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Single-qubit gates in frequency-crowded transmon systems
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Recent experimental work on superconducting transmon qubits in three-dimensional (3D) cavities shows
that their coherence times are increased by an order of magnitude compared to their two-dimensional cavity
counterparts. However, to take advantage of these coherence times while scaling up the number of qubits it is
advantageous to address individual qubits which are all coupled to the same 3D cavity fields. The challenge
in controlling this system comes from spectral crowding, where the leakage transition of qubits is close to
computational transitions in other qubits. Here, it is shown that fast pulses are possible which address single
qubits using two-quadrature control of the pulse envelope, while the derivative removal by adiabatic gate method of
Motzoi et al. [Phys. Rev. Lett. 103, 110501 (2009)] alone only gives marginal improvements over the conventional
Gaussian pulse shape. On the other hand, a first-order result using the Magnus expansion gives a fast analytical
pulse shape which gives a high-fidelity gate for a specific gate time, up to a phase factor on the second qubit.
Further numerical analysis corroborates these results and yields to even faster gates, showing that leakage-state
anharmonicity does not provide a fundamental quantum speed limit.
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I. INTRODUCTION

Superconducting qubits are a promising candidate for the
realization of a quantum computer [1–5], owing in large part
to the success of circuit QED (CQED), where those qubits are
coupled to microwave resonators [6–8]. There is a multitude
of designs of such qubits [2].

A key challenge for implementing quantum computing in
the solid state is decoherence from uncontrolled degrees of
freedom. Decoherence sources range from the electromagnetic
environment [9] to sources inherent to the material [10].
Remarkably, many of the material sources could be mitigated
by changes in the circuit layout such as the optimum working
point first embodied in the quantronium [11–14] and later in
the transmon [9] and the three-dimensional (3D) transmon
[15,16]. Coherence times have been improved by going from
the two-dimensional (2D) implementation of a qubit interact-
ing with a strip-line resonator [6] to a three-dimensional system
[15,16]. In the latter, a single Josephson-junction transmon
qubit [9,17] is placed inside a 3D cavity and addressed
with the surrounding microwave field. What is common to
these approaches is the trade-off of coherence against control
flexibility and ultimately operation speed. While this has been
studied in single quantronium [14], the precise trade-off is
not fully understood in samples containing multiple qubits, let
alone multiple 3D transmons.

The gain in coherence times comes at a cost in control-
lability. This is strongly felt when more than one qubit is in
the cavity. To create single-qubit operations each qubit must
be addressed individually, requiring them to have significantly
different energy splitting between the ground and first excited
states. Spectral crowding refers to transitions coming too close
to address them individually. Now with the limited control,
even if the logical transitions are well spaced, crowding can
occur between logical and leakage transitions, e.g., if the
logical transition of the first qubit is close in frequency to the
leakage transition (the transition between a computational and
a noncomputational state) of the second qubit. Thus, when

performing, e.g., an X̂ gate on the first qubit, leakage to
the second qubit’s |2〉 state will occur. Although high-fidelity
gates have been demonstrated with single-junction transmons
in the 2D architecture [18], spectral crowding will limit the
gate fidelity in 3D architectures. In order to mitigate spectral
overlap, the derivative removal by adiabatic gate (DRAG)
technique has been developed [19,20]. We will apply this
technique to the problem at hand and show that on its own it is
of limited success. We will then combine DRAG with sideband
drive to show a possibility to do these single-qubit gates fast.

In this work we thus address the issue of spectral crowding
with optimal control theory methods. To better illustrate the
problem and show the effectiveness of the analytical pulses
we introduce specific gate fidelity functions in Sec. III.
In Sec. IV we demonstrate the limitations of the DRAG
technique alone for this problem. We then present an analytical
pulse, found through the Magnus expansion [21], capable
of minimizing leakage out of the computational subspace
of both qubits in Sec. V. We then, in Sec. VI, show pulses
obtained numerically that show similar characteristics but,
with additional ingredients, improved fidelities.

