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Tune-out wavelengths for metastable helium
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The six longest tune-out wavelengths for the He(1s2s 3Se
1) metastable state are determined by explicit

calculation. The tune-out wavelength at 413.02 nm is expected to be sensitive to finite mass, relativistic, and
quantum electrodynamic effects upon the transition matrix elements and its measurement would provide a
nonenergy test of fundamental atomic structure theory.
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I. INTRODUCTION

The fundamental physics framework for high-precision
calculations on light atomic systems is nonrelativistic quantum
electrodynamics (NRQED) [1–3]. This approach starts with
the nonrelativistic Hamiltonian and relativistic and quantum
electrodynamic corrections are added by using perturbation
theory [4–6]. Atomic structure calculations for systems with
two or three electrons are often done with correlated basis sets
and very high precision in calculations of energies have been
achieved [3,7–9]. Energy corrections for finite nuclear mass
and the finite nuclear volume can be included [7,10–12].

Many atomic properties are known to much lower degrees
of precision than the energy. For example, calculations of rates
for forbidden transitions require relativistic effects to be taken
into consideration. However, the precision of experiments on
such systems is not high. For example, the rate for the He(1s2p
3P o

1 → 1s2 1Se
0) transition has been measured to an accuracy of

4.5% [13]. This is typical of atomic physics, there are relatively
few experimental determinations of atomic transition rates that
have a precision of 0.1% or better [14].

At the present time, the most precise calculation of an
atomic property that is dominated by atomic transition rate
properties is the helium atom ground-state polarizability
[15,16]. There is an experimental determination of this
polarizability that is accurate to 9.1 ppm [17].

In this paper, we identify an atomic property that could be
measured and provide a new test of NRQED. This property
is the tune-out wavelength of the He(1s2s 3Se

1) state. When
an atom is immersed in an electric field it experiences an
energy shift which is proportional to the square of the electric
field. The electric field can be a static field or the field of
an electromagnetic wave and the energy shift can be written
[18,19] as

�E ≈ − 1
2αd (ω)F 2, (1)

where αd (ω) is the dipole polarizability of the quantum state at
frequency ω and F is the strength of the electromagnetic field.
The value of the dynamic polarizability in the ω → 0 limit is
the static dipole polarizability. The tune-out wavelength is the
wavelength at which the polarizability goes to zero [20–22].

One method to determine the tune-out wavelength is to use
an atom interferometer [23,24]. A beam of metastable helium
would be split into two, with a laser irradiating one of the paths.
The wavelength for which the phase shift is zero is the tune-

out wavelength. Since the measurement is a null experiment,
the intensity and beam profile of the irradiating laser does
not need to be known precisely. A tune-out wavelength has
recently been measured to an accuracy of 2 ppm for potassium
and has yielded a precise estimate of the oscillator strength
ratio for the 4s → 4p spin-orbit doublet [22,24]. Some tune-
out wavelengths for rubidium have also been determined by
the diffraction of a Bose-Einstein condensate off a series of
standing wave pulses [25].

The present manuscript describes calculations of a number
of tune-out wavelengths for the He(1s2s 3Se) state. The purpose
of the present paper is not to absolutely determine to maximum
precision the specific values of the tune-out wavelengths.
Rather, it is to give estimates of these wavelengths to an
accuracy of about 0.2% to constrain the possible wavelength
and thereby provide guidance to any experimental effort.

II. STRUCTURE MODEL

The He(1s2s 3Se) state transition arrays were taken from
two sources. Line strengths from Hylleraas calculations
[26,27] were used for the transitions to the He(1s2p 1,3P o

J ) and
He(1s3p 1,3P o

J ) states. They were extracted from tabulations
of oscillator strengths and energy differences. These matrix
elements were calculated including relativistic effects but did
not include finite mass effects. The contributions from these
manifolds of states make up 98% of the He(1s2s 3Se) state
polarizability.

