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Time-dependent renormalized natural orbital theory applied to the two-electron spin-singlet case:
Ground state, linear response, and autoionization
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Favorably scaling numerical time-dependent many-electron techniques such as time-dependent density
functional theory (TDDFT) with adiabatic exchange-correlation potentials typically fail in capturing highly
correlated electron dynamics. We propose a method based on natural orbitals, i.e., the eigenfunctions of the
one-body reduced density matrix, that is almost as inexpensive numerically as adiabatic TDDFT, but which is
capable of describing correlated phenomena such as doubly excited states, autoionization, Fano profiles in the
photoelectron spectra, and strong-field ionization in general. Equations of motion (EOMs) for natural orbitals
and their occupation numbers have been derived earlier. We show that by using renormalized natural orbitals
(RNOs) both can be combined into one equation governed by a hermitian effective Hamiltonian. We specialize on
the two-electron spin-singlet system, known as being a “worst case” testing ground for TDDFT, and employ the
widely used, numerically exactly solvable, one-dimensional helium model atom (in a laser field) to benchmark
our approach. The solution of the full, nonlinear EOMs for the RNOs is plagued by instabilities, and resorting to
linear response is not an option for the ultimate goal to study nonperturbative dynamics in intense laser fields. We
therefore make two rather bold approximations: we employ the initial-state-“frozen” effective RNO Hamiltonian
for the time propagation and truncate the number of RNOs to only two per spin. Surprisingly, it turns out that
even with these strong approximations we obtain a highly accurate ground state, reproduce doubly excited states,
and autoionization.
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I. INTRODUCTION

The “holy grail” of computational many-body theory
is to overcome the so-called “exponential wall,” i.e., the
exponentially increasing numerical effort as a function of
the particle number to solve the many-body Schrödinger
equation [1]. It is an obvious idea that one should try to
replace the high-dimensional many-body wave function by
some simpler, lower-dimensional quantity, and then derive
equations governing this quantity because the “many-electron
wave function tells us more than we need to know” [2].
Reduced density matrices (RDMs) appear to be most suitable
for that purpose. In fact, extensive research has been devoted
to the properties and applications of RDMs, starting with
the classic work by Löwdin [3], already early summarized
in [4], and meanwhile covered in books and reviews [5–9],
and excellent thesis works [10,11].

For systems with two-body interactions, any observable can
be explicitly written down in terms of the two-body reduced
density matrix (2RDM). The Hohenberg-Kohn theorem [12] of
density functional theory (DFT) (see, e.g., [13]) even ensures
that any observable (of a system governed by a Hamiltonian
with a scalar, local, external potential) is in principle a
functional of the single-particle density, i.e., the diagonal of the
(spin-integrated) one-body reduced density matrix (1RDM).
However, these functionals are not known for all observables
of interest so that approximations have to be made in practice.
Quite reasonably, it seems that the more reduced the quantity
employed is, the more approximations have to be made in
the governing equations (such as the intricate exchange-
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correlation (xc) potential in the Kohn-Sham scheme [14]), and
for the observables. Employing the 1RDM as the basic “vari-
able” instead of the single-particle density brings us to reduced
density-matrix functional theory (RDMFT) [3–8,10,11]. In
RDMFT, the Bogoliubov-Born-Green-Kirkwood-Yvon chain
of equations needs to be truncated by a (sufficiently accurate)
approximation of the 2RDM as a functional of the 1RDM.
In the simplest form, this leads just to the Hartree-Fock (HF)
equations. Expressions for the 2RDM beyond HF have been
devised and applied (see, e.g., [15–19]), although relatively
few compared to the abundant literature on xc potentials
in DFT. Approaches using directly the 2RDM as the basic
variable have been proposed and applied as well [9]. A naive
minimization of the energy as a functional of the 2RDM will,
however, yield too low energy values, as not all two-matrices
(2Ms) originate from an N -electron state. Recent progress in
the solution of this so-called N -representability problem has
been made by formulating a hierarchy of conditions a 2M has
to fulfill in order to be a proper 2RDM (without resorting to
higher-order RDMs) [20].

It is computationally beneficial to expand the 1RDM and
2RDM in 1RDM eigenfunctions, the so-called natural orbitals
(NOs) [3], as they form the best possible basis set (in a
well-defined mathematical sense; see, e.g., [5,11] for details).
The resulting equations for these NOs form a set of coupled,
nonlinear Schrödinger-like equations [21], as in configuration
interaction calculations. The eigenvalue of the 1RDM to which
a NO belongs can be interpreted as its occupation number
(OCN). Unlike in, e.g., Hartree-Fock, these OCNs are, in
general, fractional ∈]0,1[ in correlated fermionic systems
(unless they are “pinned” to 0 or 1 [22,23]).

In this work, we investigate whether NOs can be efficiently
employed to describe the correlated dynamics of a two-electron
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spin-singlet system in an external, driving field such as that of
a laser. Of course, the study of the structure of correlated
two-electron systems has a long history that started soon
after the “invention” of quantum mechanics. In view of a
NO description it has been analyzed by Löwdin and Shull
in 1956 [24]. The two-electron spin-singlet ground-state wave
function has an exceptionally simple structure when expanded
in NOs, as the coefficient matrix turns out to be diagonal. This
means that the ground-state two-body density matrix (2DM)
needs not be approximated in terms of the NOs but is known
exactly in the two-electron case.

One may think that the two-electron case is a bit (too)
trivial to test a novel time-dependent many-body method.
However, this is not the case. While electronic structure
calculations are difficult enough, time-dependent quantum
dynamics beyond linear response with nonperturbative drivers
is by far more challenging. In fact, from a computational
point of view it is orders of magnitude more demanding
because on top of the ground-state problem one, subsequently,
needs to propagate the system for typically 103–104 time
steps on numerical grids typically 102–103 times larger than
that for the ground state. It is thus even more important to
develop efficient numerical methods capable of describing
such strongly driven quantum dynamics. Time-dependent
density functional theory (TDDFT) [25,26] works well in
many cases but fails (with known and practicable adiabatic
xc potentials) whenever the processes to be described rely on
strong correlation or involve resonant interaction [27–35]. As
the correlation energy (relative to the total energy) typically
increases as the number of electrons decreases (down to 2),
it is the few-body correlated electron dynamics that serve as
“worst case” benchmarks for methods beyond TDDFT with
adiabatic xc potentials. For instance, autoionization in strong
laser fields is currently investigated experimentally [36,37] and
particularly challenging for theory because it involves multiply
excited states. As multiply excited states are absent in TDDFT
using adiabatic xc potentials [25,38] it serves as an ideal testing
ground for novel ab initio methods going beyond “standard”
TDDFT.

An algorithm for propagating NOs and OCNs for two
coupled nonlinear oscillators has been proposed in [39]. The
general equations of motion (EOM) for the NOs and their
OCNs have been derived in [40] (see also [10]). However,
the volume of published work on time-dependent density
matrix functional theory (TDDMFT) is still very limited.
Different adiabatic approximations to TDDMFT have been
derived and applied to molecules [41–44] and a two-site
Hubbard model [45], respectively. Exact time-dependent NO
occupations have been investigated [46] using the same
numerically exactly solvable model atom employed in the
current work. It was found that common approximations for the
2RDM functional render the OCN constant, which is incorrect
for, e.g., atoms in strong laser pulses or resonant interactions
[33]. A semiclassical approach to propagate the 1RDM that
allows for changing OCNs has been proposed in [47] and
applied to Moshinsky’s two-electron model atom [48].