II. SYSTEM

Optimized superconducting qubits such as 3D transmons
are well described by weakly anharmonic oscillators [19,22].
A realistic model of the qubit has to take at least one
extra noncomputational level (a leakage level) into account
[23–25]. This is reflected in the following Hamiltonian for
two superconducting transmon qubits in a common 3D cavity:

Ĥ (t) = Ĥ0 + ĤC(t)

=
2∑

k=1

[
ωkn̂k + �k�̂

(k)
2

]

+�(t)
2∑

j=1

[
λ

(1)
j σ̂

x(1)
j,j−1 + λ

(2)
j σ̂

x(2)
j,j−1

]
. (1)
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TABLE I. System parameters as shown in Eq. (1).

Qubit 1 Qubit 2 Units

ωk/2π 5.508 5.903 GHz
�/2π −350 −350 MHz

λ
(k)
1 1 1

λ
(k)
2

√
2

√
2

The 0 ↔ 1 transition frequency and number operator of
qubit k are, respectively, ωk and n̂k = ∑

j j |j 〉〈j |(k). We call
the transition from the excited state |1〉 to the extra state |2〉 the
leakage transition. It is detuned from ωk by the anharmonicity
�k . In the remainder of this work we assume �1 = �2 = �.
The projectors on the energy levels of transmon k are �̂

(k)
k =

|j 〉〈j |(k). The terms coupling adjacent energy levels of qubit k

are

σ̂
x(k)
j,j−1 = |j 〉〈j − 1|(k) + |j − 1〉〈j |(k)

and

σ̂
y(k)
j,j−1 = i|j 〉〈j − 1|(k) − i|j − 1〉〈j |(k).

�(t) is the drive field and is applied simultaneously to both
qubits. The strength at which �(t) drives the 1 ↔ 2 transition
relative to the 0 ↔ 1 transition is given by λ

(k)
j . Table I show

the variables and numerical values used in simulations [26].
Qubits are usually addressed by frequency selection

through pulses tuned to the respective qubit level splitting. This
is necessary whenever the control field cannot be selectively
focused on individual qubits, as is the case for multiple 3D
transmons in the same cavity. An eventual implementation of
a quantum computer will consist of many such qubits, probably
a whole register in one cavity. The problem of distinguishing
different qubits can thus be seen as a problem of spectral
crowding. In transmon systems this can lead to the 0 ↔ 1
transition of the first qubit being very close to the 1 ↔ 2
transition of the second qubit. The frequency difference of
these two transitions is named δ. With δ/2π = 45 MHz, the
leakage transition of qubit 2 is closer to the driving-field
frequency than the leakage transition of qubit 1 detuned by
�/2π = −350 MHz. The situation is depicted in Fig. 1.

Qubit 2

ω2

ω1+ δ

Δ

Qubit 1

ωdω1

Δ

FIG. 1. (Color online) Level diagram of the two qubits. The
driving field is set to have the same frequency as the 0 ↔ 1 transition
of the first qubit which we wish to drive. Requiring that the same
transition of the second qubit be far detuned results in its leakage
transition being only slightly detuned by δ with the 0 ↔ 1 transition
of first qubit.

The second term in Eq. (1) is the control Hamiltonian,
described as a semiclassical dipolar interaction between the
qubits and the classical cavity field,

�(t) = �X(t) cos(ωdt) + �Y (t) sin(ωdt). (2)

Both quadrature envelopes can be modulated separately. In the
reminder of this work, we assume resonance between the drive
and qubit 1, i.e., ωd = ω1. Single-quadrature pulses employ
Gaussian shapes �g due to their limited bandwidth [20]. To
remove fast oscillating terms we move to another reference
frame and invoke the rotating-wave approximation (RWA).
The transformation into an appropriate frame is accomplished
by the time-dependent unitary R̂ that acts on the Hamiltonian
as

ĤR = R̂Ĥ R̂† + i ˙̂RR̂†. (3)

Here, R̂(t) = (
∑

j e−iω
(1)
j t �̂

(1)
j ) ⊗ (

∑
j e−iω

(2)
j t �̂

(2)
j ). Transfor-

mations into this type of frame can lead to either the rotating
frame with respect to the drive ωd or the interaction frame by
choosing ω

(l)
j = jωd , ω

(l)
j = jω(l) + �

(l)
j , respectively. Here,

we choose the former. In the rotating frame, we use the RWA
to neglect the fast oscillating terms such as ±2ωd , and the
system’s original Hamiltonian given by (1) is

