
PHYSICAL REVIEW A 88, 052326 (2013)

Robust control of quantum gates via sequential convex programming
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Resource trade-offs can often be established by solving an appropriate robust optimization problem for a
variety of scenarios involving constraints on optimization variables and uncertainties. Using an approach based
on sequential convex programming, we demonstrate that quantum gate transformations can be made substantially
robust against uncertainties while simultaneously using limited resources of control amplitude and bandwidth.
Achieving such a high degree of robustness requires a quantitative model that specifies the range and character of
the uncertainties. Using a model of a controlled one-qubit system for illustrative simulations, we identify robust
control fields for a universal gate set and explore the trade-off between the worst-case gate fidelity and the field
fluence. Our results demonstrate that, even for this simple model, there exists a rich variety of control design
possibilities. In addition, we study the effect of noise represented by a stochastic uncertainty model.
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I. INTRODUCTION

Robust control and robust optimization of uncertain systems
are essential in many areas of science and engineering [1–8].
Recently, there has been much interest in achieving robust
control of quantum information systems in the presence
of uncertainty [9–40]. An important property of quantum
information processing that distinguishes it from most other
applications is the requirement for an unprecedented degree
of precision in controlling the system dynamics. Also, due
to the very fast time scale of physical processes in the
quantum realm, implementing closed-loop feedback control
is extremely difficult and thus open-loop control arises as the
most feasible option in most circumstances.

For quantum information systems, a robust optimization
problem can be formulated as a search for design variables
θ ∈ � (where � is the design set) that maximize a measure of
quantum gate fidelity F over a range of uncertain parameters
δ ∈ � (where � is the uncertainty set). Fidelity compares a
target unitary transformation with the actual quantum channel,
which depends on both θ and δ. Fidelity is typically normal-
ized, F ∈ [0,1], and the maximum value F = 1 corresponds
to a perfect generation of the target transformation. The
design variables θ can include time-dependent control fields
(for both open-loop and closed-loop control), measurement
configurations (for closed-loop feedback control), constants
associated with physical implementation, the circuit layout,
and so on. The uncertainties δ can affect any element of
the system Hamiltonian (including the design variables), with
specific manifestations and ranges depending on the details
of the physical implementation and external hardware. For
example, uncertainties can represent dispersion and/or slow
time variation of parameters such as coupling strengths,
exchange interactions, and applied electromagnetic fields,
as well as additive and/or multiplicative noise in control
fields. The uncertainty set � can thus, in general, contain
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deterministic and random variables. Whatever the case, we
assume that θ and δ are constrained to known sets � and �,
respectively.

One common approach to robust control of quantum gates
(e.g., see Refs. [21] and [40]) is based on maximizing the
average fidelity, given by

Favg(θ ) = Eδ∈�{F(θ,δ)}, (1)

where F(θ,δ) denotes the fidelity as a function of design
and uncertain variables, and Eδ∈�{·} is the expectation with
respect to the underlying distribution in �. Often the average
fidelity is well approximated as the sum over a discrete
sample with associated probabilities {δi ∈ �,pi ∈ [0,1]}, i.e.,
Favg(θ ) = ∑

i piF(θ,δi). While the use of the average fidelity
is applicable in some cases (e.g., when the uncertainty
represents weak random noise), the stringent performance
requirements of quantum information processing make it more
appropriate, in general, to estimate gate errors by using the
worst-case fidelity with respect to all uncertainties δ ∈ �:

Fwc(θ ) = min
δ∈�

F(θ,δ). (2)

Also, worst-case robust optimization (or minimax optimiza-
tion) is a well-known approach employed in many classical
problems [7,41–57], and some of the methods developed
for these applications can be adapted for robust control of
quantum gates. The worst-case robust optimization problem
for quantum gate fidelity is formulated as

maximize min
δ

F(θ,δ)

subject to θ ∈ �, δ ∈ �.
(3)

The goal reflected in problem (3) is to find the design variables
θ ∈ � that maximize the worst-case fidelity of Eq. (2).

In control applications, the design set � represents the set
of control constraints and is most often convex or sufficiently
well approximated by a convex set. In some cases so is
the uncertainty set �, although this is not necessary for
solving (3). What makes the problem difficult is that the
fidelity is not a convex function of θ for any sample δ ∈
�. Nonconvex optimization problems are common in all
of science and engineering and have engendered numerous
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numerical approaches to finding local optimal solutions. In
particular, effective methods have been developed in recent
years for worst-case robust optimization with nonconvex cost
functions [51–57].

In optimal control applications, the functional dependence
of the objective (e.g., fidelity) on the control variables is
referred to as the optimal control landscape [58–61]. For
an ideal model of a closed quantum system with no uncer-
tainties, the optimal control landscape for the generation of
unitary transformations has a very favorable topology [62–64].
Specifically, provided that a number of physically reasonable
conditions are satisfied [65], the landscape is free of local
optima, i.e., there exist one manifold of global minimum
solutions (resulting in F = 0) and one manifold of global
maximum solutions (resulting in F = 1), while all other
critical points reside on saddle-point manifolds [62–64]. Such
a favorable landscape topology facilitates easy optimization, as
any gradient-based search (various types of which are popular
in quantum optimal control [21,66–75]) is guaranteed to reach
the global maximum [76]. Unfortunately, when uncertainties
are present, this landscape topology is not preserved. Typically,
uncertainties cause a decrease and fragmentation of the global
maximum manifold, resulting in the emergence of multiple
local maxima [40] (the landscape also undergoes a similar
transformation when control fields are severely constrained
[77]). Provided that the range of uncertainty is not too large,
many of these local optimal solutions will have fidelities close
to 1.

For quantum information systems, there is considerable on-
going effort to develop efficient methods for obtaining a good
solution to the problem of robust control, for either average or
worst-case fidelity. The majority of existing approaches rely
on a numerical optimization procedure, mostly involving a
gradient-based search for maximizing the average fidelity of
Eq. (1). In some cases, a randomized search such as a genetic
algorithm is employed [40]. The results demonstrate the
existence of many solutions with high fidelities, consistent with
the control landscape picture discussed above. Additionally,
the optimal controls are often similar to the corresponding
initial controls, provided the latter are reasonably good. This
phenomenon, also observed in many engineering and design
applications employing local search algorithms, supports the
need for developing tools to efficiently calculate a good initial
control. In particular, empirical evidence and simulations
suggest that robust controls for an uncertain quantum system
can be found by searches that start from solutions generated by
applying optimal control theory or dynamical decoupling to the
ideal (zero-uncertainty) counterpart system (see, e.g., [39,61],
and references therein).

