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Time-energy trade-off in unambiguous-state-discrimination positive operator-valued measures
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Unambiguous-nonorthogonal-state discrimination has a fundamental importance in quantum information.
Moreover, it can be used for entanglement distillation and secure communication. The discrimination is carried
out by a positive operator-valued measure (POVM) generalized measurement, which is typically implemented by
coupling the system to an ancilla. We find a trade-off between the needed energy resources and the evolution time
needed to implement the POVM and express it in terms of an actionlike cost inequality. We find the realization
that minimizes this actionlike cost and show that, in this case, the cost is determined by the maximal population
transfer from the system to the ancilla. We demonstrate our findings in an example of a three-level system coupled
to a laser.
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I. INTRODUCTION

The ability to discriminate and to separate nonorthogonal
states can be used to construct simple secure quantum commu-
nication protocols [1,2] and entanglement distillation schemes
[3,4]. Furthermore, investigation of this ability, commonly
referred to as unambiguous state discrimination (USD), has
led to a deeper understanding of what information can be
extracted from a quantum system and at what probabilistic
cost (Refs. [3,5–8], and references therein).

In an ideal USD, a system is prepared randomly in one
of a set of prior known nonorthogonal states. The goal is
to detect the state of the system with zero error probability.
In this paper, we study the time-energy resources needed to
implement a given USD task. Clearly, both energy and time
are of prime importance when it comes to a realization in
a specific physical system. For example, excessive external
energy (e.g., laser light) eventually may lead to overheating,
and/or recoil, whereas, long evolution times may expose the
system to decoherence effects.

Nonstationary processes in quantum mechanics involve an
intrinsic energy cost that is inversely proportional to the time
duration of the process. The exact relation, however, depends
on the details of the process. Anandan and Aharonov [9]
established a relation between the energy variance of the
Hamiltonian and the rotation time of a state in Hilbert space
(e.g., spin-1/2 flips). A more general relation between the
norm action of the Hamiltonian and the evolution operator
of a process was derived by Lidar et al. [10]. A similar
result holds for systems with absorption (loss of probability)
[11]. In this paper, we derive the time-energy constraint
for the fundamental quantum process of unambiguous-state
discrimination.

Although USD of nonorthogonal states cannot be realized
by standard (von Neumann) projective measurements (without
dilating the Hilbert space), it can be implemented without
errors by a generalized measurement known as the posi-
tive operator-valued measure (POVM) [5,12]. Unfortunately,
POVM implementation of USD inherently involves some
nonzero probability of obtaining an inconclusive result from
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which the input state cannot be inferred. The inconclusive
result probability depends on the degree of nonorthogonality
of the input states.

In this paper, we consider the unitary embedding POVM
scheme [13–18] where the system subspace is coupled to
ancillary levels by a unitary evolution and the state detection
is carried out by standard von Neuman measurement in
the system subspace only. Here, we quantify the minimal
time-energy resources associated with the unitary evolution
in this scheme. According to the Neumark dilation theorem
[5], a POVM can also be implemented directly as a von
Neumann measurement in a larger Hilbert space (without
a premeasurement evolution). However, if we require that
the conclusive measurement results appear exclusively in the
original system subspace as in the unitary embedding scheme,
a unitary evolution must be applied after the measurement.
We show that the cost of the postmeasurement “information
concentrating” unitary is exactly equal to the unitary evolution
cost in the unitary embedding scheme described above. In
the unitary embedding scheme, we find that the minimal
time-energy cost is determined by the maximal population
transfer from the system subspace to the ancilla subspace.

Note that previous studies about resources of unitary
evolution, such as Ref. [10], cannot immediately be applied
to the unitary embedding scheme studied here since the
USD process provides only partial information on the unitary
evolution operator. Finally, we comment that USD requires
other resources besides energy. For example, the entanglement
cost of a general rank-1 POVM embedding was studied in
Ref. [19].