The remainder of the polarizability was computed from
a one-electron model of the structure of the helium triplet
states. The frozen core model, consisted of a valence electron
moving in the field of the He+(1s) ground state. The direct and
exchange interactions between the valence and core electrons
were computed without approximation. A semiempirical core
polarization potential, with the polarizability set to that of
the He+(1s) ground state, namely, 0.28125 a3

0 , was then
tuned to reproduce the binding energies of the lowest state
of each symmetry. The model Hamiltonian for the valence
electron was then diagonalized in a large basis of Laguerre
type orbitals (LTOs). The transition matrix elements between
the ground and dipole excited states were computed with a
modified transition operator [28,29]. This core-polarization
model (CPM) of the helium structure is expected to be reliable.
Similar models have been applied to describe the structures of
many atoms with one or two valence electrons [28,30] and
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TABLE I. Line strengths for some low-lying He transitions.

Transition CPM Hylleraas [26,27]

1s2s 3Se
1 → 1s2p 3P o

0 6.4175 6.404 439
1s2s 3Se

1 → 1s2p 3P o
1 19.253 19.215 27

1s2s 3Se
1 → 1s2p 3P o

2 32.0877 32.025 35
1s2s 3Se

1 → 1s2p 1P o
1 1.4878 × 10−6

1s2s 3Se
1 → 1s3p 3P o

0 0.2729 0.274 990
1s2s 3Se

1 → 1s3p 3P o
1 0.8188 0.825 131

1s2s 3Se
1 → 1s3p 3P o

2 1.3646 1.374 964
1s2s 3Se

1 → 1s3p 1P o
1 1.4684 × 10−8

give polarizabilities for atoms and ions lighter than sodium
and magnesium that are accurate to better than 0.5% [19,30].
The differences between the CPM and experimental energies
did not exceed 5 × 10−5 hartree, which suggests that the
underlying model Hamiltonian is a reasonable model of the
helium excitation spectrum.

Table I lists line strengths, Sij , for some transitions where

Sij = |〈ψi ; LiJi‖ rkCk(r̂) ‖ψj ; LjJj 〉|2. (2)

The CPM line strengths were computed in an L coupling
scheme and transformed to an LSJ coupling scheme using
standard expressions [31]. The better than 1% agreement
between the CPM and Hylleraas line strengths suggests that
the error introduced by using the CPM line strengths for the
higher discrete and continuum excitations will be small.

The Hylleraas line strengths for the transitions to the J =
0, 1, and 2 states are very close to the 1:3 :5 ratio that would be
expected from purely geometric considerations. The deviation
from this ratio is only 0.01% for the He(1s2s 3Se

1 → 1s2p 3P o
J )

multiplet and is even smaller for the He(1s2s 3Se
1 → 1s3p 3P o

J )
multiplet.

III. POLARIZABILITIES

A. Static polarizabilities

The He(1s2s 3Se
1) polarizability is computed using the sum

rule

αd (ω) =
∑

i

f
(1)
ni

�E2
ni − ω2

, (3)

where f
(1)
ni and �Eni are the oscillator strength and excitation

energy of a given transition and ω is the photon energy. Polar-
izabilities are computed using experimental energy differences
[32] for the lowest-energy excited states. The contribution of
the core is included in the CPM line-strength distribution [30]
by using a pseudo-oscillator strength distribution constructed
by diagonalizing the He+ Hamiltonian in a basis of three � = 1
LTOs.

The present calculation, incorporating Hylleraas matrix
elements for the transition to the He(1s2p 1,3P o

J ) and
He(1s3p 1,3P o

J ) states and CPM matrix elements for the
remaining transitions is termed the hybrid calculation. Hybrid
calculations using matrix elements from different sources have
been widely used for polarizability calculations [19,33,34].

Static polarizabilities for the He(1s2s 3Se
1) state from a

variety of source are listed in Table II. The hybrid calculation

TABLE II. Static dipole polarizabilities for the He(1s2s 3Se
1) state.

