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Partial multipartite entanglement in the matrix product state formalism
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We present a method to apply the well-known matrix product state formalism to partially separable states
in solid-state systems. The computational effort of our method is equal to the effort of the standard density
matrix renormalization group (DMRG) algorithm. Consequently, it is applicable to all the usually considered
condensed-matter systems where the DMRG algorithm is successful. We also show in exemplary cases that
polymerization properties of ground states are closely connected to properties of partial separability, even if the
ground state itself is not partially separable.
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I. INTRODUCTION

Academically speaking, entanglement is one of the most
fundamentally nonclassical features of quantum mechanics
and as such is highly important to the foundations of modern
physics, e.g., in high-energy physics [1,2]. In a more practical
view, entanglement is most relevant in two distinct respects:
technological applications (such as quantum cryptography
[3,4] or future quantum computers [5–7]), and its (still widely
unknown) role in nature. The latter has attracted a high degree
of attention in recent years: it has, e.g., been speculated
that entanglement might be involved in the extraordinary
efficiency of photosynthetic light-harvesting complexes [8]
or geographical orientation of birds [9]. It has even been
suggested that entanglement might play a significant role in
processes as macroscopic as evolution as a whole [10].

While these examples are still more speculation than scien-
tific reality, it has been conclusively shown that entanglement
is indeed closely related to macroscopic properties of more
simple systems in solid-state physics, such as spin chains
or crystal lattices [11]. For example, frustration [12] of or
certain phase transitions [13] in such systems are known to be
connected to their entanglement properties.

While generic entanglement has been studied quite ex-
tensively in the context of condensed matter since the turn
of the century (see, e.g., [14–22]), only a very few works
address questions concerning partial (in)separability or gen-
uine multipartite entanglement [23–27]. In Ref. [23] partial
(in)separability was first mentioned but not elaborated. The
authors of Ref. [24] introduced macroscopic observables (such
as energy) that are capable of detecting genuine multipartite
entanglement (GME) or partial inseparability via comparing
the minimal energy of the ground state to the minimal
energy when optimized over the set of partial separable
states. The obtained GME-gap or partial-entanglement-gap
energy works well in a wide variety of systems, the only
requirement being that the ground states are not separable.
However, for large numbers of particles this approach becomes
computationally highly demanding. In Ref. [25] the authors
investigated the XY model in an external magnetic field where
analytical solutions of the ground states are known, allowing
direct application of criteria detecting genuine multipartite
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entanglement. In another recent publication [26] the genuine
tripartite entanglement of the anisotropic XXZ spin model
was analyzed by applying properly constructed entanglement
witnesses. In Ref. [27] the behavior of genuine multipartite
entanglement of paradigmatic frustrated quantum spin systems
was investigated by using a geometric measure.

The aim of this work is to contribute to this field by adapting
existing methods for investigating solid-state systems, namely,
the matrix product state (MPS) formalism, to problems of
partial separability in these systems. In particular we provide
a tool that allows us to investigate the relation between typical
properties, such as polymerization, and properties of states,
i.e., partial separability. The article is organized as follows:
in the upcoming section, basic definitions of entanglement,
the MPS formalism, and solid-state systems will be reviewed.
After that, we can present our main result, which is a method
to use the MPS formalism to investigate partial separability
in solid-state systems. We then present and discuss illustrative
examples before the paper is concluded.

II. DEFINITIONS

One of the most common problems in many-body physics
is finding the ground-state energy for a given Hamiltonian H.
This task can be approached by means of the MPS formalism,
in which a general state |�〉 is given in the MPS basis

|�〉 =
∑

s1,s2,...,sn

|s1,s2, . . . ,sn〉Tr
(
A1

s1
A2

s2
· · · An

sn

)
, (1)

where each sum runs over the respective subsystem (i.e., from
0 to d − 1 for a d-dimensional subsystem) and Ai

si
are D × D

dimensional matrices. Here, D is the bond dimension, i.e., the
virtual dimension of the subsystems (for more details on the
MPS formalism basics, see, e.g., Ref. [28]).