Our paper is organized as follows. In Sec. II we review
the basic density matrix and NO theory for the two-electron
case and introduce renormalized NOs (RNOs), which allow
us to unify the EOMs for the OCNs and the NOs. Further,

we specialize in the spin-singlet case, briefly discuss the
time-dependent Hartree-Fock limit, and derive variationally
the equations governing the RNO ground-state configuration.
In Sec. III we present results for two RNOs per spin. After
the ground state is obtained, the linear-response spectrum and
autoionization in a laser field are investigated. We conclude
and give an outlook in Sec. IV. Details of the derivation of
the EOMs for the NOs are given in Appendix A, the relation
between the expansion coefficients of the ground-state 2DM
and those of the two-electron spin singlet ground state is given
in Appendix B. Atomic units are used throughout.

II. THEORY

The hermitian 2DM for a two-electron system with wave
function �(12; t) reads

γ2(12,1′2′; t) = �∗(1′2′; t)�(12; t), (1)

where the arguments 1, 2, 1′, etc., comprise spatial and spin
degrees of freedom (x1,σ1), (x2,σ2), (x ′

1,σ
′
1) . . .. The hermitian

1RDM is

γ1(1,1′; t) = 2
∫

d2 γ2(12,1′2; t). (2)

Given a Hamiltonian for the two-electron time-dependent
Schrödinger equation (TDSE),

i∂t�(12; t) = Ĥ (12; t)�(12; t), (3)

of the form

Ĥ (12; t) = ĥ0(1; t) + ĥ0(2; t) + vee(12), (4)

where vee is the electron-electron interaction, the 2DM fulfills
the von Neumann equation, while the 1RDM obeys the EOM

−i∂tγ1(1,1′; t) = [ĥ0(1′) − ĥ0(1)]γ1(1,1′; t)

+ 2
∫

d2 {vee(1′2) − vee(12)}γ2(12,1′2; t).

(5)

The hermitian 1RDM can be written in terms of an
orthonormalized set of NOs, φk , k = 1,2,3, . . ., and real,
positive-definite OCNs nk as

γ1(1,1′; t) =
∑

k

nk(t)φ∗
k (1′; t)φk(1; t), (6)

∑
k

nk(t) = 2,

∫
d1 |φk(1; t)|2 = 1. (7)

In other words, φk is the eigenvector of γ1 with respect to the
eigenvalue nk ,∫

d1′ γ1(1,1′; t)φk(1′; t) = nk(t)φk(1; t). (8)

As the NOs form a complete basis one can expand the 2DM
in them,

γ2(12,1′2′; t) =
∑
ijkl

γ2,ijkl(t)φi(1; t)φj (2; t)φ∗
k (1′; t)φ∗

l (2′; t).

(9)
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A. Equation of motion for renormalized natural orbitals

We find it numerically beneficial to incorporate the OCNs
into the NOs by renormalizing them,

φ̃k(1; t) =
√

nk(t) φk(1; t), (10)∫
d1 |φ̃k(1; t)|2 = nk(t). (11)

Inserting the NO expansions of the density matrices γ1 and
γ2, (6) and (9), respectively, into the EOM for the 1RDM (5),

coupled EOMs for the NOs and OCNs have been derived and
reviewed in the literature [10,11,40].

We have derived a single EOM that is particularly useful
for our purposes. It has the form

i∂t�̃(1; t) = Ĥ(1; t)�̃(1; t) (12)

with a hermitian Hamiltonian Ĥ and a column vector �̃(1; t)
with the RNO φ̃k(1; t) in it. The derivation is given in Appendix
A, the result being

i∂t φ̃n(1; t) = − 1

nn(t)

⎧⎨
⎩2 Re

∑
jkl

γ̃2,njkl(t)〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉 + 〈ñ(t)|ĥ0(t)|ñ(t)〉
⎫⎬
⎭ φ̃n(1; t)

+
∑
k �=n

2

nk(t) − nn(t)

∑
jpl

{γ̃2,kjpl(t)〈p̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉 − [γ̃2,njpl(t)〈p̃(t)l̃(t)|vee|k̃(t)j̃ (t)〉]∗}φ̃k(1; t)

+ ĥ0(1; t)φ̃n(1; t) + 2
∑

k

∑
j l

γ̃2,kjnl(t)〈l̃(t)|vee|j̃ (t)〉(1; t) φ̃k(1; t). (13)

Here, we used the abbreviations

γ̃2,njkl(t) = γ2,njkl(t)√
nn(t)nj (t)nk(t)nl(t)

, (14)

〈l̃(t)|vee|j̃ (t)〉(1; t) =
∫

d1′ φ̃∗
l (1′; t)vee(11′)φ̃j (1′; t), (15)

〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉
=
∫

d1 φ̃∗
k (1; t)〈l̃(t)|vee|j̃ (t)〉(1; t)φ̃n(1; t). (16)

With (11), Eq. (13) is a set of coupled EOMs for the RNOs
alone.

Multiplication of (13) by φ̃∗
n(1; t) and integration

∫
d1

yields

ṅn(t) = −4 Im
∑
jkl

γ̃2,njkl(t)〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉, (17)

which, expressed in terms of NOs instead of RNOs, has
been derived earlier [40]. This equation is useful to see
whether a certain approximation of γ̃2,njkl will lead to time-
varying OCNs or constant OCNs. For instance, common
approximations of the form

γ̃
(approx)
2,njkl (t) = fnjkl(t)δnkδjl − gnjkl(t)δnlδjk (18)

with fnjkl(t) and gnjkl(t) real will lead to constant OCNs,
ṅn(t) ≡ 0, because all NO phases that could lead to an
imaginary part on the right-hand side of (17) cancel. From
the exact numerical solution of the two-electron TDSE we
know that for, e.g., resonant interactions (Rabi floppings) and
in other scenarios, the OCNs do change in time [33,46,47].

If the total number of particles is conserved,

0 = Im
∑
njkl

γ̃2,njkl(t)〈k̃(t)l̃(t)|vee|ñ(t)j̃ (t)〉 (19)

follows from (17) upon summing over n. Moreover, one finds
that the RNOs stay mutually orthogonal if

Dnm(t) = D∗
mn(t) (20)

holds, where

Dnm(t) =
∑
kj l

γ̃2,kjnl(t)〈m̃(t)l̃(t)|vee|k̃(t)j̃ (t)〉. (21)

As the RNOs, being ∀t eigenfunctions of a hermitian matrix,
should stay orthogonal, Eq. (20) poses a condition any
approximation of γ̃2,kjnl(t) has to fulfill.

B. Two-electron spin-singlet case

If the two-electron wave function is ∀t of the spin-singlet
form

�(12; t) = �(x1x2; t)
1√
2

(δσ1+δσ2− − δσ1−δσ2+), (22)

�(x1x2; t) = �(x2x1; t) (with “+” and “−” for “spin up” and
“spin down,” respectively), we have with (1) and

γ1(x1,x
′
1; t) = 2

∫
dx2 �∗(x ′

1x2; t)�(x1x2; t) (23)

that

γ1(1,1′; t) = 1
2γ1(x1,x

′
1; t)(δσ1+δσ ′

1+ + δσ1−δσ ′
1−). (24)

We switch temporarily back to NOs normalized to unity.
Making the ansatz

φk(xσ ; t) = φk(x; t) (akδσ+ + bkδσ−), (25)

|ak|2 + |bk|2 = 1,

∫
dx |φk(x; t)|2 = 1, (26)
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one simply finds the same form for the spin-reduced 1RDM as
in (6),

γ1(x,x ′; t) =
∑

k

nk(t)φ∗
k (x ′; t)φk(x; t). (27)

Because of orthonormality of the NOs, for k �= k′

(a∗
k′ak + b∗

k′bk)
∫

dx φ∗
k′(x; t)φk(x; t) = 0 (28)

need to be fulfilled so that either the spatial part of the
NOs must be orthogonal or the spin part. For a given spin
part of φk with coefficients ak and bk one can always find
(up to an irrelevant phase factor) a normalized spin part
(ak′δσ+ + bk′δσ−) of φk′ that is orthogonal to (akδσ+ + bkδσ−).
A convenient choice is ak = 1, bk = 0, ak′ = 0, bk′ = 1 while
φk′(x; t) = φk(x; t). In other words, the spatial NOs appear
pairwise equal, with opposite spin parts. This is probably the
most trivial example of a pairing phenomenon. One may order
the NOs such that for odd k the following equations hold:

φk(xσ ; t) = φk(x; t) δσ+, k = 1,3,5, . . . , (29)

φk(x; t) = φk+1(x; t), (30)

φk+1(xσ ; t) = φk+1(x; t) δσ− = φk(x; t) δσ−. (31)

Then we can write instead of (27)

γ1(x,x ′; t) = 2
∑
k odd

nk(t)φ∗
k (x ′; t)φk(x; t), (32)

and we need to consider only half of the NOs (i.e., those with,
e.g., the odd indices, i.e., spin up) in the following.