Year αd (a.u.)

Present: CPM 2013 316.020
Present: Hybrid 2013 315.462
Hylleraas [35] 1972 315.608
CI B spline [36] 1995 315.63
Hylleraas [37] 1998 315.631 468(12)
Experiment [38] 1977 301(20)
Experiment [39,40] 1995 322(6.8)

gives a dipole polarizability of 315.462 a3
0 for the He(1s2s 3Se)

state. This is about 0.05% smaller than the listed Hylleraas
calculations, which give 315.63 a3

0 for the polarizability. Exact
agreement with the Hylleraas calculations is not expected since
these calculations are infinite mass calculations which do not
include relativistic effects. About 96.5% of the polarizability
comes from the transitions to the He(1s2p 3P o

J ) multiplet.
The CPM calculation gave a polarizability of 316.020 a3

0 ,
which is about 0.13% larger than that given by the Hylleraas
calculations.

B. Dynamic polarizabilities and tune-out wavelengths

Figure 1 depicts the dynamic polarizability of the
He(1s2s 3Se

1) state as a function of energy. For purposes
of simplicity the structure model used to create this plot
did not allow for spin-orbit splitting and the very weak
intercombination transitions. In this diagram, there is no
tune-out wavelength in the vicinity of the He(1s2p 3P o) exci-
tation. Tune-out wavelengths occur just before the excitation
thresholds for the He(1s3p 3P o) and He(1s4p 3P o) states. The
tune-out frequency that would allow the easiest experimental
investigation is just below the He(1s3p 3P o) state.

The narrow spin-orbit splitting of the He(3P o
J ) states leads

to the creation of additional tune-out frequencies and there
are a total of six tune-out wavelengths below 0.118 a.u.
photon energy. These tune-out wavelengths, along with a
breakdown of the polarizability contributions are given in
Table III. The differences between the hybrid model and the
CPM values give a reasonable estimate of the uncertainty
in the calculations. The derivative of the polarizability with
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FIG. 1. (Color online) The dynamic polarizability of the
He(1s2s 3Se

1) state for photon energies below 0.150 a.u. This diagram
does not include features due to spin-orbit splitting. Excitation
thresholds are indicated as dashed lines.
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TABLE III. Contributions to the polarizability at the tune-out wavelengths by using the hybrid line-strength set. The remainder term includes
the core and all valence transitions other than those specifically listed.

λto (nm) ∞ 1083.325 058 1083.219 229 886.609 509 91 413.019 405 0 388.974 876 3 388.971 133 2
ωto (a.u.) 0 0.042 058 800 52 0.0 42 062 909 61 0.051 390 552 457 0.110 317 704 2 0.117 137 006 3 0.117 138 133 5
dα

dλ
(a3

0/nm) −7.62 × 109 −1.13 × 108 −1.28 × 108 −1.913 −3.12 × 1010 −1.00 × 109

CPM: λto (nm) ∞ 1083.325 058 1083.219 230 886.609 510 412.801 707 388.974 876 388.971 133

1s2p 3P o
2 169.210 −1.6408 × 107 −8.2252 × 105 −343.232 −28.778 −25.043 −25.043

1s2p 3P o
1 101.526 1.6254 × 107 −5.3672 × 105 −205.948 −17.267 −15.026 −15.026

1s2p 3P o
0 33.835 1.5362 × 105 1.3592 × 106 −68.680 −5.756 −5.009 −5.009

1s2p 1P o
1 6.43 × 10−6 1.95 × 10−5 1.95 × 10−5 605.341 −1.78 × 10−6 −1.53 × 10−6 −1.53 × 10−6

