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Koopmans’ condition in self-interaction-corrected density-functional theory
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We investigate from a practitioner’s point of view the computation of the ionization potential (IP) within
density-functional theory (DFT). DFT with (semi)local energy-density functionals is plagued by a self-interaction
error which hampers the computation of the IP from the single-particle energy of the highest occupied molecular
orbital (HOMO). The problem may be cured by a self-interaction correction (SIC) for which there exist various
approximate treatments. We compare the performance of the SIC proposed by Perdew and Zunger with the very
simple average-density SIC (ADSIC) for a large variety of atoms and molecules up to larger systems such as
carbon rings and chains. Both approaches to the SIC provide a large improvement to the quality of the IP if
calculated from the HOMO level. The surprising result is that the simple ADSIC performs even better than the
original Perdew-Zunger SIC in the majority of the studied cases.
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I. INTRODUCTION

Density-functional theory (DFT) [1–3] has become a
standard theoretical tool for the investigation of electronic
properties in many physical and chemical systems. It provides
fairly reliable results with moderate computational effort.
Practical implementations of DFT employ simple and robust
approximations for the exchange and correlation functional.
The simplest one is the local-density approximation (LDA),
which has been proven very useful in calculations of electronic
structure and dynamics. Typical applications stretch from
first-principles calculations of the electronic ground state
and molecular geometries [4], over dynamic studies of near-
equilibrium situations (e.g., optical response, direct one-
photon processes), to highly nonlinear dynamical scenarios
[5–7]. However, the LDA is plagued by a self-interaction
error [8]: The Kohn-Sham (KS) mean field is computed from
the total density which includes all occupied single-particle
states, including the state on which the LDA field actually
acts. The locality of the energy functional leads to a wrong
asymptotic KS field. This is still a great hindrance in many
applications, for instance a possibly large underestimation
of the ionization potential (IP) and the absence of Rydberg
or excitonic series in the static KS spectrum [9,10], the
polarizability in chain molecules [11,12], or the spectral
and fundamental gap in solids [13,14]. Another challenging
application is the description of molecules or clusters deposited
on surfaces [15,16]. In dynamic scenarios, the self-interaction
error also dramatically affects ionization dynamics, especially
close to thresholds, e.g., in a time-dependent DFT model of
electron emission [7,17–19].

In practice, the wrong asymptotics of the KS field stems
from an incomplete cancellation of the self-interaction error
between the Hartree potential and the approximate exchange
and correlation field. Such a spurious self-interaction is
avoided by a complicated nonlocality in exact KS DFT
[20–22]. For the total energy, the requirement for nonlocality
can be incorporated into gradients of density leading to the

generalized gradient approximation (GGA) [23–25]. This
approximation indeed served to lift DFT to a quantitative
level in molecular physics and chemistry problems, but is
insufficient to restore proper asymptotics of the mean field.

Although there are approaches to improve the asymptotic
KS potential [26] those are often too demanding for practical
calculations, in particular in the time domain. The aforemen-
tioned examples show that there is still a need for robust
and practical approaches to improve on the asymptotic KS
potential, such as the self-interaction correction (SIC).

The original proposal for a SIC [8,27] by Perdew and
Zunger (PZ) has been developed at various levels of refinement
and proved to be useful over the years, in particular for
structure calculations in atomic, molecular, cluster, and solid-
state physics; see, e.g., [28–35]. This original PZSIC scheme,
however, leads to an orbital-dependent mean field which
causes several formal and technical difficulties [29,32,33,35,
36]. There are attempts to circumvent the orbital dependence
by treating the SIC with optimized effective potentials [37]; for
a review, see [38]. However, the resulting formalism is, again,
quite involved and usually treated approximately [39]. A very
robust and simple SIC is the average density SIC (ADSIC)
which was proposed already very early [40], taken up in [41],
and used since in many applications to cluster structure and
dynamics in all regimes.

The ADSIC takes the total density divided by the electron
number as a reference for the single-electron density in
each state. Nonlocality is incorporated in the scheme by the
global density integral providing the total particle number.
However the ADSIC functional, unlike that of the PZSIC, is
a functional of the total density and thus the subsequent mean
field is not orbital dependent anymore. Having the correct
total charge, the ADSIC provides the proper asymptotics for
the mean field. It is argued that the approximation by one
and the same (average) single-particle density for each state
is applicable only in simple metals where all electronic states
cover the same region of space, that is, in the case of a cluster,
the whole cluster itself [41]. Later studies revealed that the
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ADSIC is also an efficient correction scheme for nonmetallic
systems with delocalized electrons, such as organic molecules
[42,43].