In this paper, we propose the use of sequential convex
programming (SCP), which is one of several methods available
for numerically solving optimization problems like (3). (See
[78] for a collection of earlier SCP varieties and uses and [79]
for a recent informative overview.) SCP provides a general
framework for finding local optimal solutions to the worst-case
robust optimization problem (3). The specific SCP algorithm
used here, delineated in Algorithm 1, below, follows directly
from [52] and [55]. It was used previously for robust design
of slow-light tapers in photonic-crystal waveguides [55,56]
and quantum potential profiles for electron transmission in

semiconductor nanodevices [57]. In this paper, we apply
this SCP algorithm to identify robust control fields for the
generation of quantum gates in an uncertain one-qubit system.

II. SEQUENTIAL CONVEX PROGRAMMING

The SCP algorithm used here is shown in abstract form in
Algorithm 1. The algorithm is initialized with (i) a control
in the feasible set �, which is assumed to be convex;
(ii) samples δi, i = 1, . . . ,L, taken from the uncertainty set
�, which need not be convex; and (iii) a convex trust region
�̃trust. The trust region is selected so that the linearized
fidelity F(θ,δi) + θ̃T∇θF(θ,δi), where θ̃ ∈ �̃trust, used in the
optimization step retains sufficient accuracy. In each iteration
the SCP algorithm returns the optimal increment θ̃ and the
associated worst-case linearized fidelity. To compute the actual
worst-case fidelity requires simulating the system’s evolution
with the control variables θ + θ̃ as indicated in step 3 of
Algorithm 1. The centerpiece is the optimization step, which,
in the version shown in Algorithm 1, is gradient based, thereby
resulting in L affine constraints in θ̃ and, hence, is a convex
optimization. The Hessian, perhaps not so easily computed,
can be easily incorporated as shown in Appendix A. In some
cases the number of samples, L, can be very large. Fortunately,
however, computational complexity grows gracefully with the
number of constraints and thus does not grossly affect the
convex optimization efficiency [8].

Algorithm 1. Robust control via SCP.
Initialize:

control θ ∈ � ⊆ RN ;
uncertainty/noise sample {δi ∈ �, i = 1, . . . ,L};
trust region �̃trust ⊆ RN .

Repeat:
(1) Calculate fidelities and gradients:

F(θ,δi), ∇θF(θ,δi) ∈ RN, i = 1, . . . ,L.

(2) Using the linearized fidelity, solve for the incre-
ment θ̃ from the convex optimization:

maximize min
i

[F(θ,δi) + θ̃T∇θF(θ,δi)]

subject to θ + θ̃ ∈ �, θ̃ ∈ �̃trust.

(3) Update:

if min
i

F(θ + θ̃ ,δi) > min
i

F(θ,δi), then

replace θ by θ + θ̃ and increase �̃trust

else
decrease �̃trust

endif
Until stopping criteria satisfied.

In Appendix A we show how the gradient and Hessian can
be cast in standard forms compatible with freely available
software specifically designed to solve such convex optimiza-
tion problems. In general, solving the convex optimization is
not the most time-consuming step in the SCP algorithm. The
time burden in each iteration falls more often on simulations
required to compute the fidelities and gradients (and the
Hessian if used) at each uncertainty sample. Of course, as is the
case with numerical simulations of any quantum information
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system, there always lurks the exponential scaling with the
number of qubits.
Despite its many advantages, SCP is a local optimization
method. As such, there is no way to verify that a globally opti-
mal solution has been found. Since the fidelity by construction
cannot exceed 1, it would seem that at least the maximum
is known, so if F = 1 is achieved, it is an optimal solution.
However, even as we often obtain fidelities that are extremely
close to 1, for example, log10(1 − F) ∈ [−6,−4], this does
not guarantee that the algorithm did not miss a better solution.
Although a fidelity value with four to six 9’s following the
decimal point is effectively 1 for most engineering problems,
for quantum computing every additional improvement in
fidelity is important, since it can greatly decrease the physical
resources required for fault-tolerant operation.

III. SEQUENTIAL CONVEX PROGRAMMING
FOR AN UNCERTAIN QUBIT

In this section, we show how to use SCP for robust
control of quantum gates in the presence of common types of
uncertainties and constraints. We consider a one-qubit system
modeled by the time-dependent Hamiltonian (h̄ = 1),

H (t) = c(t)ωxX + ωzZ, (4)

where c(t) is the external control field (a real-valued function
of time defined on the interval [0,T ]), and X and Z are
the respective Pauli matrices. The real parameters ωx and
ωz are constant but uncertain over the time interval [0,T ].
Correspondingly, the uncertain parameters δ in Eq. (3) are
specified by the parameter vector ω = [ωx,ωz]T.

A. Control generation and constraints

The control field c(t) is typically the output of a signal
generation device whose dynamics impose constraints on
magnitudes, bandwidth, and so on. To illustrate the use of
SCP we make the simplifying assumption that the control is
piecewise constant over N uniform time intervals of width
h = T/N ,

c(t,θ ) = θk for t ∈ (tk−1,tk], k = 1, . . . ,N, (5)

where tk = kh. Correspondingly, the design variables θ in
the optimization problem (3) are specified by the vector of
field values θ = [θ1, . . . ,θN ]T. The set � reflects control
constraints, typical examples of which are listed in Table I.
The appearance of control constraints due to signal generation
dynamics is discussed in Appendix B.

TABLE I. Typical control constraints. The bounding parameters
α, β, γ are positive constants and cmin, cmax are real constants. Also,
a is a real N × N matrix and b is a real vector of length N .

Constraint Set �

None RN

Fluence 
(θ ) � γ

Magnitude cmin � c(t,θ ) � cmax, t ∈ [0,T ]
Slew rate |ċ(t,θ )| � β, t ∈ [0,T ]
Area A(θ ) � α

Linear aθ = b

A couple of important characteristics of the control field,
used in Table I, are the fluence (a measure of the field energy),


(θ ) =
∫ T

0
c2(t,θ )dt = ‖θ‖2

2h, (6)

and the area (a measure of the field strength),

A(θ ) =
∫ T

0
|c(t,θ )|dt = ‖θ‖1h, (7)

where ‖θ‖p = (
∑N

k=1 |θk|p)1/p is the vector Lp norm.
The list of control constraints in Table I is certainly not

exhaustive. However, since c(t,θ ) is a linear function of θ ,
each of these constraints or any combination thereof forms a
convex set in RN . The bounding parameters in Table I can
also be used as design variables to establish control resource
trade-offs via SCP. In particular, the trade-off between the gate
fidelity and the field fluence is explored in Sec. V.