1s3p 3P o
2 2.609 2.995 2.995 3.230 3.075 −2.4504 × 106 −1.2843 × 105

1s3p 3P o
1 1.565 1.797 1.797 1.939 13.847 2.4264 × 106 −8.4154 × 104

1s3p 3P o
0 0.522 0.599 0.599 0.646 4.614 2.4041 × 104 2.1261 × 105

Remainder 6.196 6.524 6.525 6.704 10.264 11.506 11.506
Total 315.462 0 0 0 0 0 0

wavelength is also tabulated. Only one of the wavelengths,
that at 413.02 nm, can be classed as a useful probe of atomic
structure. The tune-out wavelength triggered by the weak
He(1s2s 3Se

1 → 1s2p 1P o
1 ) transition is 4.6 × 10−6 nm away

from the excitation wavelength and is barely detectable.
The dynamic polarizability in the vicinity of the

He(1s2p 3P o
J ) excitations is depicted in Fig. 2. The additional

tune-out frequencies lie between the J = 0,1 and the J = 1,2
states. The positions of the tune-out wavelengths here are
largely determined by the energies of the He(1s2p 3P o

J )
states and the relative sizes of the line strengths to the
He(1s2p 3P o

J ) states. The tune-out wavelengths caused by
the spin-orbit transitions of the He(1s2p 3P o

J ) multiplet are
at infrared wavelengths. The one between the J = 0 and
J = 1 excitations at 1083.219 nm should be the easiest to
detect due to the larger splitting of 0.159 nm between the
two states. The experimental determination of this particular
tune-out wavelength would mainly be of interest for diagnostic
purposes. The dominant polarizability contributions come
from the transitions to the states of the He(1s2p 3P o

J ) multiplet
which are larger by a factor of 105 than the contributions from
any other states. As mentioned earlier, the line strengths to
the spin-orbit state are very close to a 1:3 :5 ratio. Table III
also lists the tune-out wavelengths from the CPM model
which have line strengths exactly in the 1:3 :5 ratio. The
differences between the hybrid and CPM tune-out wavelengths
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FIG. 2. (Color online) The dynamic polarizability of the
He(1s2s 3Se

1) state near the He(1s2p 3P o
J ) multiplet. The excitation

thresholds for the spin-orbit states are indicated.

are negligible due to the close adherence of the hybrid lines
strengths to the 1:3 :5 ratio.

The He(1s3p 3P o
J ) multiplet results in three tune-out wave-

lengths. Two of these tune-out wavelengths occur in the energy
intervals between the spin-orbit states. They occur at 388.9749
and 388.9711 nm. From Table III it is clear that the exact
positions of the tune-out wavelengths will be dominated by the
positive and negative contributions from the different transi-
tions of the He(1s3p 3P o

J ) multiplet. Consequently, the position
of the tune-out wavelengths will be determined by the 1:3 :5
ratio of the three transitions to this multiplet. So these two
tune-out wavelengths should be regarded as not interesting.

The tune-out wavelength that is most sensitive to true
dynamical effects is at 413.02 nm. There are negative contri-
butions to the polarizability from the He(1s2p 3P o) multiplet
while positive contributions come from the transitions to
the He(1s3p 3P o) multiplet and higher excitations. This
tune-out wavelength can be used to test the accuracy of
theoretical descriptions of the He(1s2s 3Se) state. The dynamic
polarizability near the tune-out wavelength can be described
with a simple dynamical model where the polarizability due
to the three transitions to the He(1s3p 3P o) multiplet becomes
large enough to cancel the negative polarizability arising
from the He(1s2s 3Se

1 → 1s2p 3P o
J ) transitions. The tune-out

wavelength is 24 nm longer than the excitation wavelengths of
the states of the He(1s3p 3P o

J ) multiplet.
The variation of the polarizability with frequency in the

vicinity of the 413.02-nm tune-out wavelength can be de-
scribed by a simple two-component model previously applied
to the alkaline-earth atoms [41]. One writes,