ĤR = ��̂
(1)
2 + (δ − �)�̂(2)

1 + δ�̂
(2)
2

+ �X(t)

2

2∑
j=1

[
λ

(1)
j σ̂

x(1)
j,j−1 + λ

(2)
j σ̂

x(2)
j,j−1

]

+ �Y (t)

2

2∑
j=1

[
λ

(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

]
. (4)

III. SINGLE-QUBIT GATES

We aim at applying, up to a global phase φ, a gate on the
first qubit without affecting the second one,

ÛF = eiφÛ (1) ⊗ 1. (5)

Unless otherwise specified, Û (1) is an X̂ gate. A specific control
pulse of duration tg results in a final gate given by Û (tg). The
fidelity with which a control pulse meets the target gate is
measured by

� = 1

d2
|Tr[ÛF

†
Û (tg)]|2, (6)

where d is the dimension of the Hilbert space of the system.
The trace is taken over the computational subspace consisting
of {|00〉,|01〉,|10〉,|11〉}. This takes leakage into account since
leaving this subspace diminishes the matrix elements of the
projected unitary [20,27].

We will also investigate single-qubit gates that shift the
phase of the second qubit. Such gates can be made more
efficiently, and we later show how to correct the phase. Such
gates can be studies using the reduced fidelity functions

�|∗,i〉 = 1

22
|Tr{|0,i〉,|1,i〉}[ÛF

†
Û (tg)]|2. (7)

The trace is taken over states where the second qubit is
exclusively in |0〉 or |1〉. A gate producing a good �|∗,i〉 has
qubit 2 starting and ending in state |i〉. The average of the
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�|∗,i〉’s gives a fidelity function insensitive to the phase of the
second qubit,

�avg = 1
2 (�|∗,0〉 + �|∗,1〉). (8)

In other words, �avg is maximal if Û (tg) (in the computational
subspace of the two qubits) has the form

Û (tg) = eiα

[
0 1

1 0

]
⊗

[
1 0

0 ei(γ−α)

]
. (9)

For a given gate time the phase error can be calculated and
subsequently corrected as this gate is not entangling. In fact,
an entangling gate would be detected by deteriorating �avg,
and given that the qubit controls are local and the two qubits
are uncoupled, no entanglement is generated.

IV. APPLYING DRAG

The DRAG method [19,20,28] strongly reduces leakage to
the |2〉 state with a two-quadrature drive. Here, we show that
this method does not provide a sizable improvement over a
single Gaussian envelope. We transform ĤR a second time
along the lines of Eq. (3) using the transformation matrix

V̂ (t) = exp

(
−i

�X

2β

2∑
j=1

[
λ

(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

])
. (10)

This is the two-qubit version of the DRAG transformation
[20,28]. The parameter β selects which transition is sup-
pressed. A first-order expansion in η = �X(t)/β � 1 gives

Ĥ V = Ĥdiag + ĤY + Ĥ
(1)
X + Ĥ

(2)
X . (11)

The diagonal terms are of O(η2); hence Ĥdiag is neglected on
our level of approximation. ĤY contains a term generated by
the time derivative in Eq. (3) as well as the Y drive:

ĤY =
(

�Y (t)

2
+ �̇X(t)

2β

) 2∑
j=1

[
λ

(1)
j σ̂

y(1)
j,j−1 + λ

(2)
j σ̂

y(2)
j,j−1

]
.

(12)

ĤY can be suppressed by choosing �Y (t) = −�̇X(t)/β. This
is the essence of the DRAG method [19]. The last two terms
drive the first and second qubits, respectively, according to

Ĥ
(1)
X (t) = �X(t)σ̂ x(1)

10 + λ
β − �

2β
�X(t)σ̂ x(1)

21

+ λ�

8β2
�X(t)2σ̂

x(1)
20 ,

Ĥ
(2)
X (t) = η

β − δ + �

2β
�X(t)σ̂ x(2)

10 + ηλ
β − δ

2β
�X(t)σ̂ x(2)

21

+ η2λ�

8β2
�2

X(t)σ̂ x(2)
20 .
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FIG. 2. (Color online) Error for a single control with a Gaussian
pulse shape as a function of gate time and a single quadrature (thin
lines) and for the DRAG method with β = � (thick lines). The DRAG
method gives only marginal improvements over the single-quadrature
Gaussian pulse shape for �avg, which is slightly lower at the dip
around 42 ns. The DRAG solution shown here is the optimal one
from picking β ε {�,δ,δ − �}.