The aim of this paper is to investigate the performance of the
ADSIC in direct comparison to the PZSIC for a large variety
of atoms and molecules in their ground states. The sample
covers systems of different binding types, and not only metallic
ones. We will compare the ADSIC with just a DFT treatment
using (semi)local functionals and with the PZSIC, and also
occasionally with a Hartree-Fock treatment. The comparison
focuses on the proper description of the IP. We start from atoms
as elementary building blocks of any molecule, proceed to a
large variety of molecules from simple dimers to more complex
organic structures, and finally discuss carbon rings and chains
with a systematic variation of sizes. Such a strategy allows us
to cover various binding types but also various geometries and
even dimensionality.

II. IONIZATION POTENTIAL

A. Definitions

The key quantity of this survey is the ionization energy
I , commonly called the ionization potential. The IP of an
N -electron system is given by the energy difference

I ≡ I� = E(N − 1) − E(N ). (1)

The energies E(p) correspond to ground-state configurations
of a p-particle system in a given external potential, typi-
cally the Coulomb potential created by the nuclear charges.
Both energies, E(N ) as well as E(N−1), are fundamental
observables in ground-state DFT and so is their difference,
the IP. DFT should thus allow one to calculate the IP
of electronic systems. A distinction has to be made here.
The definition of an IP is unique in atoms. In molecules,
however, we distinguish vertical and horizontal IPs. The
vertical one considers the energy difference after the removal
of one electron for frozen atomic positions. This typically
corresponds to photon-induced fast emission processes. The
horizontal IP is built from the difference between fully relaxed
molecular configurations. It accounts for the energy change on
a long time scale on which all molecular relaxation processes
are finalized. We will consider throughout this paper the
vertical IP which accounts for fast electronic processes and
which is closely related to the properties of the electronic
ground state of the mother system, in particular to the highest
occupied molecular orbital (HOMO).

In the exact electronic ground state, the asymptotic decrease
of the ground-state density n is related to the IP by

n(r)
|r|→∞∼ exp[−2

√
2I |r|]. (2)

In an exact KS DFT, the asymptotic decay of the total density
is defined merely by the highest occupied KS orbital, i.e.,
the HOMO [4]. In combination with the proper asymptotic
behavior of the KS potential [vs(r) → 0], the ionization
energy can thus be related to the single-particle energy of the
HOMO:

I ≡ Iε = −εHOMO. (3)

For an exact exchange-correlation functional, both definitions
of the ionization energy, Eqs. (1) and (3), coincide, i.e., they
obey I� = −εHOMO. The identification of the negative HOMO
energy with the IP was referred to as Koopmans’ theorem
[44] long before the fundamental concepts were extended
rigorously to the framework of DFT [45,46]. For approximate
energy functionals Koopmans’ condition does not necessarily
hold [2] and the deviation from the ideal behavior can be used
to define the non-Koopmans’ (NK) energy

�ENK = Iε − I�. (4)

A value �ENK = 0 signals that Koopmans’ theorem is
fulfilled. In such a situation, the properties of the HOMO
level are closely related to ionization and electron emission.
We know that the LDA produces rather large violations of
Koopmans’ theorem and thus exhibits a sizable �ENK. The
SIC should reduce that, and the amount of reduction is one
measure of the efficiency of the actual SIC scheme.

It is also interesting to compare the performance of a
calculation with respect to data. Thus we consider in addition
to the NK energy the bare error in the IP relative to experiments
or other reference data. As we have two definitions of the IP,
there are two bare errors in an approximate theory:

�Iε = Iε − Iref, �I� = I� − Iref . (5)

An experimental reference energy may be hampered by
uncertainties, as ionic relaxation throughout the ionization
process can lead to situations which lie between the idealized
vertical IP (for very fast ionization) and the horizontal one (for
very slow ionization). Here only the vertical IP in the ground-
state geometry is considered. Reliable atomic coordinates for
small molecules are given by the second-order Møller-Plesset
(MP2) optimized structures as provided in the Gaussian 2 (G2)
data set [47]. G2 theoretical and experimental energies may
differ by several tens to hundreds of meV [48]. This error can
be considered negligible on the scale of the expected errors,
stemming from the approximate nature of the used exchange-
correlation functionals and the use of pseudopotentials [49].
Experimental data for vertical IPs therefore appear as a safe
choice of reference [50].

In contrast to the errors in the IP (5), the NK energy does
not require any reference data that may be hampered by exper-
imental uncertainties. It therefore provides a rather rigorous
criterion for the quality of energy-functional approximations.

