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Effective cutting of a quantum spin chain by bond impurities
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Spin chains are promising media for short-haul quantum communication. Their usefulness is manifested in all
those situations where stationary information carriers are involved. In the majority of the communication schemes
relying on quantum spin chains, the latter are assumed to be finite in length, with well-addressable end-chain
spins. In this paper we propose that such a configuration could actually be achieved by a mechanism that is able
to effectively cut a spin ring through the insertion of bond defects. We then show how suitable physical quantities
can be identified as figures of merit for the effectiveness of the cut. We find that, even for modest strengths
of the bond defect, a ring is effectively cut at the defect site. In turn, this has important effects on the amount
of correlations shared by the spins across the resulting chain, which we study by means of a scattering-based

mechanism of a clear physical interpretation.
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I. INTRODUCTION

In the past decade, the idea of connecting stationary
information carriers via one-dimensional spin systems has
been developed significantly and several strategies have
been proposed for obtaining high-quality quantum-state and
entanglement transfer, as well as entangling gates [1,2]. The
general paradigm involves two remote qubits located at each
end of a chain of interacting spins mediating the exchange of
information between the distant particles. Together with the
strength of the intrachain coupling, the length of the chain,
as measured for instance by the number of its spins, is a key
parameter that determines the operational time and quality
of a given communication scheme. In fact, in any practical
implementation, the spin-chain medium needs to be of finite
length with well-identified and -addressable first (head) and
last (tail) elements.

Depending on the actual physical realization, one can think
of different ways of fulfilling such requirements. In this paper
we consider the case of a medium modelled by a chain of
interacting spin-1/2 particles, such as the crystals listed in
Table 1 of Ref. [3] or the more recently proposed molecular
rings [4,5]. Other physical realizations, ranging from ultracold-
atom systems to coupled-cavity arrays [6,7], adhere well to
such a model. We specifically address the problem of obtaining
a one-dimensional spin system of finite length and open
boundary conditions (OBC), hereafter called “segment,” out of
a spin chain with periodic boundary conditions (PBC). As the
latter structure can be generally represented as a closed ring
(of either finite or infinite length), we will refer to the above
problem as that of “cutting a ring.”

As a ring-cutting mechanism basically changes PBC into
OBC, and relying on general arguments about how impurities
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affect the behavior of one-dimensional systems, we propose
the insertion of one impurity as an effective tool for realizing
one cut. In particular, we consider the case when the impurity
corresponds to a variation of the interaction strength between
two neighboring spins, with respect to the otherwise homo-
geneous couplings. The effect of the presence of this kind of
bond impurity on the ground state of the antiferromagnetic
X XZ Heisenberg spin-% model has been investigated via
renormalization group techniques in Refs. [8—10], where it
has been shown that this kind of impurity embodies a relevant
perturbation and yields to a fixed point in the renormalization-
group flow corresponding to OBC for an infinite interaction’s
strength. In this paper we solve analytically the impurity
X X Heisenberg spin—% model via the Jordan-Wigner mapping
into a noninteracting spinless fermionic model and determine
quantitatively the cutting effect for finite interaction’s strength
via quantum-information-inspired figures of merit, such as
classical and quantum correlations and fidelity measures.

An equally important motivation to investigate the
impurity-driven ring-cutting mechanism is to analyze the
emergence of boundary effects, such as Friedel-like oscilla-
tions [11] of the fermion density, i.e., the local magnetization,
driven by the impurity strength. These effects are more
pronounced in proximity of the impurity spins [12—14]. They
allow for the tuning of the degree of entanglement shared by
two arbitrary spins of the medium (even different from the
impurities) along the lines of Refs. [15-18].

The paper is organized as follows: In Sec. II we introduce
the specific model addressed here, namely that of a ring of 2M
spin-1/2 particles, interacting via a nearest-neighbor, planar,
and isotropic magnetic exchange model, hereafter referred to
as X X interaction. The effect of an inserted bond impurity is
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here analytically studied in the thermodynamic limit M — co.
In Sec. III we discuss the thermodynamic-limit behavior of
in- and out-of-plane magnetic correlations, concurrence [19],
and quantum discord [20-22], which are some of our elected
figures of merit for the characterization of the ring-cutting
mechanism. The case of finite M is considered in Sec. IV,
where we study the fidelity [23] between the ground state of a
ring that has been effectively cut by a bond impurity and that
of the segment it should mimic. The overall analysis is carried
out as the parameter characterizing the bond impurity is varied
and, as far as the finite-length case is concerned, for different
values of M. Finally, we draw our conclusions in Sec. V.