II. BACKGROUND AND PRELIMINARIES

A. USD POVM and lossy evolution

In a POVM measurement, each measurement result “i”
is associated with a positive operator Fi . Given a density
matrix ρ, the probability to get the result i is pi = tr (ρFi).
For a USD of N nonorthogonal states in a Hilbert space of
dimension N , the {Fi}Ni=1 rank-1 operators are constructed
from the bi-orthogonal basis [20]. An additional operator (that
is typically not rank 1) is defined as FN+1 = I − ∑N

n=1 Fn,
and it describes the inconclusive result. Huttner et al. [13]
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first suggested and experimentally demonstrated that USD
POVM can be implemented by a lossy evolution. Recently,
the equivalence between USD POVM and lossy evolution
was further studied [20]. An N -level state evolving under
a lossy evolution operator K satisfies: |ψfinal〉 = K|ψinitial〉
where K ∈ CN×N is not a unitary operator. Such an evolution
does not conserve the angle between states. This fact can
be exploited in order to transform the nonorthogonal states
at the input to orthogonal states at the output. Once the
states are orthogonal, they can be discriminated without errors
using a regular projective measurement. The inherent losses
in the system make the detection probability smaller than
1. This probability loss is mathematically equivalent to the
inconclusive result in the POVM formalism. In fact, any USD
POVM {Fi}N+1

i=1 can be associated with a lossy evolution
operator and vice versa [20]. Apart from the practical value
of this equivalence for USD realization, the lossy evolution
approach has theoretical merits as well. In particular, it was
shown in Ref. [4] that the singular values of the lossy evolution
operator capture the essence of USD and can be used to reveal
interesting insights into multiple USDs.

B. Embedding of a lossy evolution

There are two different ways of implementing a lossy evolu-
tion as defined above. The first is to find a system described by
some effective non-Hermitian Hamiltonian [21] that includes
losses (e.g., optics with non-negligible absorption). The other
way is to consider the evolution of a closed unitary system
and to measure the evolution outcomes only in a subsystem.
Assume that, initially, the total probability of finding a particle
in a subsystem is unity. After a unitary evolution of the whole
system is completed, the total probability in the subsystem is
typically less than 1. From the point of view of the subsystem,
the evolution is lossy. We refer to this second implementation
as unitary embedding. The resources needed to implement the
first scheme were studied in Ref. [11]. In this paper, we focus
on the embedding scheme. Let K be a lossy evolution operator
that implements some desired USD POVM, and let |ψ〉 ∈ CN

be the input state. The embedding scheme we use is as follows:

U

( |ψ〉
0

)
=

(
K B

C D

) ( |ψ〉
0

)
=

(
K|ψ〉
C|ψ〉

) } System
} Ancilla

. (1)

The conclusive discrimination results are contained in the
first N levels so, in principle, the ancilla levels need not be
measured for USD. The ancilla levels may be, for example,
some additional atomic levels (see the example below and
Ref. [22]) or auxiliary waveguides in optics. There are many
degrees of freedom in choosing B, C, and D. The USD POVM
at hand determines K up to a multiplication by a unitary matrix
from the left. Given only K , our goal is to find the choice
that minimizes the time-energy resources defined in the next
section.

C. Resources and norm action

Let U be some unitary evolution operator generated by a
Hamiltonian H so that i d

dt
U = HU . The construction of H

requires some physical resources, such as a magnetic field
or coupling to laser radiation. To quantify the resources, the

Hamiltonian must be mapped to a scalar. Here, we use unitarily
invariant matrix norms for this purpose for the following
reasons. First, it is natural to demand that a measure of
resources will satisfy the defining properties of a norm [23].
Second, unitary invariance ensures that the resources are
independent of the basis in which the Hamiltonian is expressed.
Third, we will use an important result concerning unitarily
invariant norms of the Hamiltonian [10]. Therefore, to quantify
the time-energy cost, we will use the norm action that is defined
as the time integral over the Hamiltonian norm. From the result
of Ref. [10], it follows that the norm action satisfies

∫ T

0
‖H (t)‖dt � ‖ ln U (T )‖, (2)

where, in the ln, the angles belong to the branch (−π,π ] and
‖ · ‖ may refer to any unitarily invariant matrix norm. When the
Hamiltonian is time independent, the norm action integral on
the left-hand side (LHS) of (2) reduces to time × energy, and
the inequality becomes an equality. In this case, U = e−iH0T ,
where H0 is the generating Hamiltonian and T is the duration
of the evolution. At this point, it is still not clear what is the em-
bedding U that yields a minimal norm action, but it is clear that
this embedding must be generated by some time-independent
Hamiltonian H0. Actionlike quantities have been used before
to analyze quantum evolution [24]. Unless stated otherwise,
in this paper, we will use the spectral norm [23]. It has a
clear physical interpretation [11,25], and it leads to compact
and comprehensible results. The spectral norm of a matrix
A ∈ CN×N is the largest singular value of A. The singular
values si of A are as follows: {si} =

√
eigenvalues [A†A], and

therefore, ‖A‖ = smax = max(
√

eigenvalues [A†A]).
The fact that lossy systems cannot amplify the amplitude

of any state manifests itself in the condition ‖K‖ � 1
[11]. If ‖K‖ = 1, the system is called “marginally passive”
[11]. Finally, when applied to (Hermitian) Hamiltonians,
the spectral norm is equal to the largest absolute-valued
energy (eigenvalue) of the Hamiltonian. This gives a clear
time × energy interpretation to the norm action integral on the
LHS of (2).