B. Impact of a proper description of the IP

The two definitions (1) and (3) for the IP are equally
justified in an exact calculation. However, for (semi)local
functionals (as in the LDA and GGA), it is usually found that
only the energy difference (1) can be used to extract a good
estimate for the IP. The estimate (3) from the single-particle
spectrum requires the proper 1/r asymptotics of the exchange-
correlation potential (for neutral systems). This is not provided
in calculations based on typical semilocal functionals.

While energy differences often allow reliable estimates
already with semilocal functionals, they require two calcula-
tions, which is more involved than a straightforward extraction
from the HOMO level. This alone would not be a priori a major
hindrance. But there are many situations where the extraction
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FIG. 1. (Color online) Illustration of the ground-state energy E as
a function of fractional occupation number ν. The IP from the HOMO
level, Iε , corresponds to the left-handed derivative (slope = thin black
line) of the energy at ν = N . The IP from energy differences, I�, is
associated with the exactly linear behavior (red, heavy solid line). The
LDA result provides a smooth curve (green, dotted line). The Hartree-
Fock result (blue, dashed line) also has a discontinuous derivative at
ν = N as the exact trend, but tends to overestimate the kink.

via energy difference is not an option: In periodic calculations
(e.g., on surfaces), a rigorous calculation of the IP (called the
work function in this case) from an energy difference is hard to
achieve because one cannot easily model a single excess charge
in a periodic setup. The same situation applies for calculation
of band gaps in solids. In dynamical situations, as described by
time-dependent DFT, an accurate modeling of the ionization
process requires an accurate static single-particle spectrum.
As the propagation of the single-particle states is driven by
the time-dependent KS Hamiltonian, the energy difference
between its spectrum and a proper position of the IP is more
important than the total energy. Ionization properties are also
mostly defined by the HOMO level, which thus has to be
correctly described.

A way to illustrate the self-interaction error is to consider
the energy E(ν) as a function of a fractional particle number
ν. Note that, while fractional electrons of course do not exist,
a fractional particle number can be interpreted as the average
over an ensemble of systems with integer occupation numbers.
In time-dependent DFT, it rather refers to a level depletion
corresponding to scattering into continuum states (which are
not localized within the simulation volume). The ionization
process proceeds as ν = N −→ N−1. An exact functional
produces a linear behavior [20], as

E(ν) = (1 − x)E(N ) + xE(N − 1), x = N − ν ∈ [0,1].

(6)

A similar linear behavior is also observed for ionization from
an anion to the neutral system (N + 1 −→ N ). This exact
E(ν) is shown as the (red) solid line in Fig. 1.

The remarkable feature is a discontinuous derivative, that
is, a kink, at ν = N . Semilocal functionals deal with smooth
functions (no kinks, no discontinuities) and produce smooth
trends as shown in the (green) dotted line. The definition (3)
of the IP through the HOMO energy coincides with the slope
of the total energy for fractional particle numbers at ν ↗ N :

Iε = − dE

dν

∣∣∣∣
ν↗N

(7)

as indicated in the figure. The linear trend of the exact energy
naturally guarantees Iε = I�, while the convex curve from the
LDA necessarily implies Iε < I�.

The (blue) dashed line in Fig. 1 finally shows results
from exact exchange in the Hartree-Fock (HF) method. A
full HF calculation is free from self-interaction error. Thus
it qualitatively yields the correct result, namely, the kink at
ν = N . However, it differs from the linear trend in between
integer particle numbers. This leads to an overestimation of the
IP from the HOMO, Iε > I�. We will address this question in
the last example of carbon chains; see Sec. IV E.

III. VARIOUS SCHEMES FOR AN SIC

As the SIC is rather an ad hoc measure to cure the self-
interaction problem, various recipes and approximations are
used, depending on the field of application. In this section, we
briefly summarize the PZSIC and ADSIC which we will use
later on in an extensive comparison of results.

A. Perdew-Zunger SIC

As already mentioned in the Introduction, a very popular
approach to the definition of a one-particle self-interaction
error and a corresponding correction was presented by
Perdew and Zunger [8]. The self-interaction error is given
by accumulating the contributions from the individual orbital
densities ni(r) = |ϕi(r)|2 for a set of single-particle states
ϕN = (ϕ1, . . . ,ϕN ). It reads

ESI[ϕ
N ] =

N∑

i=1

(EH[ni] + Exc[ni]), (8a)

where EH is the Coulomb Hartree energy and Exc is the density
functional for exchange and correlations. Note that this is not
a functional of density alone. In fact, ESI[ϕN ] depends on the
details of the orbitals. The PZSIC is defined by subtracting the
self-interaction error from the original functional, i.e.,

EPZSIC[ϕN ] = EH[n] + Exc[n] − ESI[ϕ
N ], (8b)

where n = ∑N
i=1 ni is the total electronic density.