II. THE MODEL

We consider a one-dimensional system of 2M (M € N)
interacting spin-1/2 particles in the presence of a uniform
magnetic field. The interaction is of the isotropic and planar
(X X) Heisenberg form

( n n+1+ l+2h6 ) (1)

x 5Y 52

where (6;,6,, ,67) are the Pauli matrices for the spin at site n,
J is the homogeneous coupling, and /4 is the magnetic field.
The 2M lattice sites are labelled by the half-integer index
n=-M+ %, oM - % Correspondingly, the lattice bonds
are labeled by the integer index b = —-M + 1, ...,M, with
b = n+1/2 indicating the bond between sites n — 1 and n.
This notation allows the reflection symmetry with respect to
the impurity bond to emerge more clearly in many of the
following equations involving the correlation functions which,
on the other hand, refer to lattice sites. The enforcement
of the PBC conditions & Mn =0_ m+n makes Eq. (1) the
Hamiltonian of a ring.

We introduce a single bond impurity (BI) by varying the
exchange integral that generates the bond b =0, i.e., the

interaction strength between the two spins on sites n = —%

andn = % (which we will refer to as the impurity spins). This
implies adding the term

N J—j ,

o= (60,61 + 6

6

) @)

I

to the translation-invariant Hamiltonian in Eq. (1). Throughout
the rest of the paper, we assume J = 1 as the energy unit. The
resulting system 7{ = F{o + H; is illustrated in Fig. 1, where j
gives the coupling strength and j =1 (j = 0) corresponds
to the well-known 2M-PBC (2M-OBC) spin chains [24].
For every value that differs from the two cases above, we
diagonalize the Hamiltonian as follows.

The total Hamiltonian o + #; can be mapped via the
Jordan-Wigner transformation [24] into

M3
A=— > (&l 60 +He +2héle,)
n:—M+%
—(=D(eley +He), 3)
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FIG. 1. (Color online) A ring of interacting spin-1/2 particles, all
coupled through an X X model, includes a bond defect: While all spin
pairs (n,n + 1) with n # —1/2 are mutually interacting with strength
J, the pair (—1/2,1/2) experiences the strength j. The spins are all
subjected to a homogeneous magnetic field .

where {c, ,cjl} are the fermionic destruction and creation oper-
ators. As translation symmetry is broken for j # 1, a Fourier
transform does not diagonalize Eq. (3). It is nevertheless
possible to solve the model analytically by making use of
a Green function approach [25,26]. The key steps of this
procedure are outlined in Appendix A and the diagonalized
Hamiltonian in the thermodynamic limit finally reads

N Tdk | oaia At oA ata
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The first term represents the intraband contributions and we
have introduced the operators

~ 1 .

bo=—== ) e """+ fun)én, (5)
77

which annihilate fermions with energy Ej; = 2(cosk — h).

Here, the functions f, account for the spatial distortion of

the intraband excitations as

fk — { 2sin |k|—i(j2—1)ell if kn >0 ©
) 2(j—1)sin k|2 =Dek . .
2sin [k|—i(j2—1)elHl if kn <0

Such distortion is evidently due to the BI (f;, = 0 for j = 1)
and is responsible for the oscillations observed in the cor-
relations, as discussed in the following section. The second
term of Eq. (4) accounts for two discrete-energy eigenstates
E. which appear only for j > I; their energies are Ey =
—2h £ (j+1/j), above and below the band, respectively. They
correspond to excitations that, once expressed in terms of direct
lattice-site fermionic operators, take the form

fe = /sinhg Y (&)"TreMe,, (7)

