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Minkowski structure for purity and entanglement of Gaussian bipartite states
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The relation between the symplectic and Lorentz groups is explored to investigate entanglement features in
a two-mode bipartite Gaussian state. We verify that the correlation matrix of arbitrary Gaussian states can be
associated with a hyperbolic space with a Minkowski metric, which is divided in two regions: separabilitylike
and entanglementlike, in equivalence to timelike and spacelike in special relativity. This correspondence naturally
allows the definition of two insightful invariant squared distance measures: one related to the purity and another
related to amount of entanglement. The second distance allows us to define a measure for entanglement in terms
of the invariant interval between the given state and its closest separable state, given in a natural manner without
the requirement of a minimization procedure.
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I. INTRODUCTION

The symplectic group is isomorphic to the structure of the
Lorentz and de Sitter groups, as was first pointed out by Dirac
himself in his famous 3 + 2 de Sitter group article [1]. In
fact, all Gaussian light field states embody the symplectic
structure [2], as has been explored in the implementation of
several features such as quadrature squeezing and quantum
entanglement. A particularly important separability criterion,
based on the symplectic structure of Gaussian states (GS), was
given by Simon [3], as an extension for continuous variables
of the Peres-Horodecki positivity under partial transposition
(PPT) criterion [4,5]. It is remarkable that positive maps can
actually be associated with a hyperbolic geometry displaying
formal similarity with the space-time manifold of special
relativity. This connection was reported earlier [6,7] for
two-qubit systems where the concept of hyperbolic squared
distance was introduced as a measure of entanglement, within a
compact support in contrast with the space-time manyfold. The
relation of the invariants of the Lorentz group, namely, space-
time squared intervals, with transformations and entanglement
properties of GS seems to us quite advantageous to be seen
from a geometric perspective.

In this paper we give a geometrical picture of the separabil-
ity bound for two-mode bipartite GS in terms of a hyperbolic
geometry having a Minkowski metric, and explore the formal
similarities between purity and entanglement properties with
some familiar concepts in theory of relativity. The advantage
of such an approach is made clear for the definition of distances
related to entanglement and purity measures in terms of
invariant intervals, which do not rely on some optimization
procedure as usual [8,9]. We exemplify by comparing the
distance based measure of entanglement to other well known
measures of entanglement for symmetric and nonsymmetric
Gaussian states produced by sending a two-mode thermal state
through lossy optical fibers.
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II. GAUSSIAN STATES

Gaussian continuous variable (CV) states are standard
in quantum mechanics, whose information is stored in two
simple quantities: the mean value vector and the covariance
matrix (CM) [10]. Mean values can be displaced by local
operations to the null vector, without affecting entanglement,
being usually neglected. For a bipartite system described by
bosonic operators (a1,a2) the 4 × 4 CM reads, after suitable
local operations, as [3]

V =
(

V1 C
C† V2

)
, Vi = niI, C =

(
ms mc

mc ms

)
, (1)

ni,mc,ms ∈ R, being Hermitian and positive semidefinite,
V† = V � 0. Additionally, the noncommutativity of the cre-
ation and annihilation operators, imposes a constraint on V:

V + 1
2 E � 0, (2)

where E = diag(Z,Z), Z = diag(1, −1). Separable Gaussian
bipartite states must also obey [3]

Ṽ + 1
2 E � 0, (3)

where Ṽ = TVT is achieved by a partial phase space mirror
reflection, T = diag(I,X), and X = adiag(1,1). It is known
that a necessary and sufficient condition for the positivity
semidefiniteness of a matrix is that its upper left block be
positive definite and the block’s Schur complement [11] be
positive semidefinite. Thus the physical positivity criterion (2)
applies if and only if [12]

V1 + 1
2 Z > 0 and S

(
V + 1

2 E
)

� 0, (4)

and the separability condition (3) holds only if [12]

V1 + 1
2 Z > 0 and S

(
Ṽ + 1

2 E
)

� 0. (5)

