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We study decoy-state measurement-device-independent quantum key distribution using heralded single-photon
sources. This has the advantage that the observed error rate in the X basis is at higher order and not so large.
We calculate the key rate and transmission distance for two cases: one using only triggered events, and the other
using both triggered and nontriggered events. We compare the key rates of various protocols and find that our
scheme using triggered and nontriggered events can give a higher key rate and a longer secure distance. Moreover,
we also show the different behavior of our scheme when using different heralded single-photon sources, i.e., in
Poisson or thermal distributions. We demonstrate that the former can generate a higher secure key rate than the
latter and can thus work more efficiently in practical quantum key distributions.
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I. INTRODUCTION

It is well known that quantum key distribution (QKD)
stands out compared with conventional cryptography due to
its unconditional security based on the laws of physics. It
allows two legitimate users, say Alice and Bob, to share
secret keys even in the present of a malicious eavesdropper
Eve. But its security proofs often contain certain assumptions
either about the sources or about the detection systems, and
usually practical setups have imperfections. Therefore, the
in-principle unconditional security can actually conflict with
realistic implementations, and the imperfections might be
exploited by Eve to hack the system [1–4].

In order to achieve the final goal of unconditional security
in practice, different approaches have been proposed, such
as the decoy-state method [5–9], device-independent quantum
key distribution (DI-QKD) [10,11] and recently measurement-
device-independent quantum key distribution (MDI-QKD)
[12,13]. Among them, decoy-state MDI-QKD seems to be a
promising candidate considering its lower technical demands.

Decoy-state MDI-QKD has been studied extensively with
either infinitely many different intensities [12] or a few inten-
sities [14]. However, efficient decoy-state MDI-QKD with a
heralded source was not shown. We know that weak coherent
states (WCSs) have at least two drawbacks: one is the large vac-
uum component, and the other is the significant multiphoton
probabilities. The former leads to a rather limited transmission
distance, since the dark count contributes lots of bit-flip
errors for long distance. The latter results in a quite low key
generation rate. In the existing MDI-QKD setup [12,13], all de-
tections are done in the Z basis. There are events of two incident
photons presenting on the same side of the beam splitter and no
incident photon on the other side. Such a case can cause a quite
high observed error rate in the X basis. Although in principle
one can deduce the phase-flip error rate by comparison of the
observed error rates in the X basis for different groups of pulses
as shown in Ref. [14], the high error rate in the X basis can still
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greatly decrease the key rate in real implementations when we
take statistical fluctuations into account. Fortunately, besides
the WCSs, there is another easily implementable source,
the heralded single-photon source (HSPS). The source can
eliminate those drawbacks and give much better performance
than WCSs in the QKD [15,16], since the dark count can be
brought to a negligible level for a triggered source. Moreover,
the cause of the high error rate in the X basis does not exist for
a HSPS due to a high-order small probability for events with
two photons present on the same side of the beam splitter.

We also note that it is impossible to use an infinite number of
decoy states in a realistic MDI-QKD; therefore, people often
use one or two decoy states to estimate the behavior of the
vacuum, the single-photon, and the multiphoton states [8,15].

Here in this work, we study MDI-QKD with heralded
single-photon sources. A schematic of the method is shown in
Fig. 1. We use both triggered and nontriggered events of HSPSs
to precisely estimate the lower bound of the two-single-photon
contribution (Y11) and the upper bound of the quantum bit-error
rate (QBER) of two-single-photon pulses (e11). As a result, we
get a much longer transmission distance and a much higher key
generation rate compared with existing decoy-state MDI-QKD
methods [14], and come close to the result of infinitely many
different intensities. After presenting the schematic setup of the
method, we shall present formulas using Y11 and e11 for calcu-
lating the key rate in Sec. II. In Sec. III, we proceed numerical
simulations with practical parameters and compare the results
with existing schemes. Finally, we give conclusions in Sec. IV.