with g = In j being the reciprocal of the localization length.
Let us now compare the behavior of the system in the two
extreme cases of j = 0 and j — oo. First, one can easily see
that for kn <0 in both cases one has f;, = —1, namely the
impurity acts as a purely reflective barrier yielding complete
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backscattering. On the other hand, for kn > 0 the distortions of
the in-band excitations in the two limits read f,, = —e!Gk"£IkD,
respectively. It follows that for j — oo the distortion at the
impurity sites is fk’% = fk’,% = —1, meaning that these sites
completely decouple from the rest of the system, their state
being exclusively determined by the two, now completely

localized, out-of-band states |Ey) = %@(03 F cT_l)|0); as they
2 2

do not take part in the dynamics, the spins at sites n = £3/2
take the role of head and tail of a segment of length 2M — 2.
Of course, for j = 0 the resulting segment has length 2M . This
argument suggests that one Bl can indeed change the boundary
conditions from PBC to OBC. In other terms, a segment can
be obtained not only by actually cutting the ring (j = 0) but
also by making the interaction between the spins sitting at sites
n = +1/2 strong enough with respect to the coupling between
all the other nearest-neighbor spins (j >> 1), as to effectively
decouple them from the rest of the system.

In the next section we further explore this idea in the
case M — oo, where the availability of the analytical results
presented here allows us, through a straightforward application
of Wick’s theorem [24], to exactly evaluate two-points correla-
tions functions, concurrence and quantum discord [20-22]. We
focus on the possibility that the efficiency of the ring-cutting
mechanism described above holds for moderately large values
of j.

III. EFFECTIVE RING-CUTTING MECHANISM:
STUDY OF THE TWO-POINT FUNCTIONS

In this section we study the effects of the BI on two-point
functions, i.e., quantities relative to spin pairs. As far as we only
consider pairs of nearest-neighbor spins, such quantities can be
labelled by the integer bond-index b representing the distance
in lattice spacings from the BI, according to O, ,+1 = O,
with b =n + 1/2. We first analyze the nearest-neighbor
magnetic correlations g,"“ = (020, ) (e = x,z). For any
J # 1, Friedel-like oscillations appear and induce a spatial
modulation of the correlations with periodicity p = w/kp,
where kr = cos™! & is the Fermi momentum. In Fig. 2 we
consider i = 0, corresponding to p = 2, and study g, against
the value of b for various choices of j. The presence of the
BI modifies the strength of correlations and the following
relations (b is an integer) clearly emerge:

859G < D] < 1g**( = DI < |g5;%( > 1)

)

852, < D] > 1g%“G = DI > |g5:5,( > 1

where the bond-index dependence is omitted for j = 1, as in
the uniform case PBC guarantee translation invariance. From
the above inequalities we deduce that the results corresponding
to the limit j — co cannot be possibly related with the
behavior of the segment obtained by an actual cut, i.e., what is
found by setting j = 0.Indeed, g;"*(00) in general differs from
g, *(0). In fact, as already mentioned at the end of the above
section, we expect the j — oo limit to reproduce the behavior
of a segment with head and tail at n = +£3/2, i.e., b = £2.
Therefore, in all those cases for which the actual value of M
is not relevant, such as in the thermodynamic limit considered
here, the meaningful comparison to be performed involves
8, %(j =0) and g% (j — 00). In order to quantitatively

’
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FIG. 2. (Color online) Correlators (6;6,7, ) (top) and (676, )
(bottom) for j = 0,0.5,0.8,1.5,2,11 (corresponding to increasing
absolute values for n41/2 even). The straight lines correspond to
the correlators in the PBC case, j = 1. For j =11 the data are
indistinguishable from the OBC limit.

check to what extent a model with large j can be actually
considered to behave as a segment, in Fig. 3 we compare g5
and g3"* for increasing values of j. Clearly, the correlations
along x and z almost match the values corresponding to a
true segment already for j > 8, confirming that an effective
ring-cutting mechanism takes place.
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FIG. 3. (Color online) The nearest-neighbor correlation functions
(6,6,,,) and (676, ) corresponding to the second and third bond
after the defect, vs j. The xx (zz) correlators take positive (negative)
values; their absolute value increases (decreases) with j forn = 3/2
(n = 5/2). The dashed lines show that the third-bond correlators at
Jj — oo behave as the second-bond correlators of the open chain,

ie., j=0.
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FIG. 4. (Color online) QD and CC (normalized with respect to
the j = 1 value) plotted vs j for the two spins at sites £3/2, i.e.,
sitting at opposite sides of the impurity. Cutting the chain affects
both quantum and classical correlations in an essentially identical
way. Inset: Log-log plot of QD and CC (here indistinguishable) vs j,
showing that they obey a j 2 scaling law, which is in fact independent
of the distance of the sites.