III. TIME-ENERGY COST OF UNITARY EMBEDDING

Our strategy of finding the USD-generating Hamiltonian
with the minimal possible norm action is the following. We
start by finding an explicit expression for the norm action
associated with a specific embedding choice of a general
USD task. Next, we show that this choice is the norm
action minimizer among all possible unitary embeddings
implementing the same USD task.

Until stated otherwise, we will assume that the number of
ancilla levels and the number of system levels is equal. This
is enough to allow the embedding of the most general lossy
evolution operator. Using the polar decomposition of blocks
K and D, any unitary U can be written as a product of two
unitaries V and W , where V is a block-diagonal unitary and
W is a positive diagonal block unitary,

U = V W, (3)
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V =
(

us 0
0 ua

)
, W =

(K B
C D

)
. (4)

us and ua are unitaries which operate on the system and
ancilla space, respectively. K and D are positive matrices.
For K,D > 0, the unitarity constraints and the singular value
decomposition of each block lead to the following general
form:

W =
(

uK cos �u
†
K −iuK sin �u

†
D

−iuD sin �u
†
K uD cos �u

†
D

)
, (5)

where � is a positive diagonal matrix satisfying

0 � �ii � π/2. (6)

The uK and uD are unitaries whose column vectors are
the orthogonal eigenstates of the positive K’s and D’s,
respectively. Each of the blocks is now written in terms of its
singular vectors, and therefore, the diagonal matrices cos �

and sin � contain the singular values of blocks K,D and of
blocksB,C, respectively (or, alternatively, K,D and B,C). The
time-independent Hamiltonian that generates W is given by

HW = Hopt = 1

T

(
0 uK�u

†
D

uD�u
†
K 0

)
. (7)

We write Hopt since, later on, we show that HW is the
most efficient Hamiltonian that implements the desired USD
characterized by K . A similar Hamiltonian has been used
before in Ref. [18] for probabilistic evolution and for POVM
embedding in Refs. [15,16]. Here, however, we focus on the
resources of embedding. Furthermore, in our scheme, it is
critical that 0 � �ii � π/2 so that K and D are positive. As
will be explained later, this is necessary for optimality. By
inspecting H †H , it is easy to verify that

‖Hopt‖T = max(�ii) = arcsin(‖B‖). (8)

Or, in terms of the smallest singular value of K (or K), which
is directly determined by the USD POVM,

‖Hopt‖T = arcsin
(√

1 − s2
min

)
. (9)

The quantity 1 − s2
min is the maximal population transfer from

the system to the ancilla.

A. W requires the lowest possible Hamiltonian resources

The goal of this section is to show that W requires the
minimal norm action for the given USD task. Let us try to
better understand the relation among the Hamiltonian H, U ,
and K. An input state |ψin〉 is transformed by W according
to (1). W rotates this vector in Hilbert space. From the overlap
of the initial and final states, we can obtain the rotation angle
in Hilbert space,

cos � = |〈ψin|ψout〉| = |〈ψin|K|ψin〉|. (10)

Since K is positive, the maximal angle is obtained for the
singular vector |ψmin〉 associated with the minimal singular
vector. Using |ψin〉 = |ψmin〉 in (10), we get cos �max,K = smin,
or

�max,K = arcsin
√

1 − s2
min, (11)

which is exactly equal to (9). Furthermore, from the Hamilto-
nian variance [9,25], one can show that

� �
∫ ∣∣∣∣d�

dt

∣∣∣∣dt �
∫

‖H‖dt. (12)

Applying this to �max,K, we get∫
‖H‖dt � arcsin

√
1 − s2

min. (13)

However, forK,D > 0 and the time-independent Hamiltonian,
we have already shown that there is an equality (9). This
provides a very intuitive picture of our claim. The needed
resources in this embedding are determined by the state that
experiences the largest population transfer to the ancilla.