α(ω) = α0(ω) + f

�E2 − ω2
, (4)

where α0 is the background polarizability arising from all
transitions except the transition near the tune-out wavelength,
�E is the transition energy to the He(1s3p 3P o) multiplet, and
f is the oscillator strength to that multiplet. The variation of the
background polarizability with frequency will be much slower
than the variation of polarizability arising from the He(1s2s
3Se → 1s3p 3P o) transition. Making the simplification that α0

is constant results in the following expression for the tune-out

052515-3



J. MITROY AND LI-YAN TANG PHYSICAL REVIEW A 88, 052515 (2013)

frequency when f/α0 � �E [41],

ωto ≈ �E(1 + Xshift). (5)

The quotient,

Xshift = f/(2α0�E2), (6)

is a relative energy shift and provides an estimate of the relative
difference between the transition frequency and the tune-out
frequency.

Equations (5) and (6) can be used for an uncertainty
analysis. The tune-out frequency uncertainty is given by

δωto = �EδXshift, (7)

where

δXshift

Xshift
= δf

f
+ δα0

α0
, (8)

giving

δωto = �EXshift

(
δf

f
+ δα0

α0

)
. (9)

The contribution to the uncertainty in Xshift due to the
uncertainty in the transition energy does not have to be
considered at the present level of accuracy. The terms on the
right-hand side of Eq. (9) contain atomic structure information
related to the transition moments for transitions originating
from the 1s2s 3Se

1 state. Suppose we write Y as a variable
representing an atomic structure parameter and we replace the
term in parentheses in Eq. (9) by 2δY/Y , we then obtain

δY

Y
= δωto

2�EXshift
≈

(
δλto

λto

)
1

2Xshift
. (10)

This relation defines the precision with which structure
information can be extracted from a measurement of the
tune-out frequency. For the 413.02-nm tune-out wavelength,
one has Xshift = 0.0582 and consequently δY

Y
= 8.6(δλto/λto).

Suppose the tune-out frequency can be determined to an
absolute accuracy of 0.0001 nm, then the fractional uncertainty
in the derived structure information would be 1.8 × 10−6. This
would constitute the most precise measurement of transition
rate information ever made for helium. At the present time, the
polarizability of the helium ground state has been measured
to 9.1 ppm [17]. Finite mass effects in the form of a reduced
mass effect and a mass polarization term make contributions
to the helium ground-state polarizability of 137 and 35 ppm,
respectively [15]. Relativistic effects of order α2 and QED
effects of order α3 make a contribution at the level of 58 and
22 ppm, respectively [16,42]. A measurement of the 413.02-
nm tune-out wavelength at an accuracy of 0.0001 nm would
have the potential to probe QED effects in an atomic structure
model of the helium metastable state.

There is one other polarizability parameter that relates to the
feasibility of a tune-out measurement. It is the rate of change of
the polarizability with wavelength. For the 413.02-nm tune-out
wavelength, one has

dα

dλ
= −1.913 a3

0

/
nm. (11)

Table III gives this derivative for other tune-out wavelengths.
This information provides a first indication of the strength of

the laser field and the offset from the tune-out wavelength nec-
essary to create a detectable perturbation in the polarizability.

C. Uncertainty in the estimate of the tune-out wavelengths

In this section we estimate the uncertainty in the position
of the 413.02-nm tune-out wavelength. The positions of the
other five tune-out wavelengths are largely determined by
the relative sizes of the transitions to the different states of the
same multiplet. A conservative estimate of the uncertainties in
these five tune-out wavelengths would be 10−6 nm or smaller,
i.e., the difference between the hybrid and CPM estimates
of λto.

Equation (8) is the basis for 413.02-nm tune-out wave-
length uncertainty analysis. There are two quantities that
largely determine the precise value of Xshift; these are the
He(1s2s 3Se → 1s3p 3P o) oscillator strength and the dynamic
polarizability computed with this transition omitted from the
sum rule. Some uncertainties will be estimated by reference to
the basic structure of the helium triplet states, i.e., as a single
electron moving in the field of a core with a net charge of unity.