Because the spatial spin-singlet wave function is symmetric
it can be shown [11] that its expansion in NOs is diagonal,

�(x1x2; t) =
∑
i odd

Di(t) φi(x1; t)φi(x2; t), (33)

where, because of (23) and (27),

|Di(t)|2 = ni(t). (34)

We can thus use the NO expansion coefficients for the wave
function Di(t) instead of resorting to the NO expansion
coefficients γ2,njkl(t) for the 2DM. How both are connected
is discussed in Appendix B. Formally, in Eq. (33) the time-
dependent spatial two-electron wave function is written as a
single geminal [49], expanded in time-dependent NOs.

The EOMs for the spatial RNOs in terms of the time-
dependent geminal expansion coefficients Di can be written as
(from now on all time arguments are suppressed for brevity)

i∂t φ̃n(x) = Ĥ0
n(x)φ̃n(x) +

∑
k odd �=n

H1
nk(x)φ̃k(x), (35)

where

Ĥ0
n(x) = An + K̂0

n(x), (36)

H1
nk(x) = Bnk + K1

nk(x) (37)

with

An = − 1

nn

[
Re

(∑
k odd

DnD
∗
k

nnnk

〈k̃k̃|vee|ññ〉x
)

+ 〈ñ|ĥ0|ñ〉x
]
,

K̂0
n(x) = ĥ0(x) + 〈ñ|vee|ñ〉x(x)

nn

, (38)

Bnk = 1

nk − nn

∑
p odd

(
Dk D∗

p

nknp

〈p̃p̃|vee|ñk̃〉x

−
[
Dn D∗

p

nnnp

〈p̃p̃|vee|k̃ñ〉x
]∗)

,

K1
nk(x) = Dk D∗

n

nknn

〈ñ|vee|k̃〉x(x), (39)

and the potentials 〈ñ|vee|k̃〉x(x) and matrix elements
〈p̃p̃|vee|ñk̃〉x defined as in (15) and (16) but all integrals
with respect to position space only. Here we exploit that the
electron-electron interaction does not directly involve the spin
degrees of freedom.

C. Time-dependent Hartree-Fock limit

Equations (35)–(39) reduce to the two-electron spin-
singlet Hartree-Fock limit for n1 = n2 = 1, φ̃1(x) = φ1(x) =
φ̃2(x) = φ2(x), and all other OCNs (and thus RNOs) zero. The
(in the NO index) off-diagonal part of the Hamiltonian H1

nk(x)
in (35) therefore vanishes, and

A1 = −〈11|vee|11〉x − 〈1|ĥ0|1〉x,

K̂0
1(x) = ĥ0(x) + 〈1|vee|1〉x(x)

so that

i∂tφ1(x) = [ĥ0(x) + 〈1|vee|1〉x(x) + A1]φ1(x),

which is indeed the time-dependent Hartree-Fock (TDHF)
equation for the two-electron spin-singlet system (where the
Fock term cancels half of the Hartree). In the case of the
two-electron spin-singlet system TDHF is equivalent to a time-
dependent Kohn-Sham (TDKS) treatment in “exact-exchange
approximation” (EXA) and the correlation potential set to zero.
Note that, unlike in the general case with more than one NO per
spin, the purely time-dependent term A1 can be eliminated via
a contact transformation φ1(x) → φ1(x) exp[−i

∫ t
A1(t ′) dt ′]

here.

D. Ground state

A time-dependent calculation most often starts from the
ground state. As we need anyway a code that propagates the
RNOs in time according (35) it would be convenient to use
imaginary-time propagation for finding the ground state, as is
commonly done in TDSE solvers. On the other hand, it must
be possible to derive the ground state in terms of RNOs via
a minimization approach. We show now that both ways will
indeed lead to the same result.
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The ground-state energy to be minimized is

E =
∫

d1[ĥ0(1′)γ1(1′,1)]1′=1

+
∫

d1
∫

d2 vee(|1 − 2|)γ2(12,12). (40)

Expressed in RNOs, the energy becomes

E = 2
∑
i odd

〈ĩ|ĥ0|ĩ〉x +
∑
i odd

∑
j odd

ei(ϕj −ϕi )√
〈ĩ|ĩ〉x〈j̃ |j̃ 〉x

〈ĩ ĩ|vee|j̃ j̃ 〉x,

(41)

where we introduced the phases ϕi via [cf. Eq. (34)]

Di = √
ni e

iϕi (42)

and explicitly write

ni = 〈ĩ|ĩ〉x. (43)

We define a functional Ẽ[{|ĩ〉},{〈ĩ|}] that takes the constraint∑
i odd〈ĩ|ĩ〉 =∑i odd ni = 1 via the Lagrange parameter ε into

account, the orthogonality of the RNOs via λij , λii = 0, the
condition ni � 0 via ε0

i , and ni � 1 through ε1
i (Karush-Kuhn-

Tucker conditions, see, e.g., [11,50]),

Ẽ = 2
∑
i odd

〈ĩ|ĥ0|ĩ〉 +
∑
i odd

∑
j odd

ei(ϕj −ϕi )√
〈ĩ|ĩ〉〈j̃ |j̃ 〉

〈ĩ ĩ|vee|j̃ j̃〉

− ε

(∑
i odd

〈ĩ|ĩ〉 − 1

)
−
∑
i odd

∑
j odd �=i

λij 〈ĩ|j̃〉

−
∑
i odd

[
ε0
i 〈ĩ|ĩ〉 + ε1

i (1 − 〈ĩ|ĩ〉)]. (44)

Here, we dropped the index x at 〈·|·〉x . The “slackness
conditions” are [11]

ε0
i ni = ε0

i 〈ĩ|ĩ〉 = 0, ε1
i (1 − ni) = ε1

i (1 − 〈ĩ|ĩ〉) = 0.

(45)

Actually, the energy functional Ẽ depends not only on the
RNOs but also on the phases {ϕj } of the geminal expansion
coefficients. We suppress this dependence here because the
values of these phases for the He spin-singlet ground-state
case are already known [see Eq. (73) below]. A more general
approach to the ground-state problem based on geminals
(where these phases are part of the minimization procedure)
has been proposed and applied in [49,51].