Using this representation of |�〉, the expectation value
〈�|H|�〉 can be computed in a very efficient manner using
the density matrix renormalization group (DMRG) algorithm
[29]. In particular, the computational complexity of such
optimizations is linear in the number n of subsystems, as each
Ai

si
can be optimized essentially individually.

Despite its simplicity the concept of partial separability
turned out to be a meaningful one in respect to a classification
scheme for multipartite entanglement [30]. Moreover, most
complications only arise for mixed states, which are of no
concern to the issues addressed in this work. Consequently, we
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will only discuss the much simpler and illustrative pure-state
case.

An n-partite quantum state |�〉 is called k-separable iff it
can be written as a nontrivial k-fold product,

|�〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉, (2)

with 1 � k � n, where each of the factors |ψi〉 is a state of
one or several subsystems. If a state is separable under a
given k partition (as opposed to an unknown partition) γ =
{γ1,γ2, . . . ,γk} (with

⋃
i γi = {1,2, . . . ,n} and γi ∩ γj = {}

for i �= j ), it is called γk-separable. A state which does not
factorize at all (i.e., which is not two-separable) is called
genuinely multipartite entangled.

For example, the four-partite state

|�〉 = 1
2 (|0000〉 + |1001〉 + |0010〉 + |1011〉) (3)

is three-separable, as it can be written as |�〉 = |�+〉1,4 ⊗
|0〉2 ⊗ |+〉3. Consequently, it is also biseparable (as any two
of the three factors can be formally combined into one).
It is, however, not four-separable since there is no basis in
which the first and fourth subsystems factorize. Note that any
form of partial separability that is not full separability (i.e.,
n-separability) is equivalent to partial entanglement.

III. USING THE MPS FORMALISM FOR
PARTIAL SEPARABILITY

Since the MPS formalism relies on the state in question
being given in the MPS basis, a straightforward implemen-
tation of partial separability is impossible (as k-separability
is defined via the freedom of choice of local bases for
state vectors). However, the problem of minimizing the
energy 〈�|H|�〉 over only states with given separability
properties (instead of all states) can be approached by imposing
these separability constraints on the MPS structure before
optimizing.

For example, an n-partite state separable under the bipar-
tition {1,2, . . . ,x|x + 1,x + 2, . . . ,n} (for some 1 � x < n)
can be realized by setting the bond dimension D between sites
x and x + 1 to 1, thus forcing the state into two mutually
separable and independent blocks (note that in the case of
periodic boundary conditions, the bond dimension between
sites 1 and n also has to be reduced to 1 in this case). In
order to also be able to implement noncompact partitions (i.e.,
partitions where the parts do not form blocks but overlap,
such as {1,3,5, . . . |2,4,6, . . . }), the enumeration of sites can
be permuted accordingly in the Hamiltonian (as illustrated in
Fig. 1).

Using this approach, the set of states accessible to a MPS
can be effectively limited to all states separable under an
arbitrary partition. The computational complexity is reduced,
in contrast to the case with additional constraints.

IV. EXAMPLES

In order to investigate the connection between polymer-
ization and partial separability, let us introduce the partition
step parameter p, which uniquely defines the partitions we
want to investigate. Specifically, these partitions consist of
blocks of p sites, alternatingly allocated to two parts of a

FIG. 1. (Color online) Illustration of the scalar product 〈�|H|�〉
corresponding to the energy expectation value for a two-separable
state |�〉. Here, |�〉 is separable with respect to the partition γ =
{A1,A2, . . . ,Ax |B1,B2, . . . ,Bn−x}. The red (gray) squares correspond
to the Hamiltonian’s sites (reordered according to the partition γ ),
and the black squares correspond to the MPS’s sites. The horizontal
black lines connecting the MPS sites correspond to the virtual bonds
of dimension D, the two dotted lines depict one-dimensional bonds
which provide the desired separability properties, and the vertical
gray lines correspond to the physical d-dimensional indices.

bipartition. In other words the spin chain is split into n
p

blocks
of p subsystems each, where the first, third, and all other
odd-numbered blocks are separable from all even-numbered
blocks. In order to better simulate the thermodynamical limit
(i.e., many particles), there should always be equally many
even- and odd-numbered blocks, which implies that n should
always be an even multiple of p.