The mean-field equations are derived in a straightforward
manner by variation of the SIC energy EPZSIC with respect to
the occupied single-particle orbitals ϕi . It turns out that the
mean-field Hamiltonian depends explicitly on the particular
single-particle state on which it acts. This emerges because
the PZSIC energy functional is not invariant under unitary
transformations among the occupied states. There are several
ways to deal with such a state-dependent Hamiltonian [28–31].
A particularly efficient way is to use two different sets
of single-particle states which are connected by a unitary
transformation among occupied states. That is actually the
solution scheme which we are using; for details, see [51]. In
this approach, the HOMO level is defined as usual, in the basis
set which diagonalizes the Hamiltonian matrix.

B. Average density SIC

The average density SIC starts from the SIC energy (8b)
and simplifies it by assuming that indistinguishable electrons
are represented by equal single-particle densities. In such an
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KLÜPFEL, DINH, REINHARD, AND SURAUD PHYSICAL REVIEW A 88, 052501 (2013)

extreme simplification, one expresses them as the one-particle
fraction of the total spin density ni(r) = nσi

(r)/Nσi
, where σi

is the spin of state i and Nσi
is the number of particles with

spin σi . In such a scheme, the standard PZSIC functional is
represented by the ADSIC functional:

EADSIC[n↑,n↓] = EH[n] + Exc[n]

−
∑

σ∈{↑,↓}
Nσ (EH[nσ ] + Exc[nσ ]) , (9)

where n = n↑ + n↓. This is a spin-density functional and
can be treated in the same manner as any LDA or GGA
scheme. This makes it extremely simple and efficient to
use in atomic and molecular systems. However, the ADSIC
functional contains a cumbersome nonlocality as it explic-
itly depends on the particle number Nσ = ∫

d3r nσ (r). This
inhibits its application in periodic systems, where Nσ is
infinite.

IV. RESULTS

A. Numerical scheme and pseudopotentials

We performed symmetry-unrestricted calculations using
a representation of the single-particle wave functions on a
Cartesian coordinate-space grid with a spacing of 0.2 Å.
We accounted for spin polarization whenever necessary, but
ignored noncollinear spin configurations. Densities and fields
were represented on a refined grid of 0.1 Å to account for
the higher Fourier components in products of single-particle
states. The core electrons are handled within the frozen-core
approximation by a real-space implementation of the projector
augmented wave (PAW) method [52] using a development
version of GPAW [53]. The projectors and partial waves of
the PAW method are taken as provided within the GPAW
repositories for bare LDA exchange and correlation, i.e.,
without accounting for a SIC. During the energy optimization,
we apply a strict preconditioned gradient scheme, i.e., we
do not mix occupied with unoccupied states by explicit
diagonalization of the Hamiltonian in the iterated subspace.
Using this procedure, we do not have to decide which orbitals
to occupy, based on symmetry considerations in the case of
small HOMO-LUMO (lowest unoccupied molecular orbital)
gaps and systems with partially filled angular momentum
shells. For the evaluation of Iε, we used the HOMO (no matter
which spin it has) and compared to the spin configuration of
the cation that arises from fully removing an electron from
the corresponding spin channel in I�. On the LDA level,
this procedure was in agreement with explicit optimization
of the magnetic moment of the cation state (determined by
explicitly trying different spin configurations). Hence, the
problem of an unknown strength of the effective Kohn-Sham
magnetic field in open-shell systems is avoided, as discussed
in [54].

This corresponds to using pseudopotentials developed for
LDA applications in the context of the PZSIC or ADSIC
without readjustment of the pseudopotential parameters. This
minor inconsistency is acceptable in various applications of
the SIC [32,55,56]. Here such an improvement is avoided in
favor of using a unique set of pseudopotentials for all energy
functionals.
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FIG. 2. (Color online) Ionization potentials I� from Eq. (1) and Iε

from Eq. (3) for neutral atoms from hydrogen to argon and different
approaches to the self-interaction correction: Average density SIC
(squares), Perdew-Zunger SIC (diamonds), and the uncorrected
local-density approximation (open circles). Experimental data are
displayed as closed circles [50].