A variation of Ẽ with respect to 〈k̃| and |k̃〉 leads with

εk = ε + ε0
k − ε1

k (46)

to

εk|k̃〉 =
⎧⎨
⎩2

[
ĥ0 + 1

nk

〈k̃|vee|k̃〉(x)

]

− 1

nk

Re

⎡
⎣∑

j odd

DjD
∗
k 〈k̃k̃|vee|j̃ j̃ 〉
nknj

⎤
⎦
⎫⎬
⎭|k̃〉

+
∑

j odd �= k

{
2
DjD

∗
k

njnk

〈k̃|vee|j̃〉(x) − λkj

}
|j̃〉, (47)

and the hermitian conjugate of it. Multiplying by 〈ĩ| from the
left (and the hermitian conjugate by |ĩ〉 from the right) leads
for i = k to

εi = 1

ni

⎛
⎝2〈ĩ|ĥ0|ĩ〉 +

∑
j odd

{
2
DjD

∗
i

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉

− Re

[
DjD

∗
i

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉
]}⎞⎠, (48)

∀i 0 = Im
∑
j odd

DjD
∗
i

nj

〈ĩ ĩ|vee|j̃ j̃〉, (49)

and for i �= k to

λki = 2

ni

⎡
⎣〈ĩ|ĥ0|k̃〉 +

∑
j odd

DjD
∗
k

nknj

〈k̃ĩ|vee|j̃ j̃ 〉
⎤
⎦ = λ∗

ik, (50)

λik = 2

nk

⎡
⎣〈k̃|ĥ0|ĩ〉 +

∑
j odd

DjD
∗
i

ninj

〈ĩ k̃|vee|j̃ j̃ 〉
⎤
⎦ . (51)

From this follows

〈k̃|ĥ0|ĩ〉 = 1

ni − nk

∑
j odd

1

nj

× (DkD
∗
j 〈j̃ j̃ |vee|k̃ĩ〉 − DjD

∗
i 〈ĩ k̃|vee|j̃ j̃ 〉), (52)

which can be used to remove ĥ0 entirely from the off-diagonal
(with respect to the NO index) part of the Hamiltonian.

Putting Eqs. (47)–(52) together we can write

0 = Ĥ00
n (x)φ̃n(x) +

∑
k odd �=n

H01
nk(x)φ̃k(x),

Ĥ00
n (x) = A0

n + K̂00
n (x), (53)

H01
nk(x) = B0

nk + K01
nk(x)

with

A0
n = − 1

nn

(
〈ñ|ĥ0|ñ〉 + Re

∑
k odd

DkD
∗
n

nnnk

〈ññ|vee|k̃k̃〉
)

,

K̂00
n (x) = ĥ0 + 1

nn

〈ñ|vee|ñ〉(x), (54)

Bnk = 1

nk − nn

∑
p odd

(
DkD

∗
p

nknp

〈p̃p̃|vee|k̃ñ〉

− DpD∗
n

nnnp

〈ñk̃|vee|p̃p̃〉
)

,

K01
nk(x) = DkD

∗
n

nknn

〈ñ|vee|k̃〉(x). (55)

Hence, we obtain by this variational method indeed the
time-independent, ground-state analog of Eqs. (35)–(39). This
allows for finding the RNO ground-state configuration (for
a given set of OCNs) by imaginary time propagation of the
time-dependent Schrödinger-like, nonlinear equation (35) (see
Sec. III A below).

The εk in (47) play the role of orbital energies. Unless the
OCNs are pinned to nk = 0 or 1 we have noninteger 0 < nk <

1 for correlated systems. In such cases Eqs. (45) imply ε0
k = 0,
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ε1
k = 0 so that

εk = ε, (56)

i.e., all orbital energies are equal. The ground-state RNOs and
wave-function expansion coefficients Dj can be chosen real.
Thus we have with (48)

∀i ε = εi = 1

ni

(
2〈ĩ|ĥ0|ĩ〉 +

∑
j odd

DjDi

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉
)

(57)

and thus ∑
i odd

εini = ε
∑
i odd

ni = ε = E (58)

because the total energy is, according to (41),

E = 2
∑
i odd

〈ĩ|ĥ0|ĩ〉 +
∑

i,j odd

DjDi

ninj

〈ĩ ĩ|vee|j̃ j̃ 〉. (59)

As already noticed in [52], the aesthetically appealing result
(58) is puzzling, at least at first sight. All orbital energies are
equal and equal to the total energy of the system. Only with
NOs and their fractional OCNs does the simple additive form
E =∑i εini—commonly known only from noninteracting
systems—persist here for interacting systems.

E. Two orbitals per spin

In our code that actually solves (35) we work on a numerical
grid representing the discretized space variable x and the RNO
index n = 1,3, . . . NRNO (see Fig. 1). All sums over the RNO
indices have to be terminated at some finite NRNO in practice.
Let us consider the simplest yet nontrivial case of two RNOs
(per spin), i.e.,

n1 = n2 �= 0, n3 = n4 �= 0, ni = 0 for i > 4, (60)

T
D

D
F

T
T

D
R

N
O

T

Spatial coordinate

R
N

O
 in

de
x

FIG. 1. (Color online) Sketch of the numerical grid. Each row
corresponds to one of the RNOs. Horizontal flux of probability density
represents motion in position space with the OCNs kept constant. Flux
in vertical direction implies a change in the OCNs. Because we work
with RNOs instead of NOs, the time evolution on this grid is unitary.
In the two-electron spin-singlet case the restriction to a single RNO
(per spin) corresponds to TDHF or TDDFT in EXA approximation
(red). In time-dependent RNO theory (TDRNOT, green) more than
one RNO is allowed.

which implies

φ̃1 = φ̃2, φ̃3 = φ̃4, φ̃i ≡ 0 for i > 4. (61)

As a single NO (per spin) is equivalent to TDHF (cf.
Sec. II C), allowing for two RNOs per spin is just “one
small step beyond TDHF.” However, we shall see below that
two RNOs per spin are already enough to describe some of
the correlated two-electron dynamics completely missed by
TDHF (or TDKS in EXA). The relevant terms in (35) in this
case are

Ĥ0
1(x) = A1 + K̂0

1(x), Ĥ0
3(x) = A3 + K̂0

3(x), (62)

H1
13(x) = B13 + K1

13(x), H1
31(x) = H1

13
∗
(x). (63)

We find, making use of (34),

A1 = − 1

n1

[
Re

(
〈1̃1̃|vee|1̃1̃〉 + D1 D∗

3

n1n3
〈3̃3̃|vee|1̃1̃〉

)
+ 〈1̃|ĥ0|1̃〉

]
, A3 = A1[1 ↔ 3], (64)

K̂0
1(x) = ĥ0(x) + 〈1̃|vee|1̃〉(x)

n1
, K̂0

3(x) = K̂0
1(x)[1 ↔ 3], (65)

B13 = 1

n3 − n1

(
D3 D∗

1

n1n3
〈1̃1̃|vee|1̃3̃〉 + 〈3̃3̃|vee|1̃3̃〉

n3
−
[
D1 D∗

3

n1n3
〈3̃3̃|vee|3̃1̃〉 + 〈1̃1̃|vee|3̃1̃〉

n1

]∗)
, B31 = B∗

13, (66)

K1
13(x) = D3 D∗

1

n1n3
〈1̃|vee|3̃〉(x), K1

31(x) = K1
13

∗
(x), (67)

and the equation of motion has the simple structure,

i∂t

(
φ̃1(x)

φ̃3(x)

)
=
(

Ĥ0
1(x) H1

13(x)

H1
31(x) Ĥ0

3(x)

)(
φ̃1(x)

φ̃3(x)

)
. (68)

Here, the off-diagonal elements determine whether or not the OCNs are constant,

ṅ1 = 2 Im 〈1̃|H1
13|3̃〉, ṅ3 = 2 Im 〈3̃|H1

13
∗|1̃〉. (69)

Furthermore, it is easy to show that the RNOs φ̃1 and φ̃3 stay orthogonal at all times.
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III. RESULTS AND DISCUSSION

The results in the following are obtained for the well-
known model heliumlike atom introduced in [53] and used
extensively ever since (see, e.g., [32,33,46,54]). In the spin-
singlet configuration the full two-body TDSE reads

i
∂

∂t
�(x1x2; t) =

⎡
⎣ 2∑

i=1

⎛
⎝−1

2

∂2

∂x2
i

− 2√
x2

i + 1
− iA(t)