II. IMPROVED METHOD OF DECOY-STATE MDI-QKD
WITH HERALDED SOURCE

A. The method and formulas

We know that the state of a two-mode field from a
parametric down-conversion (PDC) source is [17,18]

|�〉T S =
∞∑

n=0

√
Pn |n〉T |n〉S ,

Pn(x) = xn

(1 + x)n+1 (�tc � �t),

052332-11050-2947/2013/88(5)/052332(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.052332


QIN WANG AND XIANG-BIN WANG PHYSICAL REVIEW A 88, 052332 (2013)

FIG. 1. (a) A schematic setup of the method. Alice and Bob
randomly prepare HSPSs from parametric down-conversion (PDC)
processes in a Bennett-Brassard 1984 (BB84) polarization state
with a polarization rotator (PR). Decoy states are generated by
changing the power of each pump laser with a modulator (MD).
Signal pulses from Alice and Bob interfere at a 50:50 beam
splitter (BS) and then each enters a polarizing beam splitter (PBS)
projecting the input photons into either horizontal (H) or vertical
(V) polarization states. Four single-photon detectors are employed
at the third party, Charlie’s side, to detect the results. Moreover,
both the triggered and nontriggered events at Alice’s and Bob’s sides
are sent to Charlie, and corresponding counting rates are recorded
individually.

or

Pn(x) = e−x xn

n!
(�tc � �t),

where |n〉 represents an n-photon state, and x is the intensity
(average photon number) of one mode. Mode T (trigger) is
detected by Alice or Bob, and mode S (signal) is sent out
to the untrusted third party (UTP). �tc is the coherence
time of the emission, and �t is the duration of the pump
pulse. As demonstrated in Refs. [19,20], we can get either
a thermal distribution or a Poisson distribution by adjusting
the experimental conditions, e.g., by changing the duration
of the pump pulses. Below, we will first use HSPSs with
Poisson distributions as an example to describe our MDI-
QKD scheme and then compare it with the case of thermal
distributions.

We denote by qυ
n the probability of triggering a count

at Alice or Bob’s detector when an n-photon state is
emitted,

qv
0 = dυ

and

qυ
n = 1 − (1 − dv)(1 − ηυ)n,

for i � 1. Here υ can be A (Alice) or B (Bob), and ηυ

and dυ are the detection efficiency and the dark count
rate at Alice’s (Bob’s) side, respectively. For simplicity, we
may omit the superscript or subscript v later if there is no
confusion. Then the corresponding nontriggering probability is
(1 − qn).

We request Alice (or Bob) to randomly change the intensity
of her (or his) pump light among three values, so that the
intensity of one mode is randomly changed among 0, μA (or
μB), and μ′

A (or μ′
B) (and μA < μ′

A, μB < μ′
B). We define

the subclass of source pulses in which Alice uses intensity

x, and Bob uses intensity y as source {x,y}, x ∈ {0,μA,μ′
A}

and y ∈ {0,μB,μ′
B}. After triggering detection, there are four

classes of states at each side from the two-mode fields of two
different intensities, as there are triggered and nontriggered
states for each intensity. In principle, here we have many
choices in implementing decoy-state MDI-QKD. For example,
we may use all events in both intensities; use only triggered
events of both intensities; or use triggered events in one
intensity and nontriggered events in the other. Here we shall
study the following two cases: (1) use of only triggered events
in both intensities; (2) use of nontriggered events from the
stronger field and triggered events from the weaker field for
the estimation of Y11, and then use of the triggered events from
the stronger pulses for the final key distillation. We declare that,
first, both cases can lead to a longer transmission distance than
that obtained using WCSs, and second, both the key rate and
the secure transmission distance in the second case are better
than in the first case.

As shown in Ref. [12], we use the rectilinear basis (Z) as
the key generation basis, and the diagonal basis (X) for error
testing only. We denote by YW,t

mn , SW,t
mn , and eW,t

mn the yield,
the gain, and the QBER of the triggered signals, respectively,
where n and m represent the numbers of photons sent by Alice
and Bob, and W represents the Z or X basis. Similarly, we also
define YW,nt

mn , SW,nt
mn , and eW,nt

mn as the corresponding values for
the nontriggered events. Note that the gain SW,t