III. GEOMETRY

In order to explore the geometric features of the GS we first
write the inequalities in (4) and (5) in terms of the matrices
entries in (1). We verify that the inequalities in (4) reduce to
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FIG. 1. (Color online) Universe cone for any two-mode bipartite
GS. Unitary operations connect any two states with same purity lying
in a conic isosurface of purity.

the quadratic form

δs2 = δt2 − δx2 − δy2 � 0, (6)

having a Minkowski metric, where

δt2 = (
I1 − 1

4

)−1 (
I1 − 1

4 − 1
2I4

/
I2

)2
I2,

δx2 = (
I1 − 1

4

)−1 (
1
4I 2

4

/
I2 − I1I

2
3

)
, (7)

δy2 = 1
4

(
I1 − 1

4

)−1 (
I1 − 1

4 + I3
)2

,

with the local invariants [3] being I1 = det V1, I2 = det V2,
I3 = det C, and I4 = tr(V1ZCZV2ZC†Z). In this 1 + 2 di-
mensional space, a separatrix is defined by δs2 = 0 setting
the boundary for discerning physical from nonphysical states.
States lying at the boundary are pure bipartite GS, correspond-
ing to equality in (4). By computing all the terms in (6) we get

δs2 = det V − 1
4σV + 1

16 , (8)

where det V = I1I2 + I 2
3 − I4 and σV = I1 + I2 + 2I3 [13].

An arbitrary pure global state is characterized by det V = 1/16
and σV = 1/2, and so δs2 = 0 and is located at the external
conic boundary, defining an isosurface for states with unit
purity P = Tr(ρ2) = 1 (see Fig. 1). Conic isosurfaces inside
the volume define states with same purity, P = 1/(4

√
det V).

Therefore, analogously to intervals in the space-time, defined
as the distance between two points (events) in the light cone,
an interval here connects a given state with a certain purity
P < 1 to its closest pure state situated at the external surface
of the physical cone of existence P = 1. Since both purity
P and σV (the seralian) are preserved by unitary operations,
all states lying in a P isosurface are connected by unitary
operations. So the Lorentz invariance of δs2 is associated
with the invariance of P under an arbitrary unitary operation,
where V′ = S†VS is the CM under a symplectic transform
S over V, related to the arbitrary unitary operation U by
UvU−1 = Sv: v = (a†

1,a1,a
†
2,a2)†.

In relativity the causal structure allows that at any event
another light cone be defined, therefore restricting all world
lines. For the GS depicted in a hyperbolic space (Minkowski
picture), theP = 1 cone defines all states that can be generated
from the vacuum (as all GS can be generated by convenient
Gaussian operations over the vacuum). Trace preserving

operations may preserve purity (if unitary) or decrease it (if
not unitary). Being at a certain state of the cone of existence,
a new set of Gaussian operations leads to any new state
inside the cone if nonunitary trace preserving operations are
allowed. While local unitary operations must connect states
in a specific conic isosurface, arbitrary (trace preserving)
nonunitary operations can move states from the surface to
any state inside the cone volume, which in that case preserves
(or decreases) the amount of entanglement depending on the
nature of the operation. Here, similarly to the limiting velocity
of light in relativity, the purity P = 1 is the limiting quantity.

IV. THE SQUARED DISTANCE FOR ENTANGLEMENT

Global operations can certainly change the amount of
entanglement of a given state, transforming from one state
to another with a different amount of entanglement. However
local (nonstochastic) operations cannot change it, while they
certainly change the state. So local operations form a special
class of causal operations connecting states with the same
amount of entanglement. Let us discuss this point within an
appropriate picture, rewriting the inequalities in (5) as

δs̃2 = δt2 − δx2 − δỹ2 � 0 (9)

with

δỹ2 = 1
4

(
I1 − 1

4

)−1 (
I1 − 1

4 − I3
)2

. (10)

An entangled GS necessarily implies I3 < 0 [3]. Therefore
Eq. (9) turns out to be the Simon [3] separability criteria for
GS. So the Minkowski structure emerges with a separatrix
given by δs̃2 = 0, dividing the space into separabilitylike
and entanglementlike regions. δs̃2 � 0 includes all separable
states, while δs̃2 < 0 corresponds to all entangled GS.