In order to provide an all-round characterization of our
proposal, we now complement the analysis performed above
by addressing the leakage of information out of head and
tail of the segment effectively obtained by increasing j. We
quantify the extent of such leakage by addressing the values
taken by both classical correlations (CC) and quantum discord
(QD) [20-22,27] across the impurity, i.e., between two spins
sitting on opposite sides with respect to the BI, normalized by
their respective values for j = 1.

The results corresponding to considering the spins at sites
n = +£3/2 are shown in Fig. 4. Both CC and QD across
the BI are nonmonotonic functions of the strength j. For
small values of j, both rapidly grow. On the other hand,
the range j > 1 corresponds to the monotonic decrease of
all forms of correlations, thus demonstrating that the ring
is effectively cut. Remarkably, for j 2 1, CC and QD are
larger than their value at j = 1. This is due to the spread of
the localized state over these sites, yielding an enhancement
similar to that reported in Refs. [15,16,18], to which we refer
for a detailed discussion. CC and QD behave in very similar
ways, decaying asymptotically, for j >> 1, as j 2 (cf. the inset
of Fig. 4). This power-law decay stems from the behavior
of the magnetic correlations. In fact, these enter both the
expression of the concurrence [cf. Eq. (9) below] and those
of QD and CC (which are not reported here as too lengthy
to be informative). In particular, by considering Egs. (5) and
(6) in the j > 1 limit, and evaluating by standard methods
the magnetic correlation functions (as done, for instance,
in Ref. [24]), we find that (6,/6,,) = O(j~(nl+ImDy " whereas
(6:65) =0(j ~2), regardless of the relative distance between
the spins. As a consequence, the scaling law j 2 reported in
the inset of Fig. 4 originates from the correlations along the
z axis and is thus independent of the site separation. On the
contrary, the correlation functions along the x axis shown in
Fig. 3(a) do depend on the distance, as reported above.
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FIG. 5. (Color online) Nearest-neighbor concurrence C, ,; for
Jj = 6 vs the bond index n + % Panels (a) and (b) are for 4 = 0.5,
% respectively. The straight dashed line shows the value of the
concurrence at j = 1. The magnetic field sets the periodicity of the
one- and two-point spin correlators, which enter the concurrence, to
p = 3,4 respectively.

We conclude this section by briefly discussing how, by
tuning the intensity of the impurity strength, it is possible to
exploit the Friedel oscillations in order to spatially modulate
the concurrence [28] between neighboring spins. In Fig. 5 we
show the nearest-neighbor concurrence for j = 6 at different
values of . Analytically, the concurrence C, ,, depends on the
magnetic correlation functions as [29]

Com=max[0,(67 ®67) — 1/(8%)" = (s5)°], 9

with §%2 =1+ (67 ® 67) ands;s, = (67) + (6,5). The values
of C,,, achieved in our system are the same as those of an
open-boundary spin chain in the presence of a strong magnetic
field on a single spin [16,30]. Moreover, we notice the presence
of a periodic spatial modulation (with respect to the value of
concurrence achieved for PBC), determined by the periodicity
p = m/cos™! h of the Friedel oscillations, as reported also for
different impurity types in Refs. [15,17].

IV. EFFECTIVE RING-CUTTING MECHANISM:
ANALYSIS OF THE STATE FIDELITY

In order to further verify the efficiency of the proposed
mechanism, we now take a different point of view and consider
a global figure of merit from which we can obtain indications
on the similarity between the state of the cut ring and that of
a true segment. As a description of the state of the former,
we choose the reduced density matrix p = Tr,_, 1[|€2)(2]]
of a 2(M — 1) spin system where the impurity spins have
been traced out of the ring. As for the state of a segment,
which embodies our target state, we take the pure state |X)
of a system of 2(M — 1) spins with OBC. As a measure of
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closeness between two quantum states we use the quantum
fidelity [23] F(|X),p) = (X]|p|E).