Depending on the value of β, a specific off-resonant
transition can be suppressed. If β = δ, the second qubit
leakage transition is removed. However, since δ < � (by a
factor >7 for the numbers in Table I), the compensation
field �Y becomes large and strongly drives the other leakage
transitions, i.e., introduces errors of a size comparable to what
it is suppressing. Note that for fast pulses with β = δ the
perturbation expansion in [19,20,28] naturally breaks down.
Selecting β = � suppresses the leakage transition of the first
qubit but does not solve the leading spectral crowding issue
based on the smallness of δ. We are explicitly highlighting this
in Fig. 2. It shows the fidelity as a function of gate time for
the single-quadrature Gaussian (thin lines) and DRAG (thick
lines) solutions with β = �.

The difference between the fidelity function �, Eq. (6), and
the special fidelity functions �|∗,i〉 and �avg, Eqs. (7) and (8),
shows that while it is difficult to perform an X gate on qubit 1
without affecting qubit 2, we can implement a high-fidelity
X̂ gate with an additional phase shift on the other qubit for
tg > 42 ns. This marks a time limitation that for DRAG alone
to produce a high-fidelity gate the time needs to be at least on
the boundaries of the adiabatic regime.

V. MAGNUS EXPANSION

Here, we show how to find an improved pulse capable of
performing the desired gate faster and with better fidelity. The
full effect of system and Hamiltonian is described by the time
evolution operator

Û (tg) = T exp

{
−i

∫ tg

0
dt Ĥ (t)

}
, (13)

whereT is the time-ordering operator. This can, in general, not
be computed in closed form even for driven two-state systems
with notable exceptions [29]. Still being unitary, the solution
of Eq. (13) can be written as the exponential of a Hermitian
matrix [21]. An expansion in this effective Hamiltonian gives
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the Magnus expansion

U (tg) = e−i
∑

k �̂k (tg). (14)

The equation above still requires exponentiating a matrix.
However, the absence of time ordering considerably simplifies
the derivation of an explicit expression for Û . The Magnus
expansion is asymptotic. Here, it converges quickly as nested
integrals lead to cancellations of fast oscillating terms. The
constraints on the controls set by the zeroth order in the
expansion will thus be most important.

The first terms in the expansion are given by [21]

�̂0(tg) =
∫ tg

0
dtĤ (t),

(15)

�̂1(tg) = − i

2

∫ tg

0
dt2

∫ t2

0
dt1[Ĥ (t2),Ĥ (t1)].

Here, [Ĥ (t2),Ĥ (t1)] is the commutator of the Hamiltonian at
different times. Higher-order terms in the expansion can be
worked out as nested commutators similar to those shown
above.

We start with the system in the interaction frame
(the transformation is given in Sec. II)

Ĥ I = �C

2

2∑
j=1

[
λ

(1)
j e−iδ

(1)
j t |j − 1〉〈j |(1)

+ λ
(2)
j e−iδ

(2)
j t |j − 1〉〈j |(2)

] + H.c. (16)

Here, we have combined �C = �X + i�Y and set δ
(1)
1 = 0,

δ
(1)
2 = �,δ

(2)
1 = δ − �, and δ

(2)
2 = δ. In the interaction frame,

the Hamiltonian is purely off-diagonal, and the desired gate
is changed by a phase on the |1〉 state of the second
qubit. This phase is known since any unitary transforma-
tion V̂ (t) transforms the time evolution following ÛV (tg) =
V̂ (tg)Û (tg)V̂ †(0). In Eq. (17) UF transforms in this way. If the
zeroth-order term is to implement the gate, the control problem
becomes

ÛF = e−i�̂0 = e−i
∫ tg

0 dt Ĥ I (t). (17)

As an aside, this highlights why �0/tg is often called the aver-
age Hamiltonian and

∑
k �̂k(tg)/tg the effective Hamiltonian

in NMR [21]. This and the form Ĥ I impose restrictions on the
control �C :

1

2

∫ tg

0
dt �C = π, (18)

1

2

∫ tg

0
dt e−i�t�C = 0, (19)

1

2

∫ tg

0
dt e−iδt�C = 0, (20)

1

2

∫ tg

0
dt e−i(δ−�)t�C = 0. (21)

These constraints are the Fourier transforms of the control
evaluated at the different detunings in the system as is familiar
from spectroscopy at weak drive [21,30–32], but here derived

under intermediate to strong drive conditions. They state
that the control should contain no power at the off-resonant
frequencies. If �C is palindromic, the complex-conjugated
equations are also satisfied. If Eqs. (18)–(21) are met, the final
unitary evolution will be eiφσ̂x ⊗ 1.