A. Dimerized Heisenberg model

As a first example, we consider the dimerized Heisenberg
model Hamiltonian

H =
∑

i

[1 − (−1)iδ]�si · �si+1 (4)

of a chain of n spin- 1
2 particles. For δ �= 0, the ground state

of this Hamiltonian is known to exhibit dimerization prop-
erties [31,32]. The different minimal energies for partitions
corresponding to different values of p are plotted in Fig. 2. As
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FIG. 2. (Color online) Minimal energies E for states with
different separability properties in the dimerized Heisenberg model of
n = 24 particles varied over δ. The black line depicts the ground-state
energy, while the colored dashed lines correspond to minimal energies
for biseparable states with different p ∈ {1,2,3,4}. The slight shift in
the peak of the ground-state energy curve and the slight change of the
p = 1 curve with δ are due to the open boundary conditions used in
these calculations.
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FIG. 3. (Color online) Minimal energies of biseparable states
for the BLBQ Hamiltonian for n = 12 spin-1 particles. The black
line depicts the ground-state energy, while the colored dashed lines
correspond to minimal energies for biseparable states with different
values p = 1,2,3.

expected, for δ → 1 (i.e., complete dimerization) the energies
for p = 2 and p = 4 coincide with the ground-state energy.
Moreover, in the entire range 0 < δ � 1 these energies are
very close to the ground-state energy, as each block of two
or four sites contains one or two pairs of dimerized particles,
respectively, and is thus optimally chosen (while, e.g., for
p = 3 there is one “unallocated” site in each block). Since for
δ < 0 the favored partitions are different (all site numbers are
shifted by one), these energies do not indicate polymerization
in this area. Whether such behavior of energies can be used as
a sufficient criterion for polymerization is not entirely clear;
however, it does appear to be a necessary condition.

B. Bilinear biquadratic model

An example with particularly interesting dimerization prop-
erties is the bilinear biquadratic (BLBQ) model Hamiltonian

H =
∑

〈i,j〉
[�Si · �Sj + α(�Si · �Sj )2] (5)

of a chain of spin-1 particles, where the sum runs over all
nearest-neighbor pairs. Such quantum magnetic systems can
be realized, e.g., by spinor atoms in an optical lattice, such
as 23Na with a total moment S = 1. By confining the atoms
to an optical lattice, there are two scattering channels for
identical atoms with total spin S = 0,2 which can be mapped
to an effective BLBQ spin interaction [33]. The Hamiltonian’s
ground state is known to possess a rich structure: it shows a
dimer structure for α < −1, a trimer structure for α > 1, and a
Haldane phase in between [34]. The model is Bethe ansatz [35]
solvable at the points α = ±1 and simplifies to the Affleck-
Kennedy-Lieb-Tasaki-(AKLT) Model [36] for α = 1/3.

The structure of the ground state is reflected in the
minimal energies for biseparable energies under the respective
partitions, as shown in Fig. 3. As expected, for α < −1
the partition p = 2 approaches the ground-state energy more
closely than the other partitions. For α > 1 the partition p = 3
is closest to the ground-state energy. The biggest deviation
from the ground-state energy is obtained for p = 1, where all
sites are separated from their nearest neighbors (the biggest

relative difference is achieved for negative values of α).
The behavior of the minimal energy function in the interval
α ∈ [0,1] is quite similar for all partitions into blocks and thus
does not conclusively reveal any deeper structures.