B. Evolution operator and fidelity

For a given realization of Hamiltonian (4) (i.e., for given
values of ωx and ωz), the system undergoes a unitary evolution,
governed by the Schrödinger equation,

i
d

dt
U (t) = H (t)U (t), U (0) = I, (8)

where U (t) ≡ U (t,0) is the time-evolution operator (propaga-
tor) from time t = 0 to t , and I is the identity operator. For the
piecewise-constant control, (5), the evolution operator U (tk)
is given by a product of incremental propagators:

U (tk) = U (tk,tk−1) · · · U (t2,t1)U (t1,t0), (9)

U (tk,tk−1) = exp [−ih(θkωxX + ωzZ)] . (10)

In particular, the evolution operator attained at the final time T

is UT ≡ U (T ) = U (tN ). This evolution operator is a function
of θ and ω.

The fidelity of a quantum gate is a measure of alignment
between the target unitary transformation W and the actual
final-time evolution operator UT . Specifically, for the one-
qubit system, we use the fidelity defined as

F(θ,ω) = 1
4 |Tr(W †UT )|2. (11)

This fidelity, normalized to [0,1], is independent of the phase of
either W or UT . Along with fidelity, we also use the normalized
distance between W and UT , which is defined as

D(θ,ω) = 1 − F(θ,ω). (12)

In accordance with Eq. (12), Davg(θ ) = 1 − Favg(θ ) and
Dwc(θ ) = 1 − Fwc(θ ).

C. Uncertainty modeling

One general approach to modeling the uncertainty in the
Hamiltonian parameters ω is via a deterministic (or set-
membership) model,

� = {‖�−1(ω − ω̄)‖p � 1}, (13)

where ω̄ = [ω̄x,ω̄z]T is the vector of nominal values, � is
a positive-definite weighting matrix (here 2 × 2), and p is
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typically 2 or ∞. If p = ∞ and � is diagonal, then ωx and ωz

are not correlated, in which case Eq. (13) reduces to

� = {|ωx − ω̄x | � ω̃x, |ωz − ω̄z| � ω̃z} , (14)

where � = diag(ω̃x,ω̃z). If � is not diagonal, then ωx and
ωz are correlated, possibly arising, respectively, from an
approximation of a joint Gaussian or uniform distribution,
with �, typically, being the covariance matrix associated with
a specified confidence region for the parameters.

The uncertainty in the parameters can often be best
described via a probabilistic model, for example,

� = {E{ω} = ω̄, E{(ω − ω̄)(ω − ω̄)T} = C}, (15)

where E{·} is the expectation with respect to the underlying
probability distribution of ω. If this distribution is Gaussian,
then � = {ω ∈ N (ω̄,C)}.

Random uncertainty also arises from noise in the control
field and/or environment, best represented by a stochastic
model. In this case, the uncertainty set � can have the
same form as in Eq. (15), but here the elements of ω(t) =
[ωx(t),ωz(t)]T are stochastic variables with the moments
E{ω(t)} = ω̄ and E{[ω(t) − ω̄][ω(t ′) − ω̄]T} = C(t,t ′).

As mentioned above, the uncertainty set � for SCP need
not be convex; for example, the set of Eq. (13) is convex,
but that of Eq. (15) is not. Step 2 in Algorithm 1 only
requires that the uncertain parameters be sampled from the
set �. In a numerical example studied below, we use a simple
uniform sampling from an uncertainty set of the form (14).
More sophisticated methods cycle through a sampling in the
optimization step followed by validation on a different sampled
set; bad parameters revealed in the validation step can be used
in a new sampling for a repeat of the optimization step (e.g.,
see Ref. [52]).

D. Robust optimization

Now we can formulate a specific instance of the optimiza-
tion problem, (3), corresponding to finding a robust control
field for generating a target quantum gate in an uncertain
one-qubit system. Specifically, the goal is to solve for the
field values θ ∈ RN from the optimization problem:

maximize min
ω∈�

F(θ,ω)

subject to UT obtained from Eq. (9),
θ ∈ � from a combination of sets in Table I,
ω ∈ � from Eq. (13) or Eq. (15).

(16)

Since � is a convex set and samples are taken from � to
compute gradients of F with respect to θ , then step 2 of
Algorithm 1 will be a convex optimization.

IV. ROBUST ONE-QUBIT GATES

We use the SCP routine to find robust control fields
corresponding to the following target unitary transformations:

WI =
[

1 0
0 1

]
, WH = 1√

2

[
1 1
1 −1

]
, WP =

[
1 0
0 eiπ/4

]
.

(17)

Here, WI, WH, and WP represent the identity, Hadamard, and
phase (π/8) gates, respectively. Note that WH and WP comprise
a universal gate set for one-qubit operations.

The uncertainty set used for all optimizations presented in
this section is

� = {|ωx − 1| � 0.01, |ωz − 2| � 0.20}, (18)

corresponding to a deterministic model with 1% control
amplitude uncertainty and 10% drift magnitude uncertainty.
For each target gate, SCP is used to solve for θ ∈ RN from

maximize min
ω∈�

{
F(θ,ω) = 1

4 |Tr(W †UT )|2}
subject to UT obtained from Eq. (9),

θ ∈ RN (unconstrained),
ω ∈ � from Eq. (18).

(19)

We obtain solutions of Eq. (19) for all combinations of
W ∈ {WI,WH,WP} and T ∈ {1,2,4}, along with selected values
of N ∈ {5,10,20,80}. For each SCP optimization presented
in this section, we first used a gradient-based search [76,80]
to find a control-field vector θ (0) that achieves F

(
θ (0),ω̄

) 

0.999 for the nominal parameter values ω̄x = 1 and ω̄z = 2.
For a fixed ω (i.e., in the absence of uncertainty), it is easy to
achieve unit fidelity to a desired numerical accuracy, so θ (0) is
a solution which is close to the top of the landscape but not
fully optimal. Then θ (0) was used as the initial field to start the
SCP search for the uncertain system.

Figure 1 shows control fields that are solutions of the
worst-case robust optimization problem, (19), for various
choices of W , T , and N , along with corresponding distances
D(θ,ω) that are plotted on a logarithmic scale as functions of
the parameters ωx and ωz. Properties of these robust controls,
including logarithms of the corresponding worst-case and
average distances, the field fluence, and the maximum field
value, are listed in Table II. For each target gate, we present
results for eight combinations of N and T . With the one-qubit
system of Eq. (4) and the uncertainty set � of Eq. (18), controls
with worst-case fidelities Fwc(θ ) � 0.9999 are obtained for
N � 10 and T � 2 for all three target gates. These results
demonstrate that robust, high-fidelity control is possible with
a relatively small number of control variables N , provided that
the final time T is chosen properly.