x,y is defined as
nW,t

x,y /NW
x,y , if nW,t

x,y and NW
x,y are the number of detected events

after triggering at both sides and the number of total events (no
matter whether triggered or not) among the subclass of source
pulses for which Alice uses intensity x, Bob uses intensity y,
and both of them are prepared in basis W . A similar definition
is also used for SW,nt

x,y , the gain of nontriggered sources in
basis W . All gains can be directly experimentally observed
and thus are regarded as known values. The yield {YW,t

mn } is
defined as the the rate of producing a successful event for
a two-pulse state |m〉 ⊗ |n〉 prepared in the W basis after
triggering. A similar definition is also used for nontriggered
pulses. Asymptotically, we have YW,t

mn = YW,nt
mn . Therefore we

shall use only YW
mn for both of them. Note the the yield of YW

mn is
not directly observed in the experiment and our first major task
is to deduce the lower bound of YW

11 based on the known values
{SW,t

xy },{SW,nt
xy }. Here we assume that the decoy-state method is

implemented in different bases separately; therefore we shall
omit the superscript W hereafter provided that this does not
cause any confusion.

The un-normalized density matrix for a triggered event from
the two-mode field of intensity r is

ρt
r =

( ∞∑
0

qnPn(r) |n〉 〈n|
)

. (1)

Also, we have the following density matrix for a nontriggered
event at Alice’s side:

ρnt
r =

( ∞∑
0

(1 − qn)Pn(r) |n〉 〈n|
)

. (2)

Using the conclusions in Ref. [14], we can obtain the yield
of single-photon pairs once we know the source state. For
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triggered events, we have

St
x,y = S̃t

00 + ηAηBxe−xye−yY11 + ηAxe−x

∞∑
n=2

[1 − (1 − ηB)n]e−y yn

n!
Y1n + ηBye−y

∞∑
m=2

[1 − (1 − ηA)m]e−x xm

m!
Ym1

+
∞∑

m=2,n=2

e−x xm

m!
e−y yn

n!
[1 − (1 − ηA)m][1 − (1 − ηB)n]Ymn. (3)

Here S̃t
00 = LA + LB − L0, and LA = dBe−y

∑∞
m=0 [1 − (1 − dA)(1 − ηA)m]e−x xm

m! Ym0, LB = dAe−x
∑∞

n=0[1 −
(1 − dB)(1 − ηB)n]e−y yn

n! Y0n, L0 = dAdBe−xe−yY00. According to the definition of the gains above, one easily finds that
LA = St

x0, LB = St
0y , and L0 = St

00. All these gains are known values. Therefore, S̃t
00 = St

x0 + St
0y − St

00 is also a known value.
Similarly, we also have the following equation for the nontriggered events:

Snt
x,y = S̃nt

00 + (1 − ηA)(1 − ηB)xe−xye−yY11 + (1 − ηA)xe−x

∞∑
n=2

(1 − ηB)ne−y yn

n!
Y1n + (1 − ηB)ye−y

×
∞∑

m=2

(1 − ηA)me−x xm

m!
Ym1 +

∞∑
m=2,n=2

e−x xm

m!
e−y yn

n!
(1 − ηA)m(1 − ηB)nYmn, (4)

where S̃nt
00 = Snt

x0 + Snt
0y − Snt

00, and also Snt
x0 = (1 − dB)e−y

∑∞
m=0 [(1 − dA)(1 − ηA)m]e−x xm

m! Ym0, Snt
0y = (1 −

dA)e−x
∑∞

n=0 [(1 − dB)(1 − ηB)n]e−y yn

n! Y0n, Snt
00 = (1 − dA)(1 − dB)e−xe−yY00. They are regarded as known values. Now

let us use St
μ,μ and Snt

μ′,μ′ to estimate a tight bound on Y11. Denoting k = (1−ηA)(1−ηB )2

ηA[1−(1−ηB )2] (
μ′
μ

)3e2μ−2μ′
, and combining Eqs. (4) and

(3), we obtain

Y11 = k
(
St

μ,μ − S̃t
00

) − (
Snt

μ′,μ′ − S̃nt
00

) + K
[kηAηBμ2e−2μ − (1 − ηA)(1 − ηB)μ′2e−2μ′ ]

(5)

and

K =
∞∑

n=2

{
(1 − ηA)μ′e−2μ′

(1 − ηB)n
μ′n

n!
− kηAμe−2μ[1 − (1 − ηB)n]

μn

n!