For the following survey, we show results from the LDA
using the Perdew-Wang 1992 (PW92) parametrization [57].
For most of the examples below, we have also performed
GGA calculations with the PW91 functional [24]. Even though
the GGA slightly improves the overall quality of the IP, in
particular if calculated from energy differences, with very few
exceptions, the effect of the gradient dependence is less than
0.5 eV. Thus it neither affects the overall magnitude of errors or
changes the general trends that are discussed in the following
sections. We therefore focus on the LDA part in this survey.

B. Atoms

The first step is to investigate the performance of both
SIC approaches for atoms. The latter are the basic building
blocks of molecules and solids. Thus they must be correctly
described before we can proceed to more complex scenarios.
The electronic structure of atoms incorporates single-electron
states with similar shapes but different spatial extensions. Thus
atoms are a critical test case for SIC which is known to strongly
depend on the level of localization.

Figure 2 shows the IP as calculated for neutral atoms
from hydrogen (Z = 1) to argon (Z = 18). All methods yield
very similar IPs if it is evaluated as I�, i.e., as the energy
difference (1). The results differ more for Iε computed from the
HOMO according to Eq. (3). Here, the bare (semi)local energy
functionals underestimate the ionization energy by 30%–40%.
The defect is well known and can be traced back to the wrong
asymptotic behavior of the exchange-correlation potential
for |r| → ∞ [8]. Obviously, both SIC approaches cure the
problem and yield excellent agreement with experimental data.
The ADSIC is slightly superior in the case of open-shell atoms,
while the PZSIC slightly overestimates the IP. Accounting for
density gradients by using the PW91 approximation to the
exchange-correlation functional [24] (not shown here) has an
insignificant effect for both I� and Iε. The results do not
sufficiently differ to justify a separate plot.
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FIG. 3. (Color online) Errors in calculated IPs compared with
experimental values for the series of atoms depicted in Fig. 2. Top
and middle panels: errors from Iε and I�, respectively, according to
Eq. (5). Bottom panel: non-Koopman’s energy defined in Eq. (4).

Figure 3 shows the same data as in Fig. 2 but in terms of
errors with respect to experimental data and of the NK energy.
This reveals some differences between the PZSIC and ADSIC
where, somewhat surprisingly, the technically much simpler
ADSIC visibly yields smaller NK energies and errors �Iε.

At this point, it is worth recalling that the ADSIC scheme
can be derived as an approximation to the PZSIC, assuming
the most delocalized representation of the single-particle
densities. In the ADSIC, orbitals extend over the whole atom,
in stark contrast to the localized orbitals that are commonly
found in PZSIC calculations [33]. It thus appears that a
significant higher level of delocalization is actually desirable,
which confirms previous concerns that PZSIC orbitals are too
localized.

C. Simple molecules

As a next step, we consider simple molecules, such as
many dimers, and a few more complex ones. The selection has
been adapted from [25]. It covers systems which do not have
the problem of spatial symmetry breaking by an unrestricted
mean-field calculation. Reference data were taken from [50].
Figure 4 shows the IP for a chosen set of molecules. At first
glance, the results resemble those for atoms in Fig. 2. The
I� provides reasonable results for all methods while Iε shows
dramatic differences between the LDA and the SIC models.
However, taking a closer look, we also see that results for
ADSIC and PZSIC show larger differences than in the case of
atoms. Somewhat surprisingly, the ADSIC comes again much
closer to experimental data than the PZSIC.

 0

 5

 10

 15

 20

H
2

Li
H

C
H

4

N
H

3

O
H

H
2O H

F
Li

2

Li
F

B
e 2

C
2H

2

C
2H

4

H
C

N

C
O N
2

N
O O
2

F
2

P
2

C
l 2

I ε
 (

eV
)

 0

 5

 10

 15

 20

I Δ
 (

eV
)

exp.
ADSIC
PZSIC

LDA

FIG. 4. (Color online) As in Fig. 2, but for a set of simple
molecular systems.

Figure 5 shows the data from the previous figure in terms
of energy differences, the errors �I as compared to reference
data, and the NK energy. The results confirm the impressions
indicated in the comparison of the IPs as such: The �Iε shows
significant differences between the PZSIC and ADSIC since
the latter generally performs better.
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FIG. 5. (Color online) As in Fig. 3, but for a set of simple
molecular systems.
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FIG. 6. (Color online) As in Fig. 3, but for families of molecules
with systematically varied properties.

One may argue that comparison with reference data is also
influenced by other details of the calculations or the choice of
the reference data. The NK energy (bottom panel) is free of
these uncertainties. The ADSIC clearly delivers the smallest
NK energies. This was seen already for atoms. But here in the
case of molecules the effect is even more pronounced as the
PZSIC shows larger deviations.