∂

∂xi

⎞
⎠

+ 1√
(x1 − x2)2 + 1

]
�(x1x2; t). (70)

We employ the velocity gauge to couple an external field with
vector potential A(t) in dipole approximation to the model
atom (with the purely time-dependent term ∼A2 “transformed
away”). The corresponding one-body Hamiltonian for the
RNO equations reads accordingly

ĥ0 = −1

2

∂2

∂x2
− iA(t)

∂

∂x
− 2√

x2 + 1
(71)

and

vee(x1x2) = 1√
(x1 − x2)2 + 1

. (72)

For the real spin-singlet ground-state wave function of the He
atom the geminal expansion coefficients Di are

D1 = √
n1, Di = −√

ni for i = 3,5,7, . . . , (73)

or, in terms of the phases introduced in Sec. II D,

ϕ1 = 0, ϕi = π for i = 3,5,7, . . . . (74)

A two-fermion system is the fortunate case where these phases
are typically known for stationary configurations. However, it
is in general not known how the Di (or ϕi) change in time with
an external driver A(t) switched on (unless we solve the full
two-electron TDSE and extract this information).

A. Ground-state RNOs

We applied imaginary-time propagation in combination
with Gram-Schmidt orthogonalization to (68) with the Di

according (73) inserted in (64)–(67) in order to find the ground-
state configuration for given OCN. A grid with Nx = 500
spatial points and a resolution of x = 0.4 was found to be
sufficient for that purpose.

From Sec. II D we know that if we try all combinations

n1 = 1.0 − y, n3 = y, n1 + n3 = 1, y ∈ [0,1], (75)

the ground-state configuration will be the one for which

ε1 = ε3 = ε = E. (76)

Figure 2 shows the orbital energies ε1, ε3 and the total
energy E according (48) and (59), respectively, vs n1.
Condition (76) is fulfilled for

n1 = 0.991 27, n3 = 8.73 × 10−3, (77)

with a total energy

ENRNO=2 = −2.2366. (78)

The two NOs are shown in Fig. 3.
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FIG. 2. (Color online) Orbital energies ε1 (dotted blue), ε3

(dashed red), and total energy E (solid black) vs the dominant OCN
n1. The physically relevant RNOs are obtained when the three curves
cross [cf. (56) and (58)]. Panel (b) shows a zoom into the narrow n1

region where all energies cross in one point. The curves cross in the
minimum of E.

From the full TDSE solution on a spatial 500 × 500 grid,
also with x = 0.4, we obtain the reference value for the
ground-state energy,

ETDSE = −2.2384 (79)

and, via diagonalization of the 1RDM calculated from the
two-body Schrödinger wave function, for the first five OCNs
n1 = 0.990 96, n3 = 8.297 × 10−3, n5 = 7.063 × 10−4, n7 =
3.127 × 10−5, n9 = 7.392 × 10−6. The relative error in the
total energy is thus only 0.08%. The HF ground-state energy
of the system is EHF = 2.2243, i.e., with 0.6% relative error.

The OCNs n1 and n3 we obtain for NRNO = 2 are slightly
above the exact values because the two alone are already forced
to sum up to unity.

The logarithmic ground-state contour plot of the full TDSE
two-body electron density |�(x1x2; t)|2 shows characteristic
kinks along the diagonal x1 = x2 [see Fig. 6(a) below]. These
kinks are not reproduced with only two RNOs since they are
visible only on a probability density level governed by higher-
order RNOs which have a much smaller OCN and which are
spatially more extended. Nevertheless, we will see that two
RNOs are already sufficient to describe, e.g., doubly excited
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FIG. 3. Ground-state orbitals φ̃1 (a) and φ̃3 (b) for NRNO = 2.

states and autoionization, not captured by (TD)DFT employing
adiabatic xc potentials.

B. “Frozen” Hamiltonian

The full nonlinear system (35) [and even its truncated
form (68)] is numerically difficult to handle because of
instabilities. The time evolution of the RNOs and the OCNs
(i.e., the RNO norms) is extremely sensitive to the phases ϕi(t).
Although we apply an unconditionally stable (i.e., exactly
unitary) propagation algorithm (including predictor-corrector
steps) to our Schrödinger-like equation (68) (with a hermitian
Hamiltonian), the individual OCNs ni(t) = 〈ĩ(t)|ĩ(t)〉—while
still adding up to unity—tend to develop an unphysical,
rather erratic behavior after some time of propagation. Such
a behavior is actually to be anticipated from Eqs. (69): the
phases of the Di and the phases of the RNOs determine
the changes in the OCNs ni which, in turn, are fed back
into the Hamiltonian. One way to mitigate these instabilities
is to make approximations to γ̃2,ijkl that keep the OCNs
constant. However, the change of the OCNs is often crucial
to capture strongly driven, correlated, or resonant electron
dynamics [33,46,47].

In TDKS calculations it is not uncommon to “freeze” the
ground-state Kohn-Sham potential during time propagation,
leading to the so-called “bare” Kohn-Sham response. The
result can be compared to the full TDKS calculation. In
this way one may identify the effect of the nonlinearity in
the full Kohn-Sham potential. For instance, the peaks in the
linear-response spectrum obtained from the bare Kohn-Sham
Hamiltonian correspond to the (allowed) transitions between
the eigenstates of this Hamiltonian. The nonlinearity in the
full Kohn-Sham potential typically moves the peaks from the
frozen transition energies towards the correct position (see [32]
for the case of the model He atom studied here). We expect
something similar for the differences in the linear-response
spectrum calculated with the full, nonlinear Hamiltonian in
(35) [or, for two RNOs, (68)] and the ground-state RNO-frozen
Hamiltonian. Let us denote the ground-state RNOs, OCNs,
etc. by the corresponding underlined quantities. Then, for two
RNOs per spin, Eqs. (64)–(67) become

A1 = − 1

n1

[
〈1̃1̃|vee|1̃1̃〉 − 1√

n1n3
〈3̃3̃|vee|1̃1̃〉 + 〈1̃|ĥ0|1̃〉

]
, K̂0

1(x) = ĥ0(x) + 〈1̃|vee|1̃〉(x)

n1

, (80)

B13 = 1

n3 − n1

( 〈3̃3̃|vee|1̃3̃〉
n3

+ 〈3̃1̃|vee|3̃3̃〉 − 〈1̃1̃|vee|1̃3̃〉√
n1n3

− 〈3̃1̃|vee|1̃1̃〉
n1

)
, K1

13(x) = − 1√
n1n3

〈1̃|vee|3̃〉(x), (81)

where we have used (73). The only remaining time dependence
in the Hamiltonian in

i∂t

(
φ̃1

φ̃3

)
=
(
Ĥ0

1 H1
13

H1
31 Ĥ0

3

)(
φ̃1

φ̃3

)
(82)

then is in ĥ0 through the vector potential A(t), i.e., only in the

diagonal parts Ĥ0
1 and Ĥ0

3.
Equations (82) and (80) and (81) can be easily generalized

to more than two RNOs per spin. It is simple to prove that
the sum of all OCNs is conserved, ∂t

∑
i ni = 0. With the

frozen Hamiltonian the individual ni may not stay constant,
which is a good feature, as remarked on above. A drawback of

the frozen Hamiltonian, however, is that ∂t 〈ĩ|ñ〉 = 0 is not
strictly fulfilled anymore. This means that different RNOs
may not stay orthogonal during time propagation although,
as eigenfunctions of a hermitian 1RDM, they should.

C. Bare linear response

Figure 4 shows linear-response spectra for the He model
system. All spectra were calculated by Fourier transforming
the dipole after disturbance of the system with a minute
electric-field kick, corresponding to a steplike vector potential.