Interestingly, the worst-case fidelity Fwc can decrease as
the number of field values N increases; this behavior is seen in
the results in Table II for the identity gate with T = 2 when N

increases from 10 to 20 and for the Hadamard gate with T = 1
when N increases from 5 to 20. Since the set of controls with
N1 field values is a proper subset of controls with N2 > N1

field values, these results suggest that the control landscape
for the optimization problem, (19), possesses local optima that
can trap SCP searches. Thus, even more robust solutions are,
in principle, achievable by combining SCP with a nonlocal
algorithm capable of exploring multiple optima.

V. TRADEOFF BETWEEN GATE FIDELITY AND
CONTROL FIELD FLUENCE

The success of the optimization depends on available
control resources, and it is expected that constraints on the
control field will, generally, decrease the attainable fidelity
[77,80]. As a further illustration of the utility of SCP, we use it
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FIG. 1. (Color online) Left column: Control fields c(t,θ ) that are solutions of the worst-case robust optimization problem, (19). Right
column: Logarithms of corresponding distances, log10 D(θ,ω), as functions of ωx ∈ [0.99,1.01] and ωz ∈ [1.8,2.2]. Results are shown for eight
combinations of N and T for each of the three target gates of Eq. (17): (a) the identity gate, (b) the Hadamard gate, and (c) the phase gate.
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TABLE II. Properties of control fields that are solutions of the
worst-case robust optimization problem, (19), for the three target
gates of Eq. (17) and various combinations of N (the number of field
values) and T (the final time).

N T log10 Dwc(θ ) log10 Davg(θ ) 
(θ ) max(θ )

Target gate: Identity
5 1 −3.13 −3.82 103.63 16.21
5 2 −2.35 −3.16 37.24 7.25
10 1 −3.28 −4.20 58.45 11.88
10 2 −5.23 −5.79 51.00 6.59
20 1 −3.31 −4.24 53.66 13.47
20 2 −4.35 −4.98 25.34 6.03
10 4 −4.62 −5.66 28.96 4.22
80 4 −5.08 −5.60 31.74 6.00

Target gate: Hadamard
5 1 −2.20 −3.08 32.27 7.59
5 2 −3.02 −3.74 16.35 3.77
10 1 −2.17 −3.05 36.93 8.02
10 2 −4.33 −4.80 30.33 8.95
20 1 −2.17 −3.06 34.38 8.64
20 2 −4.34 −4.86 30.07 9.17
10 4 −4.06 −4.63 16.60 2.86
80 4 −4.69 −5.12 25.61 5.48

Target gate: Phase
5 1 −2.77 −3.51 41.98 8.39
5 1 −3.71 −4.19 29.99 6.70
10 1 −2.96 −3.55 116.17 28.62
10 2 −4.34 −4.88 25.40 6.80
20 1 −3.02 −3.61 136.06 33.88
20 2 −4.30 −4.77 23.39 7.12
10 4 −5.57 −6.02 46.82 5.87
80 4 −6.00 −6.34 33.51 5.91

to explore the trade-off between the gate’s worst-case fidelity
and the control field’s fluence. Specifically, we consider five
uncertainty sets for ω:

�1 = {|ωx − 1| � 0.001, |ωz − 2| � 0.02}, (20a)

�2 = {|ωx − 1| � 0.010, |ωz − 2| � 0.02}, (20b)

�3 = {|ωx − 1| � 0.001, |ωz − 2| � 0.10}, (20c)

�4 = {|ωx − 1| � 0.010, |ωz − 2| � 0.10}, (20d)

�5 = {|ωx − 1| � 0.010, |ωz − 2| � 0.20}. (20e)

These sets correspond to deterministic models with relative
variations ranging from 0.1% to 1% in ωx and from 1% to
10% in ωz. Note that �5 is the uncertainty set in Eq. (18) with
relative variations in ωx and ωz at 1% and 10%, respectively.
For each of the uncertainty sets in Eqs. (20), we use SCP to
solve for θ ∈ RN from

maximize min
ω∈�

{
F(θ,ω) = 1

4 |Tr(W †UT )|2}
subject to UT obtained from Eq. (9),


(θ ) � γ,

ω ∈ �m from Eqs. (20).

(21)

The solutions of Eq. (21) are obtained for the target identity
gate WI, final time T = 2, number of field values N = 10, and
varying values of the fluence bound γ . For each uncertainty set
�m (m = 1, . . . ,5), we perform a series of SCP searches with

FIG. 2. (Color online) The logarithm of the worst-case distance,
log10 Dwc(θ ), versus the fluence 
(θ ) for control fields that are
solutions of the optimization problem, (21), with W = WI, T = 2,
and N = 10. Five data series, denoted by shape and color, correspond
to five uncertainty sets �m of Eqs. (20), as indicated in the legend.

decreasing γ . In the first SCP search in the series, the fluence
bound is set to γ = ∞ (i.e., the fluence is unconstrained) and
the solution of the optimization problem, (19), with uncertainty
set (18) is used as the initial field. In each subsequent search
in the series, γ is set to 0.95 of the fluence of the control field
found in the previous search, and all values of the initial field
are reduced proportionally so as to match the new fluence
constraint. This process is repeated until the SCP routine
fails to achieve Fwc � 0.9 due to the severity of the fluence
constraint.

Figure 2 shows the resulting trade-offs between the loga-
rithm of the worst-case distance, log10 Dwc, and the achieved
field fluence, 
(θ ), for each of the uncertainty sets �m in
Eq. (20). The rightmost point in each series corresponds to
unconstrained fluence (γ = ∞). The rate of increase in the
distance as the fluence bound is decreased is seen to be
essentially the same for all sets �m. Additionally, the fluence
value where the distance abruptly changes for the worse is also
about the same: 
 ≈ 10. It is important to note that it is not
known whether any of the trade-off curves in Fig. 2 represent
a true Pareto front for distance versus field fluence.