So that the zeroth-order implements the gate, higher-order
terms have to be zero. Here is an example of the first-order
term �̂1. It only gives extra terms on the diagonal and the
0 ↔ 2 transition. This calculation is quite involved and here is
an example of the term involving |0,1〉〈0,1| (neglecting terms
oscillating faster than δ):

〈01|�̂1(tg)|01〉 = 1

4

∫ tg

0
dt2

∫ t2

0
dt1�(t1,t2)

×{1 + cos[δ(t1 − t2)] − sin[δ(t1 − t2)]},
(22)

with �(t1,t2) = �X(t2)�Y (t1) − �X(t1)�Y (t2). In the spirit of
the Magnus expansion, all slow oscillating terms have the form
above and are negligible if their integral is small. This suggests
a control pulse where �X is modulated with a sinusoidal
function:

�X = Aπe
− 1

2σ2 (t− tg

2 )2
{

1 − A cos

[
ωx

(
t − tg

2

)]}
,

�Y = − 1

β
�̇X. (23)

This is a Gaussian with added sideband modulation on the
in-phase part �x supplemented by DRAG on the quadrature
�y . A frequency modulation with cos(ωxt) for a bandwidth
of �g < 2ωx can be seen as adding an effective drive at ωx

proportional to �g . This added drive can be used to counteract
the population transfer of a specific transition. The absolute
errors of Eqs. (19)–(21) are minimized by varying A, ωx, β,
yielding a pulse with a sideband modulation of δ/2:

�X = Aπe
− 18

t2g
(t− tg

2 )2
{

1 − cos

[
δ

2

(
t − tg

2

)]}
,

�Y = − 1

2�
�̇X. (24)

Here, we chose σ = tg/6. The factor of 2 in the denominator of
�Y comes from the absence of control over the qubit frequency
[20]. This is shown experimentally in Refs. [33,34]. The pulse
is shown in Fig. 3 for tg = 17 ns and other parameters given
by the values in Table I. In order for the pulse to produce the
X gate, Aπ should be chosen so that relation (18) is satisfied.
Given the shape of the pulse, we nickname this shape weak
anharmonicity with average Hamiltonian (WAHWAH) [35].

A. Sideband modulation

The solid black line in Fig. 4 shows the error of pulse (24)
as a function of gate time. Compared to the Gaussian and
DRAG results, the error has a minimum (4%) at a shorter gate
time, around 20 ns. The reduced fidelity functions �|∗,i〉 (red
dot-dashed and blue double-dot-dashed lines) and �avg (gray
dashed line) give additional insight by allowing a phase shift
on qubit 2. Comparing to Fig. 2, it is seen that the sideband-
modulated pulse attains a high fidelity (>99.9%) in less than
half the time (17 compared to 42 ns) of the Gaussian or DRAG
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FIG. 3. (Color online) Example of the control functions of
Eq. (23) for tg = 17 ns. The amplitude of �x is somewhat smaller
than for a Gaussian-only pulse (which was used in Fig. 2).

solutions. The 1 ↔ 2 transition of the second qubit is still the
limiting factor since the reduced error 1 − �|∗,1〉 is always the
biggest. Nonetheless, for a specific gate time a high fidelity is
possible.

The state populations during the pulse reveal the underlying
mechanism. Figure 5 shows the populations for gate times of
17 and 20 ns. In the latter there is still a net population in the
|2〉 state of qubit 2 after the gate. For the former, there is no net
change to the second qubit at the end. This suggests that the
drive on the second qubit makes it perform a closed transition
cycle in the (|1〉,|2〉) subspace, thus acquiring a local phase.