The exact TDSE result shows the dominating series
of peaks starting around a frequency ω = 0.5. In the
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FIG. 4. (Color online) Linear response of the He model system
obtained form the full TDSE (70) (upper, black, labeled “TDSE”),
with a single RNO per spin, i.e., equivalent to bare TDHF or TDKS
in EXA (center, blue, labeled “bare 1 RNO”), and two RNOs (lower,
red, labeled “bare 2 RNO”). The single-electron continuum threshold
is indicated by “SECT,” doubly excited series of peaks by “DE.”
The little arrow indicates the first double-excitation peak in the bare
two-RNO result, discussed in Sec. III D.

independent-electron picture, these peaks correspond to
single-electron excitations: one electron stays in its ground
state, the other one is excited to the first, second, etc. (dipole-
allowed) state, up to the single-electron continuum threshold
(SECT). Series of peaks corresponding to doubly excited
states follow around ω � 1.3 and greater. As in the “real”
He atom, all double excitations are embedded in the single-
ionization continuum and thus are autoionizing. Ultimately,
with excitations of frequencies ω > |E|, both electrons can be
lifted into the two-electron continuum [55].

The linear-response spectrum obtained with just one RNO
(per spin) is equivalent to the result of a bare TDHF (or
TDKS-EXA) calculation [56]. One can show that doubly
excited states are not even covered by full TDDFT (i.e.,
without frozen Kohn-Sham potential) as long as adiabatic
exchange-correlation (xc) potentials are employed (see, e.g.,
[25]). With a frozen Hamiltonian and just a single RNO
it is immediately clear that double excitations cannot exist.
And indeed, the peaks corresponding to transitions to doubly
excited states are absent for the “bare 1 RNO’ result in
Fig. 4. The single-excitation series is there but a bit redshifted
as compared to the TDSE reference spectrum.

The first main result of this paper is that the first series of
double-excitation peaks is present when Eq. (82) is solved.
In order to reproduce double excitations in TDDFT one
would have to use xc potentials with memory [38]. Even
if useful potentials with memory were known they would
very likely be computationally expensive. Instead, with our
time-dependent RNO theory (TDRNOT) we cover double
excitations even with a frozen Hamiltonian and just two
RNOs. This is because we allow for more than one orbital per
spin (or, in the single-particle picture, per particle), like in a
configuration interaction calculation or in multiconfigurational
Hartree-Fock. However, the advantage of TDRNOT over such
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FIG. 5. (Color online) The two RNOs φ̃1(x) and φ̃3(x) of the
autoionizing state indicated by the small vertical arrow in Fig. 4 for
the bare two-RNO calculation.

methods is that the RNOs constitute automatically the most
adequate time-dependent basis, as mentioned already in the
Introduction. This is the reason why we get along with only
two RNOs. Thanks to this small number of necessary RNOs
we have only little computational overhead compared to the
corresponding TDHF or TDKS-EXA simulation.

The single-excitation peaks in the bare two-RNO spectrum
are even more redshifted compared to the TDSE than in
the bare one-RNO result, while the peaks corresponding to
double-excited states are slightly blueshifted. We have checked
that with three RNOs the next series of double excitation peaks
(seen in the TDSE result starting around ω � 1.7) is also
reproduced, although even more blueshifted. “Unfreezing”
of the Hamiltonian should cure these shifts and improve the
quantitative agreement between TDSE and TDRNOT results
but, as mentioned above, we first have to overcome the
instability problems before we can check this assertion.

D. Autoionization after excitation by a laser pulse

The small arrow in Fig. 4 indicates the lowest-lying
transition to a doubly excited state in the bare TDRNOT
He system employing two RNOs. The two RNOs for that
particular state were calculated via diagonalization of the bare
Hamiltonian in (82) on a grid with 500 spatial grid points.
The result is depicted in Fig. 5. The dominating RNO φ̃1(x)
has an OCN n1 = 0.733 and is delocalized, thus allowing for
outgoing electron flux. Indeed, the spatial oscillations fit to the
wave number k = √2(ω − Ip) � 1 expected for the outgoing
electron (with ω � 1.38 the energy required to populate the
autoionizing state and the ionization potential inferred from
the SECT in Fig. 4, Ip � 0.75). The second RNO φ̃3(x) is
localized close to the origin and has an OCN n3 = 0.267. If
one detunes from the autoionizing resonance the OCN of the
delocalized NO increases. Hence, the characterizing feature
of an autoionizing resonance (as compared to states in a
“flat” continuum) is the relative increase of the occupation
of localized NOs.

As an example for a TDRNOT calculation beyond linear
response we have simulated the interaction of the model
He atom with an Ncyc = 30-cycle sin2-shaped laser pulse of
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frequency ω, i.e.,

A(t) = Â sin2

(
ωt

2Ncyc

)
sin ωt, (83)

for 0 < t < NcycT with T = 2π/ω, and zero otherwise. The
frequency in one calculation was chosen resonant with the
transition to the first doubly excited, autoionizing state while
in another run, for comparison, we tuned it off-resonant. In all
cases the vector potential amplitude was Â = 0.01.

1. TDSE result in position space

Before showing the results obtained with the bare TDRNOT
equation (82), let us illustrate the exact dynamics we observe
by solving the full two-electron TDSE (70). The same model
atom has been employed to study autoionization in the
presence of an additional, optical laser pulse in [57].

For the off-resonant case we chose ω = 1.25. In this case,
we expect single-photon ionization while the laser is on and
no ionization thereafter. In fact, this can be clearly inferred
from the (logarithmically scaled) position space probability
density plotted in Fig. 6(a) for time t = 255, i.e., well after the
laser was off at 30T = 151. Around the origin, the remaining
ground-state density is visible. Around x1 � 180, x2 = 0 the
laser-generated photoelectron wave packet is seen. It travels to
the right with velocity (or wave number) k = √2(ω − Ip) � 1,
where the ionization potential (for the TDSE calculation) is
Ip = 0.751. Analogous wave packets travel in the −x1 and
±x2 directions (not shown).

The frequency ω = 1.36 for the resonant case can be read
off Fig. 4. Figure 6(b) shows the probability density, again at
time t = 255. Because the frequency is higher than in (a), the
photoelectron wave packet is faster and narrower (Ncyc was
kept constant). The major qualitative differences compared
to the off-resonant case is that (i) the system continues to
ionize after the laser is off, as is seen from the trailing edge
of probability density following the (directly) laser-generated
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FIG. 6. (Color online) Logarithmic probability density (over five
orders of magnitude) from (70) for a Ncyc = 30-cycle laser pulse
with Â = 0.01 at t = 255 for the off-resonant case ω = 1.25 (a) and
the resonant one ω = 1.36 (b). In (b), ionization continues after the
laser pulse, as can be seen from the probability density trailing the
(directly) laser-generated photoelectron wave packet.

direct direct

auto

FIG. 7. (Color online) TDRNOT result corresponding to the
TDSE two-electron density dynamics in Fig. 6. The off-resonant
frequency used was ω = 1.28 (other parameters as in the TDSE
runs), leading to the black, dotted density at t = 255. The resonant
frequency ω = 1.38 yields the red, solid density.

wave packet, and (ii) the different structure in the probability
density around the origin. The latter clearly shows that the
system is not left in the ground state after the interaction with
the laser pulse. Instead, it is in a superposition of ground and
autoionizing state. Similar patterns are shown in [57].

2. Bare two-RNO result in position space

The probability density |φ̃1(x)|2 + |φ̃3(x)|2 from the bare
two-RNO simulation at t = 255 is shown in Fig. 7. The laser
frequency for the resonant excitation of the autoionizing state
was tuned to the respective value ω = 1.38 indicated by an
arrow in Fig. 4. For the nonresonant run ω = 1.28 was chosen.
Again, left- and right-going photoelectron wave packets (with
their maxima at the expected positions) are observed. In the
case with autoionization (red, solid) a much higher probability
density level between the origin and the wave packets is
observed. This is the 1D analog of the TDSE density dynamics
in the x1,x2 plane in Fig. 6.