We must understand the meaning of such a relation
between both regions, and for that we address Fig. 2. The
Minkowski space deals with intervals (between events), while
the symplectic deals with states. Again we match these two
features by identifying the meaning of the invariant squared
distance interval in (9). The interval defined in the hyperbolic
space is actually a distance between the given state and
the closest separable state lying at the separatrix. Since

FIG. 2. (Color online) Separation between the separabilitylike
and entanglementlike regions after partial transposition of a two-mode
bipartite state. Any two states lying at a conic entanglement isosurface
can be connected through local Sp(2,R) ⊗ Sp(2,R) operations, and
therefore have the same amount of entanglement.
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entanglement does not change due to local unitary operations,
the two regions are disconnected by any Sp(2,R) ⊗ Sp(2,R)
unitary operation. In fact only points in the Minkowski space
which have the same entanglement can be connected by those
operations. Therefore any two states with the same amount
of entanglement belong to the same conic isosurface. The
Lorentz invariance of δs̃2 is associated with the invariance of
entanglement of two-mode bipartite GS under arbitrary local
symplectic unitary operations, i.e., for V′ = SL

†VSL, where
SL must be

ULvU−1
L = SLv, SL = diag(S1,S2), (11)

with the condition SL
−1 = ESL

†E. In a simplified scenario, any
state living on the (y,t) plane is linked to other states with
constant δt by a rotation in the (x,y) plane. At that plane,
violating inequality (9) means that the state lies on a line
parallel to the cone’s surface: δt̃2 − δỹ2 = −δs̃2. Since all
states with the same δs̃2 are equidistant to the separatrix they
are connected through operations in (11) lying in a straight line
parallel to the separability boundary, δt̃2 = δỹ2, as in Fig. 2.

V. ENTANGLEMENT PROPERTIES
AND QUANTIFICATION

Now, we investigate the quality of |δs̃2| as a good measure
of entanglement, which requires it to satisfy some specific
properties [14] in the context of GS and Gaussian operations
[15,16]. It will be useful for us rewrite Eq. (9) as

δs̃2 = det
(
Ṽ + 1

2 E
) = (ñ2

+ − 1/4)(ñ2
− − 1/4), (12)

where ñ± are the symplectic eigenvalues of Ṽ, explicitly given
by [13]

ñ2
± = I1 + I2

2
− I3 ±

√(
I1 − I2

2

)2

− (I1 + I2)I3 + I4.

(13)

Furthermore, Ṽ is positive semidefinite and ñ+ � ñ− � 1/2
for a separable state, while for an entangled state 0 < ñ− <

1/2 fulfilling δs̃2 < 0 (in analogy to the spacelike condition in
relativity). Equations (12) and (13) link the squared distance
δs̃2 (when δs̃2 � 0) with the Simon separability criteria for
bipartite GS [3] expressed as a function of the symplectic
eigenvalues. In fact, measuring entanglement by distances in a
Hilbert space (see, for instance, [17,18] for the Bures metric)
requires a hard minimization procedure over a set of separable
states. Here instead, δs̃2 does not require any minimization
procedure since it is given due to the Minkowski structure as
a straight line between the two parallel conic surfaces, one
containing the given state and the second its closest separable
state. Therefore δs̃2 satisfy the computability requirement.

The discriminability requirement states that δs̃2 = 0 if and
only if ρ̂ is separable, and this is true for all bipartite GS,
since there is no bipartite GS with bound entanglement [19].
Two states living closer inside the existence cone have partial
transpositions also close to each other since by construction
the difference between the original state and the partially
transposed is a sign in I3 [see Eq. (10)]: this defines the
asymptotic continuity for the measure.