The trade-off curves in Fig. 2 show that the gate error, on
average, exhibits a similar sensitivity of about one order of
magnitude to either 1% variation in ωx or 5% variation in ωz.
The greater sensitivity to variations in ωx is due in part to the
fact that in our model system, (4), ωx is a direct uncertain
multiplicative gain on the control signal. In other words, a
perturbation ω̃x around ω̄x = 1 is equivalent to a perturbation
ω̃xθ in the control field. Following the procedure presented
in Refs. [40] and [80], a Taylor series approximation of the
fidelity up to the second order in ω̃x gives

F(θ,ω̄x + ω̃x,ωz) = F(θ + ω̃xθ,ω̄x,ωz)

≈ F(θ,ω̄x,ωz) + ω̃xθ
T∇θF(θ,ω̄x,ωz)

+ 1
2 ω̃2

xθ
T∇2

θF(θ,ω̄x,ωz)θ. (22)
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For any control field that is a solution of the optimization
problem, (19) or (21), the Hessian ∇2

θF(θ,ω̄x,ωz) is negative
semidefinite and the Hessian term dominates the gradient term.
Assuming |ω̃x | � ε, we use Eq. (22) to obtain a lower bound
on the fidelity:

F(θ,ω̄x + ω̃x,ωz) � F(θ,ω̄x,ωz) − ε|θT∇θF(θ,ω̄x,ωz)|
− 1

2ε2
∣∣θT∇2

θF(θ,ω̄x,ωz)θ
∣∣ . (23)

We evaluated the lower bound F(θ,ω̄x,ε,ωz), given by the
right-hand side of Eq. (23), for control fields whose worst-case
distances are shown in Fig. 2, using ω̄x = 1 and ε values
(ε = 0.001 and ε = 0.01) and ωz ranges (ωz ∈ [1.98,2.02],
ωz ∈ [1.9,2.1], ωz ∈ [1.8,2.2]) that correspond to the five
uncertainty sets �m of Eqs. (20). Then, for each field, we
minimized F(θ,ω̄x,ε,ωz) over the respective ωz range and
found that the resulting distance values coincide almost exactly
with points on the corresponding trade-off curves in Fig. 2.
This coincidence indicates that the lower bound F(θ,ω̄x,ε,ωz)
approximates well the minimum of the fidelity F(θ,ω) over
the ωx variation.

The trade-off analysis is valuable for understanding the
interplay between constraints in control and system designs.
In particular, a limitation on the maximum field fluence can
reflect not only signal generator constraints, but also system
design considerations such as thermal loads on the system. For
example, if variations in ωx and ωz are small, such as in the
uncertainty set �1, we observe from the corresponding curve
in Fig. 2 that a distance value Dwc ∼ 10−4 is possible with a
fairly low fluence (
 ≈ 25), and it can even be as low asDwc ∼
10−8 with a higher fluence (
 ≈ 50). Attaining parameter
uncertainties of the order of �1 could be accomplished via
material and hardware improvements and better manufacturing
and testing procedures. Certainly, the possibility of achieving
such high fidelities is a motivation to explore these options.
Thus, establishing the trade-off between the gate fidelity
and the field fluence provides important information about
possibilities for enhancing the robust gate performance.

VI. EFFECT OF NOISE

When uncertainty is due to noise, performing SCP generally
requires some form of sampling from the noise distribution.
If the noise is sufficiently weak, then, based on ideas from
Ref. [40], we show in Appendix C that an approximation can
be utilized which avoids expensive sampling. We explore this
approach in more detail in a future paper. Here, we consider a
simplified scenario which captures some of the salient features
of robust control in the presence of noise.

Consider the Hamiltonian of Eq. (4), where the parameter
ωx in the control term is constant, ωx = 1, and the parameter
ωz in the drift term is a noisy time series, i.e.,

ωz(t) = ω̄z + ω̃z(t), t ∈ [0,T ], (24)

where ω̄z is the average value of ωz(t) and ω̃z(t) is a stochastic
variable obtained as the output of a linear filter G driven
by stationary, Gaussian white noise u(t) with variance σ 2.
Specifically, u(t) satisfies

E{u(t)} = 0, E{u(t)u(t ′)} = σ 2δ(t − t ′), (25)

the filter action is

ω̃z(t) = (G ∗ u)(t), t ∈ (−∞,T ], (26)

G is a linear first-order filter with the transfer function

G(s) = 1/(sτ + 1), (27)

and τ is the filter time constant.
The average gate fidelity Favg(θ ) = E{F(θ,ωz)} under a

noise process affecting ωz can be evaluated using random
sampling from the noise distribution:

Favg(θ ) ≈
L∑

l=1

F
(
θ,ω(l)

z

)
. (28)

Here, ωz ∈ RM is the vector whose elements represent a
piecewise-constant approximation of the time series ωz(t) with
a uniform time step h̃ = T/M , ω(l)

z = ω̄z + ω̃(l)
z is the vector

corresponding to the lth realization of the noise process, and
L is the number of noise realizations in the sample. Another
method for evaluatingFavg(θ ) is the weak noise approximation
described in Appendix C. Specifically, using the Taylor series
expansion of the fidelity about ω̄z up to second order in ω̃z

and assuming that ω̃z has zero mean and covariance matrix
C = E{ω̃zω̃

T
z }, we obtain [cf. Eq. (C9)]

Favg(θ ) ≈ F(θ,ω̄z) − 1
2 Tr

(
CRωzωz

)
, (29)

where Rωzωz
= −∇2

ωz
F(θ,ω̄z) is the negative Hessian matrix.

For the filtered noise process of Eqs. (25)–(27), elements of
the covariance matrix C are given by

Cmm′ = σ̃ 2 1 − α

1 + α
α|m−m′|, m,m′ = 1, . . . ,M, (30)

where σ̃ 2 = σ 2/h̃ and α = exp(−h̃/τ ).
It is interesting to analyze how a control field designed

to be robust for a deterministic uncertainty model performs
in the presence of noise. For example, consider the control
field that is a solution of the optimization problem, (21), with
W = WI, T = 2, N = 10, �1 of Eq. (20a), and no fluence
constraint (γ = ∞); this field corresponds to the rightmost
point on the bottom curve in Fig. 2. For this field, we use
both the random sampling method of Eq. (28) and the weak
noise approximation of Eq. (29) to evaluate the average fidelity
Favg(θ ) under the noise process of Eqs. (25)–(27) with ω̄z = 2,
σ ∈ {0.001,0.02} and various values of τ . Figure 3 shows the
corresponding values of log10 Davg(θ ), for a range of filter
time constants relative to the control time, τ/T ∈ [10−4,104].
We observe an excellent agreement between the weak noise
approximation (solid lines) and simulated data from random
sampling (circles).