Finally, we note in this section that the method worked out
here is not the only way to determine new analytical results
for pulse shapes. In general, the different terms of Eq. (14)
need to be combined into the correct gate in some manner,
whereas we have enforced that all terms in this combination
are of zeroth order, forcing all higher-order terms to vanish.
Our approach has the advantage that it produces an intuitive
result, providing frequency selectivity criteria equations (18),
(19), (20), and (21) in the form of the Fourier transform of the
driving pulse.
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FIG. 4. (Color online) Error as a function of gate time for the pulse
with sideband modulation. The target gate is σ̂x ⊗ 1. At tg ∼ 17 ns,
�avg reaches a maximum. The gate fidelity functions are defined in
Eqs. (6), (7), and (8), respectively.
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FIG. 5. (Color online) Populations of the states during the pulse
sequence of Eq. (24) for a gate time of (a) 17 ns and (b) 20 ns. At
20 ns the pulse sequence clearly leaves part of the excitation in the
{|1〉,|2〉} subspace of qubit 2, while at 17 ns the trajectory is optimal
in the sense that no net population transfer is present on qubit 2.

B. Phase correction

The average reduced fidelity (8) is insensitive to the phase
of the second qubit and leads to a gate of the form of Eq. (9).
This phase error does not influence population measurements
after the gate; only the X and Y components have different
contributions. The global phase α and the phase error γ for
specific gate times are plotted in Fig. 6. One can correct for
this error in multiple ways. If there is a Z control available on
the separate qubits [15], one can simply compensate the phase
following

π

2
=

∫
Z1(t)dt, α(tg) =

∫
Z2(t)dt. (25)

Instead of compensating the qubit phase, one can adjust the
phase of the next gate in the XY plane accordingly. This is
possible because the phase error is constant given a set gate
time, as shown in Fig. 6. In essence this is the same as changing
the frame in the XY plane according to

X′ = cos[α(tg)]X + sin[α(tg)]Y,
(26)

Y ′ = − sin[α(tg)]X + cos[α(tg)]Y.

This technique is analogous to phase ramping as described in
Refs. [19,20]. The phases in the leakage states are irrelevant;
it is thus sufficient to correct the computational subspaces of
the qubits individually.
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FIG. 6. (Color online) Phases as defined in Eq. (9) of the gate
with the control sequence from Eq. (24). It is by these phases that the
qubits or the subsequent gates need to be corrected.

C. Experimental protocol

The procedure to implement the pulse on an actual
experiment is as follows:

(i) Spectroscopy is used to determine the qubit frequencies,
yielding δ and �.

(ii) Equation (24) gives the shape of the pulses for all
possible gate times tg . The normalization parameter Aπ is
chosen so that the area theorem, Eq. (18), is satisfied, which,
in general, requires numerical root finding.

(iii) The gate time tg is chosen so that the pulse sequence
optimizes the reduced average fidelity defined by Eq. (8).

(iv) With the gate time known, the phase offset α(tg)
is computed, so that it can be corrected according to the
procedures given in Sec. V B.

VI. NUMERICAL OPTIMIZED CONTROLS

By using numerical methods one can go beyond the analytic
methods discussed in the last sections. Here, we discuss how
further improvements can be made with the gradient ascent
pulse engineering (GRAPE) algorithm.

A. GRAPE

To handle our system numerically we use the GRAPE
algorithm [36]. GRAPE maximizes the fidelity equation (6) by
changing the control amplitudes at discrete times. In discrete
time the evolution operator is given by Û (tg) = ∏

j Ûj , with

Ûj = exp[−iĤ (j�t)�t]. The fidelity is increased by updat-
ing the controls in the direction of the gradient �l(j ) = �

j

l →
�

j

l + ε∂�/∂�
j

l . An analytic expression for the gradient is
given in Ref. [37].

