For the ground state 3s2 1S0,
Archibong and Thakkar have obtained γ = 2348 a.u. (many-
body-perturbation theory data). Here, we obtain γ = 2625
(spin-dependent CI data), 2548 (spin-dependent CC data), and
2457 a.u. (spin-free CI data), which are 4%–10% larger than
Archibong and Thakkar’s data. This deviation can be attributed
to a larger basis set and a more complete treatment of electron
correlation than are used in our calculations.

For the Al+ 3s3p excited state, we obtain γ̄ J =
13 534,13891, and 4418 a.u. for 3P0, 3P1, and 3P2 within
the spin-dependent CI calculations, and γ̄ J = 14 463 and
4769 a.u. for 3P0 and 3P2 within the spin-dependent CC
calculations. (The γ̄ J is absent for 3P1 because its J = 0
component is not found in our spin-dependent CC calculation.)
The deviation between the spin-dependent CI and CC results is
around 6%–8% [as evaluated by (γ̄ J

CI − γ̄ J

CC)/γ̄ J

CC], which is
within a normal error range considering the hyperpolarizability
is very hard to calculate. More comparisons are difficult
because there is no data available for the Al+ 3s3p excited
state, to the best of our knowledge.

The average of γ̄ J of the three J components of
the Al+ 3s3p excited state, i.e., [γ̄ J (3P0) + 3γ̄ J (3P1) +
5γ̄ J (3P2)]/9, is close to the γ̄ L, which proves some kind of
agreement between γ̄ J and γ̄ L. However, γ̄ J represents great
variations between different J components, which conflicts
with Eq. (6). While the difference γ̄ J (3P0) − γ̄ J (3P1) is small
and therefore negligible, the γ̄ J (3P0) − γ̄ J (3P2) is remarkably
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TABLE III. Differential dipole polarizability �ᾱ, differential hyperpolarizability �γ̄ , and BBR shifts �v. (BBR shift is evaluated at
temperature T = 300 K).

Transition �ᾱ (a.u.) �v�ᾱ(10−3 Hz) �γ̄ (104 a.u.) �v�γ̄ (10−17 Hz)a Source

(1S0-3P0) 0.39 ± 0.038 −3.334 ± 0.324 1.091 ± 0.956 −2.02 ± 1.771 KRCI
0.487 ± 0.332 −4.163 ± 2.838 1.192 ± 0.324 −2.209 ± 0.600 MRCC
0.48 ± 0.125 −4.2 ± 3.2 Ref. [16]

0.477 ± 0.078 −4.1 ± 0.7 Ref. [17]
0.495 −4.26 ± 0.43 Ref. [18]

(1S0-3P1) 0.434 ± 0.028 −3.71 ± 0.239 1.127 ± 0.113 −2.924 ± 0.209 KRCI
(1S0-3P2) 0.508 ± 0.006 −4.342 ± 0.051 0.179 ± 0.127 −0.332 ± 0.235 KRCI

0.585 ± 0.356 −5.001 ± 3.043 0.221 ± 0.306 −0.410 ± 0.567 MRCC

a�E ∼ − 1
24 〈E2

E1(ω)〉2�γ is assumed.

large, being as much as 67% of γ̄0. The γ̄ J results for each
component also show more than 50% deviation from the γ̄ L

results. With respect to the tensor hyperpolarizability, the
ratio γ J

a (3P1), γ J
a (3P2), and γ L

a (3P ) disagree with the relations
given by Eqs. (7) and (8). Considering the convergence of the
results with the basis set and the electron correlation level,
we think that the numerical error is unlikely to cause such big
discrepancy.

The setup of Eqs. (6)–(8) is based on the LS coupling.
However, the hyperpolarizability, as high order responds, is
more sensible to the spin-orbit coupling. The mixing of spin
and spatial degrees of freedom leads to deviations from the
purely spatial anisotropies. This may cause deviations in the
hyperpolarizabilities of light atoms from Eqs. (6)–(8) and
dipole polarizabilities of the heavy atoms. The latter has
already been found for In and Tl atoms [8]. The discrepancy
shown in our data for the Al+ 3s3p excited state, as compared
with Eqs. (6)–(8), indicates that the hyperpolarizability is still
open to question, especially for the excited state. Currently,
there are very few hyperpolarizability data for the excited
state, even simple atoms, therefore more calculations of high
accuracy are needed in the future.