C. Higher separability

Our method can straightforwardly be applied to k-separable
states with k > 2 as well. Interesting examples arise, e.g., from
considering the same block structure as in the above figures,
characterized by the parameter p, and introducing additional
partitions such that each block of p sites is separable from
the rest of the chain (i.e., {1|2| · · · |n} for p = 1, {1,2|3,4| · · ·
|n − 1,n} for p = 2 and so on). The resulting states are thus
n
p

-separable.
Interestingly, in both examples above (Figs. 2 and 3), these

additional separability constraints do not alter the results at
all. While qualitatively similar curves are to be expected, their
being entirely identical to the results for biseparable states is
somewhat astonishing.

V. CONCLUSION

We presented a simple way to use the DMRG algorithm of
MPSs for partially separable states. This is done by imposing
a structure of mutually separable blocks on the MPS and
reordering the subsystems in the Hamiltonian according to
the desired partition. Compared to usual applications of the
DMRG algorithm, our method does not increase the compu-
tational effort since no external constraints are necessary (in
fact, the computational effort is even slightly reduced due to the
imposed one-dimensional bonds). As the convergence of the
DMRG algorithm is based on local Hamiltonians, it is worth
emphasizing that our method (based on essentially nonlocal
Hamiltonians) still converges in most cases. In particular,
having local blocks of a few sites each in the (otherwise
nonlocal) Hamiltonian appears to be more than sufficient for
fast convergence.

Applying our method to systems with known polymeriza-
tion features, we could find a direct connection between the
minimal energies attainable for states partially separable under
different partitions and these polymerization properties, even
in cases where the ground state itself is not separable at all.

In future applications, this method can also directly be
applied to multidimensional spin lattices using projected
entangled pair states [28] instead of MPS, thus allowing
for a deeper investigation of partial entanglement in more
complex and realistic systems. Our method has the potential
to reveal yet unknown connections between k-separability and
other properties, such as various phase transitions (since, in
particular, quantum phase transitions are connected to change
of properties of the states).
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APPENDIX: THE ALGORITHM

For completeness, we review the variational calculus with
MPS as it is used in our paper. The goal is to determine the
MPS

|�〉 =
∑

s1,s2,...,sn

|s1,s2, . . . ,sn〉Tr
(
A1

s1
A2

s2
· · · An

sn

)
,

with given dimensions Di × Di+1 of the matrices Ai
s , which

minimizes the energy

E = 〈�|H |�〉
〈�| � 〉 . (A1)

Di is set equal to 1 or D, depending on the chosen partition.
If the sites in one partition are not numbered consecutively,
the site indices in the Hamiltonian are permuted accordingly,
thus making the Hamiltonian nonlocal. Following Ref. [37],
the idea is to iteratively optimize the tensors Ai one by one
while fixing all the other ones until convergence is reached.
The crucial observation is the fact that the exact energy of
|�〉 (and also its normalization) is a quadratic function of
the components of the tensor Ai associated with one lattice

site i. Because of this, the optimal parameters Ai can simply
be found by solving a generalized eigenvalue problem.

The challenge that remains is to calculate the matrix pair
for which the generalized eigenvalues and eigenvectors will be
obtained. In principle, this is done by contracting all indices in
the expressions 〈�|H |�〉 and 〈�| � 〉 except those connecting
to Ai . By interpreting the tensor Ai as a dDiDi+1-dimensional
vector Ai , these expressions can be written as

〈�|H |�〉 = (Ai)†Hi Ai , (A2)

〈�| � 〉 = (Ai)†N i Ai . (A3)

Thus, the minimum of the energy is attained for the generalized
eigenvector Ai of the matrix pair (Hi ,N i) to the minimal
eigenvalue μ:

Hi Ai = μN i Ai .

The matrix Hi can be efficiently evaluated and N i can
be set equal to the identity by meeting the orthonormalization
conditions

∑
s(A

j
s )†Aj

s = 1 for j < i and
∑

s A
j
s (Aj

s )† = 1 for
j > i [28]. In this way, the optimal Ai can be determined, and
one can proceed with the next site, iterating the procedure until
convergence.
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