}
Y1n

+
∞∑

m=2

{
(1 − ηB)μ′e−2μ′

(1 − ηA)m
μ′m

m!
− kηBμe−2μ[1 − (1 − ηA)m]

μm

m!

}
Ym1

+
∞∑

m=2,n=2

{
(1 − ηA)m(1 − ηB)ne−2μ′ μ′m

m!

μ′n

n!
− k[1 − (1 − ηA)m][1 − (1 − ηB)n]e−2μ μm

m!

μn

n!

}
Ymn. (6)

To lower-bound Y11 here, we can choose to set the following
simultaneous conditions:

[kηAηBμ2e−2μ − (1 − ηA)(1 − ηB)μ′2e−2μ′
] � 0, K � 0.

(7)

When both the conditions above are met, we have the following
inequality for the lower bound of Y11:

Y11 � YL
11 ≡ k

(
St

μ,μ − S̃t
00

)− (
Snt

μ′,μ′ − S̃nt
00

)
[kηAηBμ2e−2μ − (1 − ηA)(1 − ηB)μ′2e−2μ′ ]

.

(8)

Since the values of μ and μ′ can be chosen separately, the above
conditions can be easily satisfied in practice. In particular, in
the symmetric case that ηA = ηB = η, the conditions on Eq. (7)
reduce to

μ � (1 − η)μ′. (9)

For simplicity, we shall use such a condition for all calcula-
tions. Actually, directly applying Eqs. (16) and (2) of Ref. [14]
together with Eqs. (1) and (2) here can also lead to Eqs. (8)

and (9). This confirms Eqs. (8) and (9). Then the gains of the
two-single-photon pulses for the triggered and nontriggered
signals (μ′) are

St
11 = η2μ′2e−2μ′

Y11, (10)

Snt
11 = (1 − η)2μ′2e−2μ′

Y11. (11)

As mentioned above, we use two bases in this protocol, i.e.,
the Z basis and the X basis. We use the former to generate real
keys, and the latter only for error testing. After the error test,
we get the bit-flip error rates for the triggered and nontriggered
pulses as Et

μ,μ and Ent
μ′,μ′ . In order to calculate the final key

rate, we also need to know the phase-flip error rate of two-
single-photon pulses in the Z basis, i.e., eph,t

11 (or e
ph,nt

11 ), which
is equal to the bit-flip rate in the X basis, eX,t

11 (or e
X,nt
11 ), whose

values can be represented as

e
X,t
11 �

EX,t
μ,μSX,t

μ,μ − E
X,t
μ,0S

X,t
μ,0 − E

X,t
0,μS

X,t
0,μ + E

X,t
0,0 S

X,t
0,0

S
ω,t
11

≡ eX
a

(12)
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or

e
X,nt
11 �

E
X,nt
μ′,μ′S

X,nt
μ′,μ′ − E

X,nt
μ′,0 S

X,nt
μ′,0 − E

X,nt
0,μ′ S

X,nt
0,μ′ + E

X,nt
0,0 S

X,nt
0,0

S
ω,nt
11

≡ eX
b . (13)

Combining the two bounds, we have [21]

eX
11 � e

X,U
11 = min

{
eX
a ,eX

b

}
. (14)

Now we can calculate the final key generation rate for the
triggered signal pulses (μ′) as

Rt �
{
q2P 2

1 (μ′)YZ,t
11

[
1 − H2

(
eX

11

)]
− S

Z,t
μ′,μ′f

(
E

Z,t
μ′,μ′

)
H2

(
E

Z,t
μ′,μ′

)}
, (15)

where f (Eμ′) is a factor for the cost of error correction given
existing error correction systems in practice, and we assume
f = 1.16 here [12]. H2 (x) is the binary Shannon information
function, given by

H2 (x) = −x log2(x) − (1 − x) log2(1 − x).