One important application of the scalar polarizabilities
is to determine the blackbody radiation (BBR) shift for a
transition due to the finite background thermal radiation.
For Al+, the BBR shift of the transition 1S0 and 3P0 is of
especially important meanings for assessing the systematic
error of the clock-frequency measurement. The derivation of
the theoretical BBR shift has been presented by Porsev and
co-workers [5] and Arora and co-workers [6], which has shown
that the dominant term of BBR is determined by the difference
in the dipole polarizability as follows:

δEE1 = −1

2

4π3α3

15
(kBT )4�ᾱ(1 + η), (10)

where E1 means the first-order channel in electric field,
the fine-structure constant α = 1/137.035 999 074(44), and
( kBT

Eh
) ≈ 10−9 at room temperature the temperature; �ᾱ means

the difference in ᾱ. The parameter η has been calculated by
Mitroy et al. [16] and Safronova et al. [18], which gives
η = 0.000 22 ∼ 0.000 24 for Al+. In this paper, we do not
calculate this value. Consider that η is very small; we therefore
neglect this value in our following estimation of BBR shifts.
The above equation can be rewritten as

δEE1 = − 1
2�ᾱ

〈
E2

E1

〉
, (11)

where the electric field 〈E2
E1

〉 is equivalent to F 2
z shown in

Eq. (1). By associating the high-order term in Eq. (1), we
suppose that the contribution of the hyperpolarizability to the
BBR shift can be written in an approximate way as

δEE1 = − 1
24�γ̄

〈
E2

E1

〉2
, (12)

where �γ̄ is the differential hyperpolarizability between
two states. Based on the scalar polarizability data shown in
Tables I and II, �ᾱ and �γ̄ between Al+ 3s21S0 and 3s3p 3PJ

with J = 0,1,2 and their corresponding BBR shifts can be
computed in terms of Eqs. (4)–(6), as given in Table III.
Such results show that the BBR shifts caused by the
hyperpolarizability are of a factor of 10−17, which is far
less than the case of dipole polarizability, and therefore will
constitute no impediment to the accuracy of the Al+ optical
clock at 10−18 and even higher precisions.

IV. SUMMARY

The accurate dipole polarizability and hyperpolarizability
have been achieved for Al+ 3s21S0 and 3s3p 3PJ with
J = 0,1,2 using a relativistic Dirac-Coulomb Hamiltonian
within CI and CC theories and a finite-field approach. Our
calculations have obtained accurate dipole polarizabilities;
more importantly, we present the J dependence and anisotropy
of the dipole polarizability and hyperpolarizability. Because of
the large computation demands in the finite-field study of the
polarizabilities, we do not pursue the highest accuracy; for
example, within the spin-dependent CI calculation the single
and double electron correlations are limited to virtual orbits
less than 100 a.u. and the single, double, and triple electron
correlations are limited to virtual orbits less than 1 a.u. Within
the spin-dependent CC calculation we truncated the increasing
basis set up to X = 4ζ . Such truncations of the electron
correlation and the basis set cause the increased uncertainty,
as compared with previous benchmark calculations [17,18].

There are more sources of error, such as the correction of
quadruples excitation PQ and the Briet interaction and QEC
correction PBQ [17]. In previous benchmark calculations the
changes in dipole polarizability due to PQ and PBQ are found
to be less than 0.1% and 1%, respectively. Therefore, the error
caused by the absence of PQ and PBQ should not exceed a
factor 1%–2% for our calculated results. The changes of the
hyperpolarizability due to PQ and PBQ should be a small
correction in a similar trend shown in the dipole polarizability.
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Though imperfect in our calculation, our results have shown
excellent agreement with previously recommended data for the
dipole polarizability of 3s21S0 and 3s3p 3P0 and the hyperpo-
larizability of 3s21S0 as well as excellent agreement between
the spin-dependent CI and CC calculations. It is indicated
that the spin-orbit coupling has a negligible contribution for
the dipolarizability of Al+ but becomes significant for the
hyperpolarizability. Therefore, the fully relativistic calculation
is in great demand for the high-order polarizabilities.

Finally, we evaluated the BBR shift due to dipole polariz-
ability and hyperpolarizability for Al+ 3s21S0 to 3s3p 3PJ with
J = 0,1,2. Specifically, the BBR shifts caused by the hyper-

polarizability are at the magnitude of 10−17 Hz, which is far
lower than the precision level of the current Al+ optical clock
and therefore can be safely neglected in uncertainty budget.
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