B. Numerical results

The system of Eq. (4) is numerically optimized using the
parameters in Table I. Figure 7 is an example of a short
(4 ns) high-fidelity (99.999%) GRAPE pulse. This pulse has
tg � π/δ, and therefore the smallest spectral crowding
frequency scale δ does not impose a quantum speed limit. The
limit rather seems to be set by the number of control parameters
available. For example, we have verified that if the size of a
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FIG. 7. (Color online) Example of a numerically optimized pulse
for gate time tg = 4 ns and �t = 10 ps. The pulses for shorter gate
times are highly oscillating. The �Y control is usually not proportional
to the derivative of �X , highlighting at least a higher order of
DRAG [19,20].

time step is 1 ns as in current experimental equipment, the
shortest possible time is 8 ns. From numerical results we have
not observed a quantum speed limit. By decreasing the gate
time the pulse can be shortened at the expense of higher ampli-
tudes. The pulse in Fig. 7 has large amplitudes at t = 0 and
t = tg . These can be removed by adding penalties to the
fidelity used by GRAPE [27]. Only a small increase in
gate time is usually needed to enforce that pulse sequences
start and end at zero amplitude. The numerical results show
that no speed limit is set by the overlap of the control field
in the frequency domain with different qubit transitions.
Additionally, numerical pulse sequences do not leave a
phase error on the second qubit, eliminating the need for
postprocessing. The pulse sequence presented in Fig. 7 is
an illustration of an extremely fast control. It highlights the
theoretical bounds of control speed in this system; however,
its bandwidth is larger than the capabilities of typical arbitrary
waveform generators (AWG). Optimizing pulses with longer
gate times in GRAPE results in controls with less spectral
weight at high frequencies. This can be seen in Fig. 8, which
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FIG. 8. (Color online) Solution found by GRAPE for a long gate
time; here, �t = 0.01 ns and tg = 130 ns. The dotted line shows a
rescaled version of the derivative of the �X control.
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FIG. 9. (Color online) Study of the effect of errors on the pulse.
The error amplitude �� is the standard deviation of the Gaussian
distribution used to add noise to the pixels. The pixel dilation is the
percentage by which each pixel length is varied.

is much slower but has almost all its spectral power below
500 MHz.

Numerical pulses are designed by gradient ascent; thus
optimal pulses enjoy the property ∇kj� 
 0, i.e., the first
derivative of the fidelity with respect to control k and pixel j

of the optimal solution is small, ideally zero if the optimum
is found [38,39]. In practice, one still has to investigate the
sensitivity against timing and amplitude errors. To study this
we dilate the length of each pixel by an amount η, i.e., �t →
η�t , and add white Gaussian noise to the amplitude of each
pixel. The standard deviation of the noise is σnoise. The fidelity,
averaged over the different noise realizations, is shown in
Fig. 9. The region of high fidelity (� > 99.9%) indicates that
the pulse is somewhat robust against parameter uncertainty, in
particular against slight errors in the pulse amplitudes. This is
particularly important if the AWG implementing the pulse is
digital.

To get insight into the shape of the solutions we run
the GRAPE algorithm for short time steps and longer gate
times to increase the resolution of the discrete time Fourier
transform (DTFT). These solutions show rapid oscillations
(Figs. 8 and 10). The DTFT of the pulse sequence shows that
both quadrature components have contributions at the energy
splittings δ, δ − �, �,2δ − �. This shows that the numerical
solution augments the one based on the Magnus expansion by
adding small further sideband drives.

When one goes to shorter gate times, however, Fourier
analysis shows that the contribution of the higher-frequency
components increases, making the Fourier transform less
useful due to the lower frequency resolution. For faster pulses
one could suggest that adding more sideband modulations
could improve the results further.
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FIG. 10. (Color online) Fourier transform of the pulse shown in
Fig. 8 found by GRAPE.

VII. CONCLUSION

We have found numerical as well as analytical pulse shapes
implementing single-qubit gates in a 3D cavity coupled to two
single-junction transmons. Such qubits are typically hindered
by spectral crowding, whereby leakage transitions lie close
in frequency to main qubit 0 ↔ 1 transitions. We combine
average Hamiltonian theory for arbitrary waveforms with the
DRAG methodology, which shows that it is possible to find
better controls using a sideband modulation.

Numerically optimized pulses support this conclusion and
provide greater improvements in fidelity. They show that
qubits can still be addressed individually with short gate times.
Faster control pulses require more bandwidth and amplitude;
therefore the limiting factor is the capabilities of the arbitrary
waveform generator. No speed limit has been observed in
numerically optimized pulses, which is contrary to the belief
that spectral crowding limits the scalability of the 3D cavity
architecture in CQED.
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