We have not considered the effects of base mismatch in the
Bennett-Brassard 1984 (BB84) protocol [22]. Actually, one
can choose the basis in a biased way [23] and the effect can
vanish asymptotically. In fact, the nontriggered events and the
triggered events from weaker fields can also be used to distill
secret keys as shown in Ref. [24]. However, for simplicity,
in the following simulations we consider only the triggered
components from the stronger field.

III. NUMERICAL SIMULATION

With the formulas above, we can now numerically calculate
the key rate and compare the secret key generation rate of our
MDI-QKD scheme with those of existing methods [12,15].
Moreover, we will show the different results of our proposed
scheme using different HSPSs, i.e., with Poisson or thermal
distributions. Below, for simplicity, we assume that the UTP
is located midway between Alice and Bob, and the UTP’s
detectors are identical, i.e., they have the same dark count rate
and detection efficiency, and their detection efficiency does not
depend on the incoming signals.

We shall estimate what values would probably be observed
for the gains and error rates in normal cases using a linear
model [12,25] where the state |n〉〈n| from Alice changes to

n∑
k=0

Ck
nη

k(1 − η)n−k|k〉〈k|, (16)

where η is the transmittance from Alice to the UTP. Using
this model, we can set values (which probably would be
the observed values in experiments) for St

xy , Snt
xy , Et

xy , and
Ent

xy according to the transmission distance. After setting
these values, we can find the distance-dependent key rate via
Eq. (15). For this purpose, we have developed a general model
to simulate the probably observed gains and error rates and
hence the final key rate under a linear loss channel, given any
source state [25].

For a fair comparison, we use the same parameters as in
Refs. [12,26] (see Table I), except that Alice (Bob) uses an

TABLE I. Parameters used in numerical simulations: α is the
channel loss, ed is the misalignment probability, and dc and ηc are the
dark count rate and the detection efficiency per detector at the UTP’s
side, respectively.

α (dB/km) ed (%) dc ηc (%)

0.2 1.5 3 × 10−6 14.5

extra detector for heralding signals with a detection efficiency
of ηA (ηB) and dark count rate of dA (dB).

In practical implementations, people often use a nonde-
generate PDC process and obtain a visible and a telecom-
munication wavelength in modes T and S, respectively. To
simplify the simulations, we assume that both Alice and Bob
have the same silicon avalanche photodiodes. We do the
calculation for the conditions of detection ηA = ηB = 0.75
(or 0.9), and dA = dB = 10−6. At each distance, in order to
maximize the key generation rate, we set μ = (1 − η)μ′ and
use the optimal μ′ for the case of using both triggered and
nontriggered events; for other cases we set μ = 0.1 and use
the optimal value of μ′. Our simulation results are shown in
Figs. 2–4.

Figure 2(a) displays the comparison of the final key
generation rate between different schemes. The curve W0
is the case of using an infinite number of decoy states with
WCSs [12], W1 represents Wang’s three-decoy-state method
with WCSs [15], H01 (or H02) shows the asymptotic case with
HSPSs, and H1 (or H2) represents the result of our scheme
with triggered and nontriggered HSPSs. In the simulations
above, we use the optimal values of μ′ at each distance for
all the curves. The only difference is that, for the asymptotic
cases (W0, H01, and H02), the fraction of two-single-photon
counts and the QBER of two-single-photon pulses are known

(a)

(b)

FIG. 2. (Color online) (a) Comparison of the final key generation
rates vs distance between our proposed scheme and the ones in
Refs. [12] and [15]. W0, infinite intensities with WCSs [12]; W1,
three-intensity method with WCSs; H01 and H02, infinite intensities
with HSPSs; H1 and H2, our proposed method with triggered and
nontriggered HSPSs. (b) Optimal values of μ′ for each curve listed
in (a). The WCSs and the HSPSs used here are all in Poisson
distributions. We have chosen the heralding detection efficiency to
be 0.9 for curves H01 and H1, and 0.75 for curves H02 and H2.
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(a)

(b)