3. Momentum spectra

With autoionization involved, the electron spectra should
display Fano line shapes [58]. Strictly speaking, one should
calculate photoelectron spectra by projecting the final wave
function at a time when the laser is off on field-free continuum
eigenstates. When the final wave function is not available but
only the RNOs, one can, in principle, rewrite the expectation
value of the corresponding spectral projection operator in
terms of the 2DM γ2 or the coefficients Di . The latter need to
be approximated anyway in the general TDRNOT approach.
Hence, there is no conceptual problem in calculating any
observable for systems with two-body interactions because
the knowledge of γ2 suffices. Note that in TDDFT it is not
clear how to calculate photoelectron spectra in a rigorous
way because the density functional for this observable is
unknown [59].

Projection on field-free continuum states is computationally
expensive. Hence, it is quite common in practice to project out
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FIG. 8. (Color online) Linearly scaled photoelectron momentum
spectra obtained by Fourier transforming (FFT) the outgoing part of
the TDSE wave function (a) and RNO (b) for a Ncyc = 100 laser
pulse of the form (83) with Â = 0.01. The same resonant (solid, red)
and off-resonant (dotted, black) frequencies as in Figs. 6 and 7 were
chosen. The spectra were obtained at times t = 750. Fano profiles
are seen in the TDSE result at resonance and the TDRNOT result at
resonance when two RNOs are employed (red). In panel (b) the result
for a single NO and ω = 1.38 (dashed, blue) is also plotted, showing
no Fano profile.

the most populated bound states and Fourier transform the
“rest” in order to obtain momentum spectra. Alternatively,
one may filter out the region around the origin. While not
being a rigorous way to calculate photoelectron spectra, the
method yields sufficiently accurate spectra for our purposes.
Hence, we pursued the same strategy and Fourier transformed
the outgoing part of the wave function. In this way we obtain
the momentum spectra shown in Fig. 8.

The TDSE results for the modulus square of the Fourier
transform (integrated over px2 ) are presented in Fig. 8(a). The
off-resonant excitation by an Ncyc = 100 laser pulse of the
form (83) (the same frequency ω = 1.25 and field amplitude
as in Fig. 6) leads to a peak close to momentum px = 1, as
expected. The resonant excitation leads to a Fano “kink” in the
photoelectron peak at px � 1.1.

Figure 8(b) shows the bare two-RNO TDRNOT results. The
second main result of this work—after the existence of doubly
excited states—is that our approach also yields a resonance
peak with a Fano kink (solid, red). Although the detailed
shape of the Fano resonance differs from the TDSE result
it is remarkable that it is present at all. As emphasized already,
autoionizing states are not captured by a TDHF or TDKS
calculation (with adiabatic xc potentials). As a consequence,
Fano profiles will not be present there either. The black, dotted
peak in Fig. 8(b) is the result for the off-resonant frequency.
The dashed blue peak is obtained for ω = 1.38 but with one
NO only (equivalent to the bare TDHF result). As there are no

doubly excited states with one NO, there is no autoionization
and thus no Fano profile.

IV. CONCLUSION AND OUTLOOK

We have introduced time-dependent renormalized natural
orbital theory (TDRNOT) and tested it with a numerically
exactly solvable model helium atom. The main result is that
even with only two renormalized natural orbitals (RNOs) and
the bare (i.e., “frozen”) effective ground-state Hamiltonian
we observe correlation signatures impossible to capture
with time-dependent density functional theory (TDDFT)
using adiabatic exchange-correlation potentials, namely (i)
excitation of doubly excited states in the linear-response
spectrum and—beyond linear response—(ii) autoionization
and Fano profiles in the photoelectron spectra. The numerical
effort scales with the number of RNOs cubed but only linearly
with the number of spatial grid points required for one
particle. While in TDDFT exchange-correlation potentials
with memory are required to capture doubly excited states, the
effective Hamiltonian in TDRNOT is local in time. Moreover,
the problem in TDDFT concerning density functionals for
observables that are not explicitly known in terms of the
single-particle density is removed.

Future work will be devoted to other two-electron systems
in laser fields (in full dimensionality, spin triplet, H2), resonant
interactions, and three-electron model systems that are still
numerically exactly solvable. In full dimensionality, each
RNO will be expanded in spherical harmonics and with the
radial coordinate discretized as in this work. Then, one may
apply analogs of the central field approximation for ground-
state calculations and a multipole expansion of the effective
Hamiltonian for time-dependent simulations. In the spin-triplet
case the algebraic structure of the two-body density matrix (or
two-electron wave function) expansion is different from the
spin singlet but otherwise the approach is the same. The same
holds for H2. Three-electron systems such as the lithium atom
in intense laser fields is of interest as it is the simplest system
with “inner” electrons in a closed shell. The time-dependent
Schrödinger equation of one-dimensional model Li atoms in
intense laser fields is still possible to solve exactly [60] and thus
may serve as a benchmark for our method. Another research
direction will be the development of density matrix functionals
that allow one to go beyond the bare TDRNOT without
unleashing instabilities in the RNO equation of motion.
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APPENDIX A: DERIVATION OF EOM (13)

Inserting (6) and (9) into (5) yields (suppressing all time
arguments)

−i
∑

k

[∂tnk]φ∗
k (1′)φk(1) − i

∑
k

nk[∂tφ
∗
k (1′)]φk(1) − i

∑
k

nkφ
∗
k (1′)[∂tφk(1)]

= [ĥ0(1′) − ĥ0(1)]
∑

k

nkφ
∗
k (1′)φk(1) + 2

∫
d2
{
vee(|1′ − 2|) − vee(|1 − 2|)}∑

ijkl

γ2,ijklφi(1)φj (2)φ∗
k (1′)φ∗

l (2). (A1)
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Because the NOs form a complete basis we may introduce time-dependent coefficients αkm(t) [10] such that

i∂tφk(t) = αkk(t)φk(t) +
∑
m�=k

αkm(t)φm(t). (A2)

Here we drop the argument 1 as the equation holds for all position and spin degrees of freedom. With the transformation

φk(t) = e−i
∫ t

αkk (t ′) dt ′φ′
k(t) (A3)

[where αkk is real because of αkm(t) = α∗
mk(t)] we transform away the diagonal part of αkm and obtain

i∂tφ
′
k(t) =

∑
m�=k

α′
km(t)φ′

m(t), α′
km(t) = αkm(t)e−i

∫ t [αmm(t ′)−αkk (t ′)] dt ′ . (A4)

α′
km constitutes another hermitian matrix. The NOs are defined as the eigenfunctions of the hermitian 1RDM. We have the

freedom to choose the phase in such a way that (A4) holds. This is the analog of switching to the interaction picture, but now for
a nonlinear Hamiltonian. Dropping the primes, φ′ → φ, α′ → α, we have for (A1)

−i
∑

k

[∂tnk]φ∗
k (1′)φk(1) +

∑
k,m�=k

nkα
∗
kmφ∗

m(1′)φk(1) −
∑

k,m�=k

nkφ
∗
k (1′)αkmφm(1)

= [ĥ0(1′) − ĥ0(1)]
∑

k

nkφ
∗
k (1′)φk(1) + 2

∫
d2 {vee(|1′ − 2|) − vee(|1 − 2|)}

∑
ijkl

γ2,ijklφi(1)φj (2)φ∗
k (1′)φ∗

l (2). (A5)