The ground state of a free-fermion model such as the one
in Eq. (3) is given by

=[] &0, (10)

k:Ex <0

for which all the negative-energy eigenstates up to the Fermi
energy Ej, =0 are occupied by a fermionic quasiparticle,
whereas positive-energy levels are empty. As a consequence,
states with a different number of fermions yield zero fidelity.
As the number of fermions in the Dirac sea is given by the
intensity of the magnetic field #, which sets the Fermi mo-
mentum, we will compare the actual state of the cut ring with
a target state for the same value of the applied magnetic field.
A somewhat lengthy but otherwise straightforward calculation
based on the use of Wick’s theorem shows that F depends on
the submatrices of the transformation mapping the real-space
fermions ¢, to those diagonalizing the Hamiltonian in the case
of Eq. (4) (the target model) forn = —-M+1/2,... M—1/2
and k < kp. Some details of this derivation are sketched in
Appendix B.

In Fig. 6 the fidelity is shown as a function of j > 1
for different values of 4 and M. As a perturbative analysis
suggests, for j >> 1 the ground state of our model tends to
the factorized state [W").1 ® |w)_s 3, where |¥7F),1 is
a Bell state of the spins across the BI, while lw) 3 .3 is
a pure state of the rest of the system. Figure 6 shows that,
almost independently of the magnetic field value, the mixed
state of the reduced system is almost indistinguishable from
the target state for relatively small values of the impurity
strength. As far as finite-size effects are involved, we note
that the shorter the ring, the lower the value of j needed for
cutting it, although differences decrease with increasing j and
h [see Figs. 6(a)-6(c)]. On the other hand, for 2 > 1 finite-size
effects are almost absent but for j < 2 [cf. Fig. 6(d)]. This can
be easily explained by noticing that the target state is fully
polarized, | Z) = |0)®2™ -1 while the ground state of the ring
is |2) = Z‘I |0). When the localization length ¢! is less than
the length of the ring 2M, by taking into account Eq. (7) we
get that the spins located at a distance d > ¢~ are, for all
practical purposes, in state |0). As a consequence, considering
longer chains will not affect substantially the value of the
fidelity due to the presence in the ground state of our model
of only a single localized mode. This is at variance with the
case h < 1 where the extended (distorted) eigenstates given
by Eq. (5), spread all over the chain. Therefore, for i > 1 the
length of the ring does not play a significant role. Moreover,
the analytical expression for the fidelity in the thermodynamic
limitreads F = 1 — =2 = 1 — 1/j2.Itis worth noticing that,
for all practical purposes, the thermodynamic limit is already
reached when the length of the chain exceeds the localization
length ¢~! = 1/(In j). Finally, for arbitrarily large values of
h, the target state does not change because the X X Heisenberg
model enters the saturated phase. In addition, as the localized
mode is independent of 4, the ground state of our model is
invariant for 2 > 1. This yields the very same behavior of the
fidelity for 2 > 1 as that reported in Fig. 6(d).
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FIG. 6. (Color online) Fidelity F(|X),p) between the reduced
state p of our model and the pure state |X) of a linear chain with
the same number of spins by varying the coupling strength j > 1 at
different values of the magnetic field 4 = 0, %,%,1 [panels (a), (b),
(c), and (d) respectively]. We have taken M = 10,100,1000 in all
panels. The dashed line shows the behavior of the function 1 — 1/;2,
which matches the thermodynamic limit of the state fidelity at large

magnetic fields.

V. CONCLUSIONS

We have shown that, by means of a BI, it is possible
to turn a spin chain with PBC into an open boundary one.
The XX impurity model has been solved analytically in the
thermodynamical limit and two-points magnetic correlations
functions, as well as CC and QD, have been shown to decay
to zero for spin residing across the BI already for a relatively
modest value of the impurity strength. The analogous figures
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of merit for pairs of spins residing on the same side of the
BI take values approaching those of a chain with OBC. For
finite, yet arbitrarily large, spin chains, the fidelity between
the ground state of a chain including all the spins but those
coupled by the BI and an open chain of the same size, has
been adopted in order to confirm the validity of the approach
discussed here. It follows that impurity bonds can be used in
otherwise translation-invariant systems as a means to achieve
an effective cutting of the spin chain at the desired point. The
full analytical treatment provided here allows for an exact
quantification of the cutting quality.