To achieve the goal of the section, we will show that, when
applying an extra block diagonal unitary V , |ψmin〉 leads to a
larger rotation in Hilbert space compared to the previous case
(and, consequently, more norm action resources are needed).
We repeat (10) but this time add a unitary us that operates on
the system subspace and obtain

cos �new = |〈ψmin|usK|ψmin〉| � |〈ψmin|us |ψmin〉|smin,

(14)

which is always smaller than smin and, therefore, �new >

�max ,K. Using inequality (12), once again, we get∫ ‖Hnew‖dt � �new � arcsin
√

1 − s2
min or stated in a differ-

ent way using (9), ∫
‖Hnew‖dt � HoptT . (15)

Repeating this for states that populate only the ancilla and
using the fact that blocks K and D have the same smin, we
get that any block-diagonal rotation of the form V (3) only
increases the Hamiltonian resources with respect to the Hopt

that generates W . The same claim can be proved for the
Hilbert-Schmidt norm (‖A‖HS =

√∑
ij |Aij |2 =

√
tr(A†A) =√∑

s2
i ). The optimal Hamiltonian is the same, but in expres-

sion (9) for the norm action, the right-hand side is replaced by√
2
∑N

i=1(arcsin
√

1 − s2
i )2 .

B. The dimension of the ancilla

In principle, the ancilla dimension (the number of levels)
Na does not have to be equal to the dimension of the system
Ns . Let us start with the Na = Ns case and see that Na can
be changed without any effect on the norm action as long
as it still implements the same K. The off-diagonal blocks
of the Hamiltonian (7) have dimensions Na × Na . However,
if M singular values of K are equal to 1, the upper right
block will contain M zero columns, and the bottom left block
will contain M zero rows. Cropping out the zeros, rows,
and columns, the new dimension of the reduced unitary is
[2Ns − M] × [2Ns − M], which means that only Ns − M

ancilla levels are needed for the embedding. The converse
of this claim is that, if Na = Ns − M , then there are at
least M singular values of K that are equal to 1. Note that,
even if one singular value is equal to 1, the lossy evolution
operator K must be marginally passive. An interesting case is
Na = 1 where only one singular value is different from 1. The
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inconclusive result POVM operator, in this case, is a rank-1
matrix. Consequently, when an inconclusive result is obtained,
the state of the system contains zero information on the input
state (see Sec. III B of Ref. [4]). The Na > Ns case can be
analyzed by replacing the states in uD in (7) by orthogonal
vectors of dimension Na > Ns (so that uD has Ns row and Na

columns). This just adds zeros to the singular values of Hopt.
Hence, extending the ancilla dimension in this way does not
change the norm action with respect to the optimal Na = Ns .

C. Relation to Neumark dilation

Using tensor product notation for the Na = Ns case, the
embedding scheme can be written as

pk = tr{U (ρin ⊗ ρ↑)U †(πk ⊗ ρ↑)}, (16)

ρ↑ = |↑〉〈↑| =
(

1 0
0 0

)
, (17)

where πk’s are von Neumann projection operators in the
system subspace. Equation (16) can also be written as

pk = tr{(ρin ⊗ ρ↑)�k}, (18)

�k = U †(πk ⊗ ρ↑)U, (19)

where �k’s are projection operators in the total system-ancilla
space. These extended projectors constitute a realization of
Neumark dilation. Despite this intimate relation between
Neumark dilation and lossy evolution, they differ significantly
when it comes to implementation and to the nature of the
measurement needed to extract the conclusive information.
In the embedding scheme, after the measurement, all the
conclusive results are described by the conclusive density
matrix,

ρLossy
c =

Ns∑
k=1

pkπk ⊗ ρ↑, (20)

so only the system levels need to be measured. In contrast, in
the Neumark scheme, the conclusive density matrix is

ρNeumark
c =

Ns∑
k=1

pk�k, (21)

and therefore, typically, Ns + Na levels must be measured.
The fact that the conclusive results are contained in a smaller
space is very useful since USD processes can be analyzed by
studying the properties of KNs×Ns

only [4].
In contrast to the minimal norm action found above (9),

it appears that the Neumark scheme requires no norm action
since a projective measurement �k is immediately carried out
on the input states without any prior evolution. The reason
for the resource’s discordance stems from the fact that the
information is encoded differently in the two schemes as
explained above. In the lossy evolution, the conclusive results
are contained in the N system levels, whereas, in the Neumark
approach, the same information is contained in Ns + Na

levels. To concentrate the conclusive Neumark detections to
N levels (as in the lossy evolution scheme), another unitary
must be applied to the system after the measurement has been
completed. That is, we want to transform �k in the Neumark

conclusive density matrix to πk ⊗ ρ↑. This transformation
is exactly U . Hence, the minimal cost of concentrating the
conclusive Neumark information to N levels is exactly equal
to the minimal cost of the unitary embedding scheme (9).