Equations (29) and (30) can be further used to investigate
the asymptotic behavior in the limits of low-bandwidth and
high-bandwidth filters. For τ/T � 1, the filter bandwidth is
very low, and the noise is effectively blocked. In this limit, all
elements of C are approximately 0, and Davg(θ ) ≈ D(θ,ω̄z) ≈
10−8.88 is independent of σ . For τ/T � 1, the filter bandwidth
is very high, which allows for the white noise to pass through
unaltered. In this limit, C is proportional to the identity matrix,
Cmm′ ≈ σ̃ 2δmm′ , and Favg(θ ) ≈ F(θ,ω̄z) − 1

2 σ̃ 2Tr(Rωzωz
). For

a control field c(t,θ�) which is globally optimal for the
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FIG. 3. (Color online) The logarithm of the average distance,
log10 Davg(θ ), versus τ/T , where τ is the noise filter timeconstant
from Eq. (27). The control field used here is a solution of the
optimization problem, (21), with W = WI, T = 2, N = 10, �1

of Eq. (20a), and no fluence constraint (γ = ∞). The distance
is averaged under the noise process described by Eqs. (24)–(27)
with ω̄z = 2 and two σ values: σ = 0.001 [lower (red) line and
circles] and σ = 0.02 [upper (blue) line and circles]. The weak noise
approximation (solid lines) computed using Eqs. (29) and (30) is
in a very good agreement with simulated data (circles) obtained
using random sampling from the noise distribution according to
Eq. (28).

objective of maximizing F(θ,ω̄z), each diagonal matrix
element of Rωzωz

equals 2h̃2, and we obtain a simple analytic
result:

Davg(θ�) ≈ σ 2T . (31)

The field that we use here is not exactly θ�, but the value
D(θ,ω̄z) ≈ 10−8.88 is sufficiently close to the optimum for the
result of Eq. (31) to be a very good approximation. Then, with
T = 2, we obtain Davg ≈ 2 × 10−6 ≈ 10−5.70 for σ = 0.001
and Davg ≈ 8 × 10−4 ≈ 10−3.10 for σ = 0.02. The asymptotic
results in both limits are very well confirmed by the data shown
in Fig. 3.

The results in Fig. 3 also show that the control field,
though not designed for stochastic uncertainty, nonetheless
performs admirably. In fact, we used SCP to find control
fields that are specifically robust against noise in ωz but
did not obtain a significant improvement. While in this
example a robust control designed for a deterministic uncer-
tainty model also works well against a stationary stochastic
process, we do not know whether this behavior holds in
general.

VII. SUMMARY

Using SCP we have demonstrated that it is possible
to generate high-fidelity quantum gates with a substantial
robustness against uncertainties, while simultaneously using
limited control resources such as field amplitude, bandwidth,
and fluence. Designing such robust control fields requires a
specific knowledge of the range and character of the uncer-

tainties, a process referred to in the control theory literature
as “uncertainty modeling.” Although we have focused on a
one-qubit system, even this simple example clearly shows the
strong effect of control constraints on the attainable degree of
robustness. Our analysis of this system has also revealed that
a control field designed for a deterministic (set-membership)
uncertainty model can be quite effective against stochastic
uncertainty (noise).

This work shows that SCP is useful for exploring possible
improvements in the robust gate performance for different
values and ranges available for both control and system
designs. Specifically, SCP makes it possible to quantify
a variety of trade-offs between constraints on control and
system parameters. For example, one can determine how
many control variables are required to achieve a desired
worst-case fidelity for a given uncertainty range or, alterna-
tively, how tight the uncertainty range should be for a given
limitation on the maximum field fluence. Such a trade-off
analysis could reveal a combination of physical design and
robust control design resulting in a “sweet spot” among the
possibilities.

Of course, SCP is not the only approach to finding locally
optimal solutions to nonconvex problems. An important
advantage of SCP is the ease with which various uncertainty
models and constraints on design variables can be directly
incorporated in the local convex optimization step of the
algorithm. It would be desirable to develop a hybrid approach,
integrating SCP with a nonlocal optimization method, in order
to make it possible to search among multiple solutions.

The array of results presented here hopefully heralds what
would be seen in more complex systems, involving multiple
qubits, controlled ancillae, coupling to a bath, and so on.
In addition, the results also begin to provide an insight
into unanticipated control-field structures. Many of these
potentialities are under consideration at present and will be
forthcoming.
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APPENDIX A: CONVEX OPTIMIZATION

The convex optimization step in the SCP algorithm can be
equivalently expressed as

maximize f0

subject to fi + θ̃Tgi � f0, i = 1, . . . ,L,

θ + θ̃ ∈ �, θ̃ ∈ �̃trust,

(A1)

where fi = F(θ,δi) and gi = ∇θF(θ,δi). Both θ̃ and f0 are
now the optimization variables. If both � and �̃trust bound
their respective elements in a “box” in RN , then (A1) is a
linear program.

The Hessian can be employed in the optimization step by
using its negative-definite part, Ri = −[∇2

θF(θ,δi)]− where
[·]− retains only the negative eigenvalues of the Hessian;
specifically, Ri = ViV

T
i with Vi ∈ RN×r , where r is the

number of strictly negative eigenvalues of the Hessian less
than or equal to a chosen threshold. Then the worst-case fidelity
constraint can be formulated as

fi + θ̃Tgi − 1
2 θ̃TViV

T
i θ̃ � f0, i = 1, . . . ,L. (A2)

Each of the inequalities in Eq. (A2) is equivalent to a linear
matrix inequality in the variables {θ̃ ,f0} [8]: Qi(θ̃ ,f0) � 0,
where

Qi(θ̃ ,f0) =
[
fi − f0 − θ̃Tgi θ̃TVi/

√
2

V T
i θ̃/

√
2 Ir

]
, (A3)

and Ir is the r × r identity matrix. The optimization step in
SCP is now given by the semidefinite program:

maximize f0

subject to Qi(θ̃ ,f0) � 0, i = 1, . . . ,L,

θ + θ̃ ∈ �, θ̃ ∈ �̃trust.

(A4)

Optimization problems (A1) and (A4) are now expressed
in standard forms suitable for use with existing software
specially developed for these classes of convex optimization.
In particular, YALMIP [81] and CVX [82,83] are convex
compilers compatible with MATLAB. Using these software tools
makes it very easy to code the convex optimization problems
almost exactly as expressed mathematically. These compilers
call for convex solvers such as SDPT-3 [84] and SeDuMi [85],
which have been developed and in use for many years and,
as a result, are generally efficient and reliable. There are
limits imposed by both memory and speed for a particular
problem instance and computer platform. In these cases it
could be necessary to use or develop specialized versions with
modifications that take into account the specific underlying
structure of the problem.

APPENDIX B: SIGNAL GENERATION

In general, the control field c(t,θ ) is the output of a signal
generation device. As an example, consider a field generated
by a device with rate ν and piecewise-constant commands θ ,

ċ(t,θ ) = ν[c̄(t,θ ) − c(t,θ )], c(0) = 0, (B1a)

c̄(t,θ ) = θk for t ∈ (tk−1,tk], k = 1, . . . ,N, (B1b)

where tk = kh and h = T/N . The field in this example can be
expressed in a general form:

c(t,θ ) =
N∑

k=1

sk(t)θk = s(t)Tθ, t ∈ [0,T ]. (B2)

This expression holds for any signal generation well repre-
sented by known linear dynamics whose input is a finite
sequence of control commands {θk} at a uniform sampling
rate. The linear dynamics are captured in the shape-function
vector s(t) ∈ RN . For example, for the field of Eqs. (B1), the
elements of s(t) are given by

sk(t) =
⎧⎨
⎩

0 for t � tk,

1 − e−ν(t−tk−1) for t ∈ (tk−1,tk],
(1 − e−νh)e−ν(t−tk ) for t > tk.