D. Systematic sets of molecules

In this section, we look at a systematic variation of
molecules, e.g., basic carbohydrates. The first family (CHx)
represents a variation of the number of C–H bonds. The second
family changes the character (single, double, triple bonds) in
C2Hn. The third family is similar to the first one but carbon is
replaced by a heavier element (silicon) with the same number
of valence electrons, while the fourth series replaces the carbon
atom by nitrogen (which has a different valence). In the final
series one of the single-bonded hydrogen atoms in CH4 is
substituted by a different group. The last elements of the third
and fourth series are not strictly within the systematics.

We saw in the previous systems that energy differences
show more details than the energies as such. We thus proceed
here immediately to energy differences, which are compiled in
Fig. 6. The results are very similar to those in the previous case
of simple molecules; see Fig. 5. Some of the deviations are,
however, larger than in the previous case. This indicates that

these complex molecules are more critical test cases. Even in
this more demanding scenario, we find again that the ADSIC
performs better with respect to the deviation from reference
data and even more so for the NK energies.

Thus we find that the ADSIC, which assumes orbital
densities that are delocalized over the whole molecule, yields
a systematic improvement over the PZSIC. This is somewhat
surprising in view of the deficits of the ADSIC; in particular
its inability to describe dissociation and the lack of size
consistency are directly attributed to a too high level of
delocalization.

For infinite matter, the ADSIC is not applicable due to the
explicit dependence on the particle number. Already for larger
systems, the explicit dependence on the total particle number
quickly renders the SIC contribution to the energy functional
an inefficient approach to cure problems of the LDA. The
observation that delocalization on the length scale of small
molecules is in fact favorable for the quality of the NK energy
and IP calls for more systematic investigations.

E. Carbon rings and chains

The self-interaction error on the IP for the Coulomb Hartree
term is typically of the order of e2/R where R is the radius
of the system. The error for the exchange-correlation potential
can be estimated within the ADSIC as vxc[n/N ]. Both shrink
with increasing system size. In order to explore the evolution
of the self-interaction errors with increasing size, we consider
carbon rings and chains. For the latter, we consider only odd
numbers of atoms because only these molecules have stable
electronic configurations for spin-saturated ground states. All
the studied carbon rings are spin saturated in the neutral
configuration. The geometries of the planar rings have been
optimized on the GGA level (PW91) by allowing for relaxation
of the atoms in the plane. The C–C bonds turn out to have
more or less constant bond length. This means that increasing
the number of carbon atoms induces a (linear) growth of the
geometrical extension, of either the chain or the ring.

The upper two panels of Fig. 7 show the IPs for carbon
rings as a function of the number of atoms. Comparing ADSIC
and LDA results, we see again the equally good performance
for I�, and the large self-interaction error in Iε for the LDA
while the ADSIC behaves very well. The reference data,
here the calculated LDA values I�, show a pronounced step
structure due to the successive filling of the electronic shells.
Large I indicates particularly stable electronic structures, i.e.,
shell closures. Sudden reductions show that a new, and less
bound, electronic shell has to be opened to place the given
number of electrons. The LDA and ADSIC reproduce the shell
effect. On first glance, the PZSIC results are quite surprising
since they deviate even qualitatively from the other results, as
they show less pronounced shell effects, at least with increasing
chain length.

It should be noted that missing points also indicate
that reliable minimization of the PZSIC energy becomes
challenging for cationic configurations, where various local
minima exist. The local minima correspond to different, almost
energetically equivalent, configurations with different levels
of delocalization of the unpaired electron in the spin-majority
channel. The effect is worse for midshell systems but less
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FIG. 7. (Color online) Non-Koopmans’ energies (bottom) and
ionization potentials I� (from energy differences, middle) and Iε

(from the HOMO, top), computed in various schemes for carbon
rings of various size (5 � Natoms � 32). In the top panel, I� from the
LDA (see middle panel) is superimposed on the Iε calculated in the
LDA, ADSIC, and PZSIC.

problematic for closed-shell configurations. No such problem
exists for the ADSIC due to the absence of orbital dependence.

The lowest panel of Fig. 7 shows the NK energies. The
�ENK from the LDA starts large but shrinks with increasing
size, as one could have expected. The ADSIC result is small
throughout, but has a slight tendency to increase with size,
and of course, never becomes larger than the error from
LDA. However, the �ENK from the PZSIC is generally large
and even grows with system size. This finding is rather
troublesome, as it confirms that the difference between the
behavior of the LDA and ADSIC on the one hand, and the
PZSIC on the other, actually stems from misconceptions in
the PZSIC partially compensated in the approximate ADSIC.