Given a convex decomposition of a quantum state, the
entanglement of this state cannot be less than the convex sum of
the entanglement of each part of the decomposition. Given two
arbitrary two-mode bipartite GS, ρ̂ and ρ̂ ′ with corresponding
entanglement δs̃2 and δs̃ ′2, then

ρ̂ =
∫

d2α d2β P (α,β)D̂αβρ̂ ′D̂†
αβ → |δs̃2| � |δs̃ ′2|, (14)

where P is a normalized Gaussian probability function with
CM P, and D̂αβ is the displacement operator [20]. To prove the
necessary condition of convexity, given the CMs of the above
relation V = P + V′ we derive that∣∣det

(
Ṽ + 1

2 E
)∣∣ �

∣∣det
(
Ṽ′ + 1

2 E
)∣∣ . (15)

GS entanglement cannot be distilled by local operations
and classical communication (LOCC) Gaussian operations
[15,16]. Therefore any good entanglement measure cannot
decrease under these operations—a property called mono-
tonicity. To prove the monotonicity for δs̃2, first let us
note that all stochastic Gaussian LOCC, represented by an
8 × 8 CM � acting on an input GS with CM V, can be
reproduced by means of a deterministic Gaussian LOCC
[16], furthermore � is separable with respect to the input
(with CM V) and output states (with CM V′). Under these
conditions V′ � V implies necessarily [21] that Ṽ′ � Ṽ [15].
It is direct to see that |det(Ṽ′ + 1

2 E)| � |det(Ṽ + 1
2 E)|. All

those properties guarantee that |δs̃2| (when δs̃2 � 0) is an
entanglement monotone [14,22].

It is interesting to compare the Minkowski interval δs̃2 with
other available measures of entanglement. For that we define

E(ρ12) = f

(
2

√
δs̃2

(ñ2+ − 1/4)
+ 1

4

)
, (16)

being f (x) a monotonically decreasing function over the
interval x ∈ (0,1] [23]. In that form Eq. (16) can be con-
nected to two distinct entanglement measures: the logarithmic
negativity (LN) [13] and the entanglement of formation (EoF)
for symmetric GS [24]. The LN measure is given by taking
f (x) = −ln(x) in Eq. (16) For symmetric GS (I1 = I2),
the EoF can be computed analytically [24], and is given
by taking f (x) = c+(x) log2[c+(x)] − c−(x) log2 (c−(x)) with
c±(x) = (x−1/2 ± x1/2)2/4 in Eq. (16). Both the LN and the
EoF are monotonically decreasing functions of ñ−: The closer
ñ− is to zero, the more entangled the state. There is no closed
analytical expression for the EoF for nonsymmetrical GS [9],
whose computation relies on a minimization procedure [25].
We employ this same formula to calculate a lower bound for
the EoF for nonsymmetric GS [26].

We now concentrate on the kind of GS actually gener-
ated experimentally—the two-mode thermal squeezed state
(TMTSS) [27]—produced in a nonlinear crystal with in-
ternal noise. These states are characterized by the follow-
ing values for the parameters: n ≡ n1 = n2 = (h1 + h2)/4,
ms = 0, and mc = (h1 − h2)/4, with hi = {e−pi + d (2n̄ +
1)[(1 − e−pi )/pi]} and p1 = d + 2r and p2 = d − 2r . d is
a dissipative parameter, and r is the squeezing parameter. n̄

is the mean number of thermal photons introduced by the
quantum noise. Therefore δt2 = n2(n2 − 1

4 − m2
c)2/(n2 − 1

4 ),
δỹ2 = 1

4 (n2 − 1
4 + m2

c)2/(n2 − 1
4 ), and δx2 = 0. The measure
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FIG. 3. (Color online) Blue region: Set of all TMTSS with a fixed
dissipative parameter of d = 2.5 and varying thermal photon number
n̄ from 0 to 1.5, and squeezing rate r from 0 to 3.0. The color map in
the (blue) limited region indicates from light to darker the increasing
feature of r . Red region: Set of all TMTSS above after asymmetric
action of a lossy fiber with � = 0.5. The effect of the asymmetry is to
constrain the available states to a smaller area around the separatrix.