(B3)

In the limit of very fast dynamics (ν → ∞), the element sk(t)
of Eq. (B3) becomes the indicator function of the interval
(tk−1,tk], and the control field c(t,θ ) is piecewise constant
over N uniform time intervals of width h, as given by Eq. (5).

Generally, when the dynamics of the signal generation
device have an appreciable effect on the shapes of {sk(t)}, the
numerical integration of the Schrödinger equation, (8), would
require using a time step over which the field c(t,θ ) does not
change much, i.e., finer than the command interval h.

Note that for any field of the form (B2), the control
constraint sets in Table I are convex. For example, the
constraint on the field fluence can be expressed as 
(θ ) =
θTBθ � γ with B = ∫ T

0 s(t)s(t)Tdt .
The field form of Eq. (B2) can be further generalized by

considering multiple command vectors {θi} and shape-function
vectors {si(t)}, i.e.,

c(t,θ ) =
K∑

i=1

si(t)
Tθi . (B4)

For example, laser pulse shaping in a liquid crystal modulator
generates a control field of the form

c(t) = A0(t)
K∑

i=1

ai sin(ωit + φi), (B5)

where the envelope function A0(t) and frequencies {ωi} are
fixed, while the amplitudes {ai} and phases {φi} are the control
variables. The field, (B5), can be equivalently expressed in
the form (B4), where si(t) = A0(t)[sin(ωit), cos(ωit)]T and
θi = ai[cos φi, sin φi]T.

For a control field of the form (B5), constraints are typically
imposed on the amplitudes {ai}, and since ‖θi‖2 = ai , they can
be equivalently expressed as constraints on θ . For example, the
magnitude constraint ai � amax is equivalent to the convex set
‖θi‖2 � amax. However, the constraint that all the amplitudes
are the same, i.e., ai = a0 is equivalent to the nonconvex set
‖θi‖2 = a0. This problem can be circumvented by using the
constraint set ‖θi‖2 � a0, which is a convex relaxation [8]
of the actual nonconvex one; then SCP will return a local
solution to the relaxed problem. Some relaxations can be
proven to be optimal, but that is not known here and hence
a postoptimization analysis is required.
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APPENDIX C: WEAK NOISE APPROXIMATION

When the noise variance is small, it is possible to avoid
the expensive simulation of noise realizations drawn from the
underlying distribution. The approach for evaluating the effect
of weak noise, the basics of which are presented here, was
introduced in Refs. [40] and [80] and will be explored in depth
in a subsequent paper.

Consider an n-level quantum system with the Hamiltonian

H (t) = c(t)Hc + w(t)Hw, (C1)

where c(t) and w(t) are, respectively, the control field and
the noisy field (real-valued functions of time defined on the
interval [0,T ]). We assume that c(t) = c(t,θ ) is a piecewise-
constant function of the form (5). Let the elements {wm} of the
vector w ∈ RM represent a piecewise-constant approximation
of w(t), i.e.,

w(t) = wm for t ∈ (t̃m−1,t̃m], m = 1, . . . ,M, (C2)

where t̃m = mh̃ and h̃ = T/M . Assuming that M � N and
p = M/N is an integer, the control can be represented as

c(t) = cm for t ∈ (t̃m−1,t̃m], m = 1, . . . ,M, (C3)

where {cm} are the elements of the vector c = θ ⊗ ep ∈ RM

and ep denotes the vector of 1’s of length p. Analogous to
Eqs. (9) and (10), the time-evolution operator is given by

U (t̃m) = U (t̃m,t̃m−1) · · · U (t̃2,t̃1)U (t̃1,t̃0), (C4)

U (t̃m,t̃m−1) = exp[−ih̃(cmHc + wmHw)], (C5)

and, in particular, UT = U (t̃M ). The gate fidelity is

F(θ,w) = 1

n2
|Tr(W †UT )|2. (C6)

Assume that the noisy field has the form w = w̄ + w̃, where
w̄ ∈ RM is a deterministic mean and w̃ ∈ RM is a stochastic
variable that represents a stationary noise process. For a
specified control θ , the Taylor series expansion of the fidelity
about w̄ up to second order in w̃ gives the approximation,

F(θ,w) ≈ F(θ,w̄) + w̃Tgw − 1
2 w̃TRwww̃, (C7)

where gw = ∇wF(θ,w̄) ∈ RM is the gradient vector and
Rww = −∇2

wF(θ,w̄) ∈ RM×M is the negative Hessian matrix.
Assume that the stochastic variable w̃ has zero mean and
covariance matrix C ∈ RM×M , i.e.,

E{w̃} = 0, E{w̃w̃T} = C. (C8)

The fidelity averaged over all noise realizations is given by the
statistical expectation:Favg(θ ) = E{F(θ,w)}. Using Eqs. (C7)
and (C8), we obtain the weak noise approximation for the
average fidelity:

Favg(θ ) ≈ F(θ,w̄) − 1
2 Tr(CRww). (C9)

Since the dependence on noise in Eq. (C9) is only through
the covariance matrix, the evaluation of Favg(θ ) via this
approximation does not require random sampling from the
noise distribution, providing a huge advantage in numerical
efficiency.