The significant and positive NK energy indicates that strong
correlation effects, which are underestimated in semilocal
exchange and correlation, are overestimated by the PZSIC.
The screening of such strong correlation effects has to be
reintroduced in the self-interaction-corrected approach, e.g.,
by the assumption of more delocalized states, as in the case of
the ADSIC.

The convergence of ADSIC and LDA results illustrates
the collapse of the ADSIC as a working SIC scheme for
extended systems, where N � 1, contrary to the case of
small N where the NK energy is still improved significantly.
The almost constant but finite NK energy indicates that,
although the ADSIC is not capable of complete curing the
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FIG. 8. (Color online) As in Fig. 7 but for linear carbon chains
(3 � Natoms � 11). The data are complemented by results obtained
from bare exchange-only Hartree-Fock calculations (triangles).

nonlinear dependence of the LDA energy functional for
fractional occupation, it at least provides a scheme that yields
similar magnitudes of errors for compact systems and extended
ones, whenever the LDA is by itself considered a reasonable
approximation there.

Figure 8 shows the IP and �ENK for carbon chains. In
this case, we added also results from a pure Hartree-Fock
calculation. The PZSIC looks better here than for rings. But
note that we have considered rather short chains. There are
again large differences between PZSIC and ADSIC results.
This time, however, they are distributed almost symmetrically
around zero error (see the lowest panel). No clear preference
can be deduced in this example.

The largest errors appear here for exact exchange in the
HF calculation. Starting out perfectly for the smallest chain
C3, the NK energy already jumps for C5 and continues to grow
further. For the HF method, the effect can be understood due to
the incomplete cancellation of the counteracting errors of the
missing relaxation energy in the ion (due to the frozen-orbital
approximation) and differences in the correlation energies
of the charged and neutral species. With increasing system
size, the relaxation energy of the open-shell cation increases,
resulting in the significant errors observed. However, one has to
note that such an argument would not apply in the Kohn-Sham
framework, where Koopmans’ condition should be necessarily
fulfilled, i.e., all orbital relaxation and correlation effects
are included in the position of the HOMO level. A detailed
investigation would require calculations in the framework of
the optimized effective potential method [37,38], for both
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PZSIC and HF methods, which is beyond the scope of this
paper.

F. Discussion

To summarize the results presented in the above figures, we
have computed average errors for each group of system consid-
ered, atoms, simple molecules, and families of systematically
varied molecules. Thereby, we distinguish between mean error
(Emean), mean absolute error (EMA), and the error fluctuations
(σ ) defined as

Emean(�O) = 1

Nsamp

∑

i

�Oi , (10a)

EMA(�O) = 1

Nsamp

∑

i

|�Oi |, (10b)

σ (�O) = 1

Nsamp

∑

i

|�Oi − Emean(�O)|, (10c)

where O is one of the considered observables, that is, I�,
Iε, or ENK. The index i runs over the Nsamp samples in a
given group, and �Oi = Oi − O(ref)

i stands for the observed
deviation from the reference dataO(ref)

i . The resulting averages
for each group are listed in Table I. Computation of the IP as
I�, i.e., from energy differences, is always a safe procedure
yielding reliable results already with the LDA. Computation
as Iε via the HOMO is possible with good accuracy in both
SIC models. The great surprise is that the very simplistic
ADSIC approach performs very well for the Iε, typically even
better than the PZSIC. The same conclusion is deduced from
the non-Koopmans’ energy �ENK. This was already seen
from the above figures and is corroborated in Table I on a
quantitative level.

The excellent performance of the ADSIC in compact
systems in terms of both accuracy and the small violation
of Koopmans’ condition is remarkable. Still, one should keep
in mind the known deficiencies of the approach. Most notable
is the violation of size consistency which becomes apparent

TABLE I. Mean error Emean, mean absolute error EMA, and error
fluctuations σ as defined in Eqs. (IV F) for IPs as well as NK energy
for the data sets shown in Figs. 3, 5, and 6. Redundant data in Fig. 6
are considered only once in the averages.