For the purpose of this analysis the 1s2s 3Se
1 → 1s3p 3P o

J

transitions are treated as a single transition. The total spin-orbit
splitting of the 1s3p multiplet is 1.3 × 10−6 a.u., which is
much smaller than the energy difference between the tune-out
energy and the 1s3p 3P o state energy of 0.0066 a.u. There
are two sources of uncertainty for this transition, these are
the impact of finite mass and relativistic effects. The two
states are treated as single-electron states for the estimation
of the finite mass effect. The correction to the line strength
will be approximately 2me/mHe = 2.74 × 10−4. A reasonable
estimate of the relativistic effect can be made by comparing
the relativistic and nonrelativistic matrix elements for the
2s → 3pJ transitions for hydrogen. This ratio is 0.999 91
for the 2s → 3p3/2 transition and 0.999 97 for the 2s →
3p1/2 transition. The relativistic correction is taken to be
0.9 × 10−4, i.e., the larger of the two corrections. So the
relative uncertainty in the 1s2s 3Se → 1s3p 3P o oscillator
strength is set to 3.6 × 10−4. This analysis does not include
any calculational error due to the Hylleraas calculation since
the purely calculational error would be much smaller than the
other sources of uncertainties identified above.

The estimation of the uncertainty in the polarizability, α(ω),
is divided into two parts; the first is due to the contributions
from the resonant He(1s2s 3Se

1 → 1s2p 3P o
J ) transitions and

the second is due to the remainder term. First consider the
1s2s 3Se

1 → 1s2p 3P o
J transitions. Once again the finite mass

correction will be approximately 2me/mHe = 2.74 × 10−4.
The relativistic effect in this case, once again deduced
by comparison of nonrelativistic and Dirac equation line
strengths, was 0.5 × 10−4. The net uncertainty in that part
of the polarizability due to this transition was 0.017 a.u.

The difference between the CPM and Hylleraas line
strengths for the He(1s2s 3Se

1 → 1s3p 3P o
J ) transitions does

not exceed 1.1%. This uncertainty is taken as typical of the
line-strength uncertainties in the calculation of the remainder
term, which consequently has an uncertainty of 0.11 a.u. This
is about the same size as the known error in the polarizability in
similar calculations for Li, namely, 0.10 a.u. or 0.06% [43,44].
So the assignment of an uncertainty of 0.11 a.u. for the
remainder is reasonable given that a similar methodology
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yields an error of 0.10 a.u. in the total dipole polarizabilty
for the larger lithium atom. Substituting these uncertainty
estimates into the relation

Xshift = f3p

2(α2p + αremainder)�E2
(12)

gives �Xshift/Xshift = 0.0035. This translates into an overall
uncertainty in the 413.02-nm tune-out wavelength of 0.09 nm.
This is about half the size of the difference between the
CPM and hybrid model estimates. The dominant contribution
to the uncertainty comes from αremainder. There are other
contributions to the uncertainty, but they would be much
smaller than the already included uncertainties.

IV. CONCLUSION

The tune-out wavelengths for the He(1s2s 3Se
1) state have

been estimated from a hybrid structure model. The tune-out
wavelength at 413.02 nm could conceivably be used to probe
atomic structure models at a precision that is sensitive to finite
mass, relativistic, and QED effects. A precision of 0.0001 nm
in the measured tune-out wavelength would test structure
information related to transition matrix elements to an overall

accuracy of 2 ppm. Such a measurement would open a new
avenue to test fundamental atomic structure theory, at the
present time there are no high-precision calculations for helium
that incorporate both finite mass and relativistic effects in the
transition matrix elements.

There is one other possible experiment involving cold
metastable helium atoms that would also be sensitive to
relativistic and QED effects. That would be to measure
the magic wavelengths for the He(1s2s 3Se → 1s2p 3P o

J )
transitions for a cloud of ultracold helium atoms. It would
be worthwhile to determine the magic wavelengths that would
be the best atomic structure probes.
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