For Gaussian white noise with variance σ 2, the covariance
matrix is given by C = (σ 2/h̃)IM , and Eq. (C9) yields

F (wn)
avg (θ ) ≈ F(θ,w̄) − σ 2

2h̃
Tr(Rww). (C10)

For a control θ� which is globally optimal for the objective of
maximizing F(θ,w̄), all diagonal matrix element of Rww are
equal to each other:

(Rww)mm = 2h̃2

n
Tr

(
H 2

w

) − 2h̃2

n2
[Tr(Hw)]2, ∀m. (C11)

If the operator Hw is traceless, substituting Eq. (C11) into
Eq. (C10) leads to a simple analytical expression:

F (wn)
avg (θ�) ≈ 1 − 1

n
Tr

(
H 2

w

)
σ 2T . (C12)

This result shows that robustness against additive white noise
can be improved only by reducing the control duration T ;
however, this can be done only as long as T � T ∗, where
T ∗ is a critical value below which the nominal objective is
not reachable [80]. In a quantum information system, Hw

is typically given by a tensor product of Pauli matrices and
identity operators for individual qubits. In this case, H 2

w = In,
and Eq. (C12) is further simplified:

F (wn)
avg (θ�) ≈ 1 − σ 2T . (C13)

The weak noise approximation together with a similar
expansion for a small control change (from θ to θ + θ̃) can
be used in the optimization step of SCP for designing controls
robust to a stochastic uncertainty model. Expanding the fidelity
about {θ,w̄} up to second order in {θ̃ ,w̃} gives

F(θ + θ̃ ,w) ≈ f + x̃Tg − 1
2 x̃TRx̃, (C14)

where

x̃ =
[

θ̃

w̃

]
, g =

[
gθ

gw

]
, R =

[
Rθθ Rθw

Rwθ Rww

]
, (C15)

f = F(θ,w̄) is the fidelity, ga = ∇aF(θ,w̄) are gradient vec-
tors, and Rab = −∇a∇bF(θ,w̄) are negative Hessian matrices
(a,b ∈ {θ,w}). Given a model of the noise distribution, we can
then pose the robust optimization problem:

maximize γ

subject to Prob{F(θ + θ̃ ,w) � γ } � η, θ̃ ∈ �.
(C16)

Assume further that the stochastic variable w̃ has a zero-mean
Gaussian distribution with covariance matrix C, i.e., satisfies
Eq. (C8), with ‖C‖ = O(σ 2). Following the approach to robust
optimization described in Chapter 4 of [8], the problem, (C16),
is equivalent, up to O(σ 2), to the second-order cone program
(SOCP) with optimization variables θ̃ and γ :

maximize γ

subject to F̄(θ + θ̃) � γ + 
−1(η)V 1/2, θ̃ ∈ �,
(C17)

where

F̄(θ + θ̃ ) = f + θ̃Tgθ − 1
2 θ̃TRθθ θ̃ − 1

2 Tr(CRww), (C18)

V = (Rwθ θ̃ − gw)TC(Rwθ θ̃ − gw), (C19)

and 
(η) is the cumulative distribution function for the normal
Gaussian density. The SOCP of Eq. (C17) can be used in the

052326-10



ROBUST CONTROL OF QUANTUM GATES VIA . . . PHYSICAL REVIEW A 88, 052326 (2013)

optimization step in Algorithm 1. The use of the weak noise
approximation makes this approach very numerically efficient.
Indeed, calculations at each new control θ require only the

knowledge of the noise covariance matrix, thus eliminating
the need for random sampling from the noise distribution. A
full exploration of this approach is forthcoming.
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Softw. 11, 545 (1999).

[85] J. F. Sturm, Optim. Methods Softw. 11, 625 (1999).

052326-12

http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1126/science.1093649
http://dx.doi.org/10.1080/01442350701633300
http://dx.doi.org/10.1080/01442350701633300
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1103/PhysRevA.72.052337
http://dx.doi.org/10.1103/PhysRevA.72.052337
http://dx.doi.org/10.1103/PhysRevA.77.042306
http://dx.doi.org/10.1103/PhysRevA.79.013422
http://dx.doi.org/10.1103/PhysRevA.79.013422
http://dx.doi.org/10.1103/PhysRevLett.106.120402
http://dx.doi.org/10.1103/PhysRevLett.106.120402
http://dx.doi.org/10.1103/PhysRevLett.108.198901
http://dx.doi.org/10.1103/PhysRevLett.108.198901
http://dx.doi.org/10.1103/PhysRevLett.108.198902
http://dx.doi.org/10.1103/PhysRevLett.108.198902
http://dx.doi.org/10.1103/PhysRevA.86.052117
http://dx.doi.org/10.1103/PhysRevA.86.052117
http://arXiv.org/abs/arXiv:1004.3492
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1088/1367-2630/13/7/073029
http://dx.doi.org/10.1063/1.3691827
http://dx.doi.org/10.1103/PhysRevA.83.053426
http://dx.doi.org/10.1063/1.476575
http://dx.doi.org/10.1063/1.1564043
http://dx.doi.org/10.1063/1.1650297
http://dx.doi.org/10.1103/PhysRevA.87.043416
http://dx.doi.org/10.1103/PhysRevA.87.043416
http://dx.doi.org/10.1103/PhysRevB.74.161307
http://dx.doi.org/10.1088/0953-4075/40/9/S06
http://dx.doi.org/10.1080/09500340701639615
http://dx.doi.org/10.1103/PhysRevLett.99.170501
http://dx.doi.org/10.1103/PhysRevA.78.012358
http://dx.doi.org/10.1103/PhysRevB.78.165118
http://dx.doi.org/10.1103/PhysRevB.78.165118
http://dx.doi.org/10.1166/jctn.2009.1246
http://dx.doi.org/10.1166/jctn.2009.1246
http://dx.doi.org/10.1103/PhysRevA.80.030301
http://dx.doi.org/10.1103/PhysRevLett.102.090401
http://dx.doi.org/10.1103/PhysRevLett.102.090401
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1088/0953-4075/44/15/154013
http://dx.doi.org/10.1088/1367-2630/14/7/073023
http://dx.doi.org/10.1063/1.2042456
http://dx.doi.org/10.1063/1.2042456
http://dx.doi.org/10.1103/PhysRevA.73.053401
http://dx.doi.org/10.1088/1751-8113/41/20/205305
http://dx.doi.org/10.1103/PhysRevA.84.012109
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1103/PhysRevA.84.022326
http://dx.doi.org/10.1016/j.jmr.2011.07.023
http://dx.doi.org/10.1103/PhysRevA.84.022305
http://dx.doi.org/10.1016/j.cpc.2010.08.023
http://dx.doi.org/10.1016/j.cpc.2010.08.023
http://dx.doi.org/10.1137/09074961X
http://dx.doi.org/10.1137/09074961X
http://dx.doi.org/10.1103/PhysRevLett.108.110504
http://dx.doi.org/10.1137/11082467X
http://dx.doi.org/10.1103/PhysRevA.83.012326
http://dx.doi.org/10.1103/PhysRevA.83.012326
http://dx.doi.org/10.1063/1.4757133
http://www.stanford.edu/%7Eboyd
http://dx.doi.org/10.1103/PhysRevA.86.062309
http://dx.doi.org/10.1103/PhysRevA.86.062309
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1393890
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1393890
http://cvxr.com/cvx
http://stanford.edu/%7Eboyd/graph_dcp.html
http://dx.doi.org/10.1080/10556789908805762
http://dx.doi.org/10.1080/10556789908805762
http://dx.doi.org/10.1080/10556789908805766