I� Iε ENK

Emean EMA σ Emean EMA σ Emean EMA σ

Atoms
LDA 0.2 0.3 0.3 −5.0 5.0 1.5 −5.1 5.1 1.6
PZSIC 0.3 0.3 0.3 0.7 0.8 0.7 0.4 0.5 0.5
ADSIC 0.4 0.5 0.4 0.2 0.4 0.4 −0.3 0.4 0.3

Small molecules
LDA 0.3 0.4 0.4 −4.6 4.6 0.7 −4.9 4.9 1.0
PZSIC 0.5 0.6 0.5 1.4 1.5 0.9 0.9 1.0 0.7
ADSIC 0.6 0.7 0.5 0.4 0.6 0.6 −0.2 0.4 0.3

Systematic molecules
LDA 0.3 0.4 0.3 −4.1 4.1 0.5 −4.3 4.3 0.5
PZSIC 0.5 0.6 0.4 1.4 1.4 0.7 0.9 0.9 0.4
ADSIC 0.5 0.6 0.4 0.1 0.5 0.5 −0.5 0.5 0.1

in the dissociation of a molecule. Consider a dimer with total
electron number N which dissociates into one part containing
N1 electrons and another one with N2 electrons. The ADSIC
for the compound involves, of course, the total electron number
N . Since we follow the dissociation path continuously, we
necessarily have to keep using N in the correction. Finally,
we end up with two isolated atoms which would be treated
by one common correction still regulated by the total N . This
is, of course, wrong as we know that each single atom has
to be separately corrected with its own Ni . The case is even
worse in violent dynamics leading to multifragmentation. The
problem could already have been spotted from the fact that the
dependence on N = ∫

d3r n(r) implies a nonlocality which
becomes increasingly problematic if n(r) ceases to be compact,
but is rather distributed over several regions of space.

Fully accomplished dissociation and multifragmentation
are, of course, extreme limits. The defects of the ADSIC
in this respect tend to show up earlier, for example, in the
Born-Oppenheimer energies along the dissociation path. Thus
one should not use the ADSIC for computing large-amplitude
molecular vibrations without carefully checking its range of
validity for the given application. Problems may also show
up in molecules which combine very different length scales
as, e.g., in NaH2O where the Na atom adds a rather dilute
electron distribution to the otherwise compact H2O. In spite
of the encouraging results presented above, one should check
the NK energy �ENK for each new application again.

These known shortcomings should not hinder us from
appreciating the good performance attained by the ADSIC in
structural and low-energy dynamical situations. As illustrated
throughout the present work, the ADSIC provides a remarkable
robustness in terms of Koopmans’ violation. This implies, in
particular, that it can be safely used in dynamical regimes
where only a tiny fraction of an electron is emitted.

V. SUMMARY AND CONCLUSIONS

We have compared the performance of two different
approaches to self-interaction correction regarding calculated
ionization potentials and violation of Koopmans’ theorem.
We have focused the discussions on two SIC procedures: the
original Perdew-Zunger approach (PZSIC) and the average
density version thereof (ADSIC). A wide range of electronic
systems has been considered ranging from atoms and simple
molecules up to systematics of moderate-sized molecules, in
particular carbon systems. The overall survey is thus quite
general, so that the conclusions attained have a safe grounding,
beyond any specific effect.

We find in all examples considered here that the ADSIC
provides more reliable estimates of the IP and a smaller
violation of Koopmans’ theorem. This is a welcome result
in view of the remarkable simplicity (and correlated low
computational price) of ADSIC.

We have also explored a known collapse of the ADSIC
approach for extended systems. It was shown that the PZSIC
method also fails to cure flaws of the LDA in this regime. An
optimistic interpretation of the data obtained on the example of
carbon chains allows the conclusion that an efficient orbital-
density-dependent SIC should provide weak localization of
the single-electron states over several atoms. Such a weak
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localization is in line with the excellent performance of the
bare ADSIC in the case of the smaller molecules studied
here.

Whereas the results of this survey question the quality of the
PZSIC as a benchmark approach to a SIC, they simultaneously
encourage the educated use of the much simpler ADSIC
approach. However, as also noted, the ADSIC certainly does
not provide the ultimate SIC scheme as it fails by construction,
for example in the modeling of dissociation processes or
strong ionization. The limits of the ADSIC with respect
to dissociation or molecular structural rearrangement need
to be explored further. Still it remains a viable and robust
option for many dynamical situations, especially in the case
of perturbative ionization, where the ionization potential,
precisely the negative HOMO level, plays a central role. This
implies that the ADSIC remains a favorable self-interaction
correction in the calculation of reliable photoelectron spectra
and angular distributions of emitted electrons, which represent
an ever-growing issue in the dynamics of irradiated clusters
and molecules.

Future work should also aim at investigating to what extent
the level of localization can be controlled within the PZSIC
scheme by modifying the functional form, e.g., within the
framework of the GGA with SIC or by implying alternative
localization criteria during the optimization of internal degrees
of freedom, i.e., a unitary transformation among the single-
particle states.
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