This result shows the possibility, via impurity bonds, to
break up physical systems with a ring topology or to cut
long chains in smaller ones by different specific techniques
depending on the actual physical implementation, such as
chemical doping in molecular spin arrays [4,5], site-dependent
modulation of the trapping laser in cold atoms or ions systems
[6], or spatial displacement of an optical cavity in an array [7].
This could be exploited in order to make some systems more
useful for quantum-state transfer, where often a necessary
requisite consists in an addressable head and tail as well as
in the finiteness of the quantum data bus. Finally, tuning the
values of the impurity strength within j € [0,10] is sufficient
to investigate the emergence of edge effects, such as total
or partial wave function backscattering which, by choosing
an appropriate uniform magnetic field, spatially modulate the
spin correlations functions.
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APPENDIX A: DIAGONALIZATION
OF THE HAMILTONIAN

We introduce the 2M discretized wave vectors k = wf/M
(¢ =—M+1,...,M) and the fermionic operators

1 k
é= ke, Al)
=5 zﬂ: (

corresponding to excitations of energy Ej = 2(cosk — h).
States with one fermionic excitation of (unperturbed) energy
Ey are |k) = ¢;|0), where |0) is the fermionic vacuum state.
In this appendix, the analysis is restricted to the single particle
sector of the full Fock state, spanned by these states. Due to the
noninteracting form of the Hamiltonian, the diagonalization
performed in this one-particle sector allows us to straightfor-
wardly obtain the full many-fermion energy eigen-states. The
Green operator of the unperturbed (one-particle) Hamiltonian
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is thus defined as

Go(z) =

) (kl(z € C). (A2)

=)=

k

In the thermodynamic limit (M — o0), the summation is
changed into an integral and the discrete energies E; become
a continuous energy band. The matrix elements of the Green
operator in the lattice position space read

(—x + +/x2 = 1)l
2/x2 =1

(—x % i/1T = x2Z)ln=ml
+2i/1—x2

where x = z/2 + h, while I, = [-2h—2, — 2h 4+ 2] is the
unperturbed energy band. The Green operator G(z) associ-
ated with the (one-particle restriction of) the Hamiltonian
in Eq. (3) can be now obtained by the relation
G(z) = Go(z)—l—Go(z)T(z)Go(z) where the matrix 7'(z) =
(Zz O[HIGo(z)] )HI can be analytlcally summed up to all
terms. Finally, the knowledge of G(z) allows us to obtain the
whole (single-particle) spectrum of the Hamiltonian, which
consists of the above-mentioned energy band and a pair of
out-of-band discrete energy eigenstates, which are simple
poles of G(z) appearing only for j > 1. In order to obtain
the corresponding eigenstates, we use the relation |Wg) =
[]1~|—(A}ar (E )f”“(E )]|k) for the continuous in-band states, which
describe distorted spin waves of the system that are built
from the unperturbed ones by including the corrections due
to the scattering from the defect and described by the retarded
Green operator Go+(z) and the T(z) operator. The Schrodinger
equation of the full problem is then solved by using an
appropriate Ansatz for the two discrete out-of-band energy
eigenstates [26].

Go(n,m;z) =

for z ¢ I,
(A3)

Gy(n,m;z) = for z € I,

APPENDIX B: RING CUT FIDELITY

The ring cut fidelity is easily obtained from the explicit
expression of the ground states (10). In order to elucidate
the main steps of this derivation let us consider two sets of
Fermi operators gx = ), VinCu, & = > Ukn€,. The fidelity
between two Dirac seas follows then from Wick’s theorem,

K

ol e Tebo - {M F KR e
=1 k=1
Gue = (0] e | kanuk/ (B2)
The ring cutting fidelity then reads
F = (2| Tr,_s1 [12) (QU1])
= (S + |(Sle_ )]
+[(Elea 1D + [(Sle_se @), ®B3)

where |X) refers to the state | %) extended to the larger Fock
space of 2M Fermions. Each term of the above sum is then
evaluated from (B1) with a suitable choice of the matrices V
and U.
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