Multiplying by φn(1′), φ∗
p(1), and integrating over 1 and 1′ gives

−iṅnδnp + npα∗
pn − nnαnp = (np − nn)〈p|ĥ0|n〉 + 2

∑
jkl

{γ2,pjkl〈kl|vee|nj 〉 − [γ2,njkl〈kl|vee|pj 〉]∗}. (A6)

For n = p we obtain (17)

ṅn = −4 Im
∑
jkl

γ2,njkl〈kl|vee|nj 〉. (A7)

For n �= p we have

αnp(np − nn) = (np − nn)〈p|ĥ0|n〉 + 2
∑
jkl

{γ2,pjkl〈kl|vee|nj 〉 − [γ2,njkl〈kl|vee|pj 〉]∗}. (A8)

If np �= nn we can divide by np − nn, which gives with (A4)

i∂tφn =
∑
p �=n

⎛
⎝〈p|ĥ0|n〉 + 2

np − nn

∑
jkl

{γ2,pjkl〈kl|vee|nj 〉 − [γ2,njkl〈kl|vee|pj 〉]∗}
⎞
⎠φp. (A9)

Equations (A9) and (A6) are EOMs for NOs and OCNs, respectively, but not useful for our purposes because truncating them
to a small number of NOs would yield extremely poor results [61]. Instead, it is more suitable to seek an EOM of the form of
Eq. (12), i∂t�(1) = Ĥ(1)�(1), where �(1,t) is a vector of NOs φk(1,t) and Ĥ acts in NO and position-spin space (see Fig. 1)
instead of only in NO space as in (A9). Multiplying (A1) by φn(1′) and integrating-out only 1′ (but not 1) leads to

i∂tφn(1) = 4i

nn

⎧⎨
⎩ Im

∑
jkl

γ2,njkl〈kl|vee|nj 〉
⎫⎬
⎭φn(1) − 〈n|ĥ0|n〉φn(1)

+
∑
k �=n

2nk/nn

nk − nn

∑
jpl

{γ2,kjpl〈pl|vee|nj 〉 − [γ2,njpl〈pl|vee|kj 〉]∗}φk(1) − 2

nn

∑
kjpl

γ2,kjpl〈pl|vee|nj 〉φk(1)

+ ĥ0(1)φn(1) + 2

nn

∑
kj l

γ2,kjnl〈l|vee|j 〉(1) φk(1). (A10)

In the first line on the right-hand side there are purely
time-dependent coefficients in front of φn(1). This part of
the total Hamiltonian Ĥ(1) is diagonal in both NO-index
and position-spin space. In the second line we have the
terms corresponding to the NO-index off-diagonal part of the

Hamiltonian. In the third line the first term does the “usual”
coupling in position (spin) space due to the single-particle
Hamiltonian ĥ0. This term is diagonal in NO space. The second
term in the third line couples the NOs through space-dependent
(though multiplicative) coefficients.
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It is simple to rewrite the EOM (A10) in terms of the RNOs
(10). Using (A7) and (14), the result (13) is obtained.

APPENDIX B: CONNECTION BETWEEN γ2,n j kl AND Di

For the 2DM in the two-electron spin-singlet case we find,
using (22),

γ2(12,1′2′) = �(x1x2)�∗(x ′
1x

′
2) 1

2

(
δσ1+δσ2− − δσ1−δσ2+

)
× (δσ ′

1+δσ ′
2− − δσ ′

1−δσ ′
2+), (B1)

and with (9)

�(x1x2)�∗(x ′
1x

′
2)

1

2

(
δσ1+δσ2−− δσ1−δσ2+

)(
δσ ′

1+δσ ′
2−− δσ ′

1−δσ ′
2+
)

=
∑
ijkl

γ2,ijklφi(x1)δσ1σi
φj (x2)δσ2σj

φ∗
k (x ′

1)δσ ′
1σk

φ∗
l (x ′

2)δσ ′
2σl

.

(B2)

Multiplication by NOs and integration allows us to solve for
the γ2 expansion coefficients,

γ2,mnop = 1
2

(
δσo+δσp− − δσo−δσp+

)
× (

δσm+δσn− − δσm−δσn+
)

γ
(x)
2,mnop (B3)

with the spatial part

γ
(x)
2,mnop =

∫
dx1

∫
dx2

∫
dx ′

1

∫
dx ′

2 φ∗
n(x2)φ∗

m(x1)

×�(x1x2)�∗(x ′
1x

′
2)φo(x ′

1)φp(x ′
2)

=
∫

dx1

∫
dx2

∫
dx ′

1

∫
dx ′

2 φ∗
n(x2)φ∗

m(x1)

×
∑
i odd

Di φi(x1)φi(x2)

×
∑
j odd

D∗
j φj (x ′

1)φj (x ′
2)φo(x ′

1)φp(x ′
2). (B4)

Now, one must not forget that, e.g., not only m = i contributes
but also m = i + 1 because φi = φi+1 for i odd. Hence

γ
(x)
2,mnop = (δm,i + δm,i+1)(δn,i + δn,i+1)Di D

∗
j (δo,j + δo,j+1)

× (δp,j + δp,j+1) for i,j odd (B5)

TABLE I. Nonvanishing γ2,mnop in the case of two NOs per spin
in the two-electron spin-singlet case and for approximations of the
form (18).

m n o p γ2,mnop γ
(approx)
2,mnop

1 2 1 2 1
2 |D1|2 = n1/2 f1212

1 2 2 1 − 1
2 |D1|2 = −n1/2 −g1221

1 2 3 4 1
2 D1D

∗
3 = 1

2

√
n1n3 eiϕ 0

1 2 4 3 − 1
2 D1D

∗
3 = − 1

2

√
n1n3 eiϕ 0

2 1 1 2 − 1
2 |D1|2 = −n1/2 −g2112

2 1 2 1 1
2 |D1|2 = n1/2 f2121

2 1 3 4 − 1
2 D1D

∗
3 = − 1

2

√
n1n3 eiϕ 0

2 1 4 3 1
2 D1D

∗
3 = 1

2

√
n1n3 eiϕ 0

3 4 1 2 1
2 D3D

∗
1 = 1

2

√
n1n3 e−iϕ 0

3 4 2 1 − 1
2 D3D

∗
1 = − 1

2

√
n1n3 e−iϕ 0

3 4 3 4 1
2 |D3|2 = n3/2 f3434

3 4 4 3 − 1
2 |D3|2 = −n3/2 −g3443

4 3 1 2 − 1
2 D3D

∗
1 = − 1

2

√
n1n3 e−iϕ 0

4 3 2 1 1
2 D3D

∗
1 = 1

2

√
n1n3 e−iϕ 0

4 3 3 4 − 1
2 |D3|2 = −n3/2 −g4334

4 3 4 3 1
2 |D3|2 = n3/2 f4343

and thus

γ2,mnop = 1
2

(
δσo+δσp− − δσo−δσp+

)(
δσm+δσn− − δσm−δσn+

)
× (δm,i + δm,i+1)(δn,i + δn,i+1)Di D

∗
j (δo,j + δo,j+1)

× (δp,j + δp,j+1) for i,j odd. (B6)

Because of the spin part and our indexing (odd index ↔
spin up, even index ↔ spin down, see Sec. II B), for γ2,mnop

not to vanish the index pair (o,p) must be (even, odd) or (odd,
even). The same holds for the index pair (m,n).

In the case of two NOs per spin this leads to the
nonvanishing γ2,mnop summarized in Table I. We not only
have the general property γ2,mnop = γ ∗

2,opmn here but also
γ2,mnop = −γ2,mnpo = −γ2,nmop = γ2,nmpo. We also show the
results for typical approximations of the form (18), which give
erroneously zeros for “cross-block” elements like mnop =
1234 or 3421 while they may give erroneously diagonal
contributions, e.g., f1111 − g1111 unless fmnop = gmnop, as in
Hartree-Fock.
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