(16) turns out to be simply E(ρ12) = f [2(n − |mc|)]. It
vanishes at the separability boundary mc = ±(n − 1/2). Since
any Sp(2,R) ⊗ Sp(2,R) unitary operation does not change
the amount of entanglement, necessarily all states connected
through it are located on lines parallel to the separatrix (see
Fig. 3). For a fixed d = 2.5 as r is increased the state gets
more entangled, while by increasing n̄ it tends to lie on the
separabilitylike region. Asymmetry effects can be introduced
by assuming that the TMTSS is distributed by lossy optical
fibers [25]. The fibers output field state will have a CM of
the form (1) with n′

i ≡ (ni − 1/2)T 2
i + 1/2, for i = 1,2 and

m′
c ≡ mcT1T2. The transmission coefficients in the asymmetric

configuration are T1 = 1, T2 = exp(−�) [28], where � is
a dimensionless length related to the fiber’s absorption.
Now δt2 = n′

2
2(n′

1
2 − 1

4 − n′
1

n′
2
m′

c
2)2/(n′

1 − 1
4 ), δỹ2 = 1

4 (n′
1

2 −
1/4 + m′

c
2)2/(n′

1 − 1
4 ), δx2 = 0, and the separatrix will be at

(n′
1 ± 1/2)(n′

2 ± 1/2) = m′
c

2. In Fig. 3, we see that due to the
additional noise introduced by the fiber, the states are confined
to a region around the separatrix.

To compare the different measures, we plot |δs̃2| in Fig. 4
and the two cases for (16): the EoF bound and the LN
when r and n̄ increase. The measures given by (16) have
qualitatively the same behavior (with the LN being always
greater than the EoF bound) for symmetric and asymmetric
states. On the other side, |δs̃2| is always greater than both
(note that this function is rescaled in Fig. 4). As r increases
from zero to r0 ≈ 1.25, the noise and dissipation of the crystal
are responsible for the separability of the TMTSS. After this
threshold the state becomes entangled as can be seen for the
three plotted functions. The behavior with varying n̄ is shown
in the inset and now the measures differ qualitatively: The
functions (16) always decrease with increasing n̄, while |δs2|
reaches a maximum value and then decreases to zero. The
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FIG. 4. (Color online) Measuring entanglement of (asymmetric)
GS living in the red region of Fig. 3 using the Minkowski distance
|δs2|/2000 (continuous lines), the EoF bound (dashed lines), and the
LN (dotted line) as a function of r with fixed d = 2.5, n̄ = 0.5 and
� = 0.5. In the inset we show the same quantities for a symmetric GS
(� = 0) living in the blue region of Fig. 3 and for the asymmetric GS
(shadowed curves) with � = 0.5 living in the red region of Fig. 3 as
a function of the mean thermal number n̄ with r = 3 and d = 2.5.

quality of a distance measure of |δs2| tells that the state in
question moves away from the separability boundary with
increasing n̄, reaching a maximum distance and then moves
back to this boundary when |δs2| = 0. This is not signaled by
(16), due to the distinct nature of the measures involved.

VI. DISCUSSION

We have explored the symplectic and Lorentz groups
relation to investigate some formal analogies with special
relativity, related to quantum mechanical features of GS as
purity and entanglement. Particularly, we have observed that
a monotone distance based entanglement measure can be
analytically given, being the optimization, usually required
for this kind of measure, is directly given by the Minkowski
structure. We remark that the present description can be
generalized to include non-Gaussian CV states as well. In
that situation there are states, which are entangled although
satisfying δs̃2 � 0, thus lying within the cone. Those states
are not detected by the PPT criterion, and are known as
bound entangled states. So, what is mostly interesting in the
Minkowski diagram in Fig. 2 is that it then splits the space into
a region containing only entanglement that can be distilled (by
non-Gaussian operations), and a region containing separable
states and entangled states that cannot be distilled by any
kind of local operations. Therefore for arbitrary CV states,
δs̃2 is a measure of PPT violation and gives a lower bound for
entanglement of the given state (since we are dealing with the
CM only and the addition of higher correlations could only
enhance entanglement). Only for Gaussian states the measure
guarantees full quantification of the amount of entanglement.
Finally we suggest that beyond the clear importance of this
picture for entanglement quantification, given the high degree
of control in the experimental generation Gaussian quantum
light fields, one could think of this system as a general analog
simulator for relativistic phenomena.
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