FIG. 3. (Color online) (a) Comparison of the final key generation
rates with HSPSs using different methods. H0, infinite intensities;
H1 a few intensities of this work; H2, key rates of a few intensities
using triggered events in sources of intensities μ and μ′ to calculate
Y11 [15]. The HSPSs used here are all in Poisson distributions.
(b) Corresponding optimal values of μ′ for all the lines in (a). We
have chosen all heralding detection efficiencies to be 0.75.

exactly; for the normal three-decoy-state case (W1), we use the
parameters shown in Table I and assume a reasonable value
for μ (0.1); while for our scheme (H1 and H2), we use the
same parameters as in Table I except that ηA = ηB = 0.9 (or
0.75), and borrow the relationship of μ and μ′ from Eq. (9).
Figure 2(b) shows corresponding optimal values of μ′ for each
curve in Fig. 2(a). In addition, the WCSs and HSPSs used here
are all in Poisson distributions.

Figures 3(a) and 3(b) show the comparison of our MDI-
QKD scheme with the normal three-decoy-state method [15]
using HSPSs. Figure 3(a) shows the the final key generation
rate vs transmission distance, and Fig. 3(b) corresponds to the
optimal values of μ′. The curves H0 and H1 correspond to the

(a)

(b)

FIG. 4. (Color online) (a) Comparison of the final key gener-
ation rates of MDI-QKD with HSPSs in different photon-number
distributions. H0, infinite intensities, Poisson distribution; H1, a few
intensities of this work, Poisson distribution; T0, infinite intensities,
thermal distribution; T1, a few intensities of this work, thermal
distribution. We have chosen all heralding detection efficiencies to
be 0.75.

asymptotic case with an infinite number of decoy states and
our scheme, respectively. H2 represents the result of using the
normal three-decoy-state method. Here the HSPSs used are all
in Poisson distributions.

Figures 4(a) and 4(b) describe the different behavior of our
MDI-QKD scheme when using HSPSs in different distribu-
tions. The curves H0 and H1 represent the results of using
the infinite-decoy-state method and our scheme, respectively,
both using HSPSs in Poisson distributions. The lines T0 and
T1 correspond to the results with thermal distributions.

From the comparison above we find the following:
(i) Our scheme of using triggered and nontriggered signals

can work excellently close to the asymptotic case with infinite
decoy states as in Figs. 2(a) and 2(b). This is due to the precise
estimation of the tight bounds on Y11 and e11 by using both
triggered and nontriggered signals.

(ii) Our MDI-QKD scheme with HSPSs can transmit over
a much longer distance compared with the one with WCSs
(>70 km here) as shown in Fig. 2(a), which benefits from the
substantial low-vacuum components in the heralded signals.

(iii) In our scheme, the HSPSs in Poisson distributions show
similar key generation rates as WCSs at short distances, and
much higher key rates at long distances as shown in Fig. 2(a).
This is attributed to a much higher optimal value of μ′ being
used, as shown in Fig. 2(b).

(iv) According to our calculation here, the protocol using
Eq. (8) can have a higher key rate than the one using only
triggered events, as shown in Fig. 3(a), because of a much
higher optimal value of μ′ being used as shown in Fig. 3(b).

(v) As in Refs. [17,27], the HSPS source with the Poisson
distribution has better performance than the one with the
thermal distribution as shown in Figs. 4(a) and 4(b). This
is because the Poisson distribution has a higher single-photon
probability.

In all our calculations, we did not normalize the triggered or
nontriggered states, e.g., Eqs. (1) and (2). Hence the gains and
the key rates calculated here are in units of the rate averaged
over all pumped events of a certain intensity in a certain basis.
For example, in the H and V basis, there are N ′

z times that
both Alice and Bob used stronger pump lights. Among these
events, they obtain N ′

tn events of triggering at both sides and
n′

tz successful events. Then the gain in our definition is n′
tz/N

′
z.

If we want the key rate averaged over the number of triggered
states, our results in each figure become several times larger,
since they should be multiplied by a factor 1/F , where F is
the normalization factor.

IV. CONCLUSIONS AND DISCUSSION

In summary, we have studied decoy-state MDI-QKD with
a heralded single-photon source. We show that this proposed
implementation offers a longer transmission distance com-
pared with existing realization methods. Therefore, it looks
promising for practical applications in the future.
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