IV. AN EXAMPLE—USD IN AN ATOMIC SYSTEM
COUPLED TO A LASER

In this section, we wish to explicitly show a USD realization
where a laser field is used to select the normalized nonorthog-
onal input states |α±〉 ∈ C2 that the system can discriminate.
Our goal is to relate the laser and system parameters to the
given input vectors |α±〉 and to evaluate the needed resources in
terms of physical quantities (e.g., the laser power). Consider a
three-level atomic system in a time-dependent external electric
field ε(t) (a laser). The first and second levels are dipole
coupled to the third level but not coupled to each other. The
Hamiltonian is as follows:

H0 =
⎛
⎝ E1 0 d1ε(t)

0 E2 d2ε(t)
d∗

1 ε(t) d∗
2 ε(t) E3

⎞
⎠, (22)

where the di are the dipole coupling coefficients. Setting the
time-dependent electric field to be ε(t) = a1 cos[(E3 − E1)t +
ϕ1] + a2 cos[(E3 − E2)t + ϕ2] and applying the rotating-wave
approximation (RWA), we get

HRWA =
⎛
⎝ 0 0 A1

0 0 A2

A∗
1 A∗

2 0

⎞
⎠, (23)

where Ai = di

2 aie
−iϕi . HRWA has the form of Hopt (7), so the

final result will be expressed in terms of the equality (9) rather
than (13). Levels one and two will constitute the system,
whereas, the third level will be used as an ancilla. Note
that the rotated state is related to the actual state via |ψ〉 =
exp[−i diag{E1,E2,E3}]|ψRWA〉. However, this rotation has a
block-diagonal structure with respect to the system and the
ancilla, and therefore, this transformation will not effect the
orthogonality of the final states in the system subspace. Notice
that the given input states |α±〉 do not populate the ancilla level.

The relation between the singular values of K and the two-
state USD was studied in Ref. [4]. The singular values and the
angle between |α±〉 must satisfy tan φ

2 = smin
smax

where cos φ =
|〈α−|α+〉|. Since smax = 1 in this problem, we use the result

of Ref. [4] and get smin =
√

1−|〈α+|α−〉|
1+|〈α+|α−〉| . The weighted laser

amplitudes A1,A2 are given by the first and second components
of the vector |α+〉+|α−〉

2smin
in the standard basis. After calculating

the spectral norm of HRWA, we use (9) and get

T
√

|A1|2 + |A2|2 = arcsin

√
2|〈α+|α−〉|

1 + |〈α+|α−〉| , (24)

where |A1|2 + |A2|2 is the optical power weighted by the
dipole coefficients (in larger systems, the Hilbert-Schmidt
norm should be used to keep the optical power interpretation of
the norm). This trade-off relation between time and effective
optical power (|A1|2 + |A2|2) demonstrates the main point of
this article: The time × energy cost of implementing the dis-
crimination grows when the overlap of the input states is larger.

052327-4



TIME-ENERGY TRADE-OFF IN UNAMBIGUOUS-STATE- . . . PHYSICAL REVIEW A 88, 052327 (2013)

Although more complicated coupling can be studied along
the same lines, here we choose the simplest couplings that
provide general two-state discrimination. Furthermore, this
choice requires the minimal possible resources needed for two-
state discrimination in the unitary embedding scheme.

V. CONCLUSION

In this article, we have shown that the unitary embedding
of a USD POVM has an intrinsic time × energy cost which

depends on the degree of nonorthogonality of the input
states. We have found that the lowest possible embedding
cost is obtained when the diagonal blocks of the unitary are
positive. Physically, this optimal cost is determined by the
maximal population transfer from the system to the ancilla. The
optimal time-energy cost depends only on the singular values
associated with the desired USD and not on the size of the
ancilla. As shown in the example studied above, this cost has a
clear physical significance, and we expect the results obtained
here to become useful in any specific USD realization.
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