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A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one
basis and an arbitrary element of the other basis coincide. In case the dimension, d , of the considered Hilbert
space is a power of a prime number, complete sets of d + 1 mutually unbiased bases (MUBs) exist. Here we
present a method based on the graph-state formalism to construct such sets of MUBs. We show that for n p-level
systems, with p being prime, one particular graph suffices to easily construct a set of pn + 1 MUBs. In fact, we
show that a single n-dimensional vector, which is associated with this graph, can be used to generate a complete
set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of
our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.
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I. INTRODUCTION

A density matrix of a d-level quantum system is described
by d2 − 1 real parameters. Since a von Neumann measurement
can reveal at most d − 1 independent probabilities, d + 1 such
measurements are at least necessary to determine the state
of the system. The question whether, in certain cases, d + 1
measurements are also sufficient led to the introduction of mu-
tually unbiased bases [1–3]. A pair of orthonormal bases, say
Bk = {|ik〉}d−1

i=0 and Bl = {|jl〉}d−1
j=0, of a d-dimensional Hilbert

space, H = Cd , is called mutually unbiased if |〈ia|jb〉|2 = 1
d

holds for any choice of elements i and j . If for a set of bases
{Bk} this relation holds true for all possible pairs of bases, i.e.,
|〈ik|jl〉|2 = 1

d
for all i, j , and k �= l, this set is called a set

of mutually unbiased bases (MUBs). A simple example of a
set of three MUBs for dimension d = 2 are the normalized
eigenvectors of the three Pauli operators.

As discussed in Refs. [4,5], MUBs show that state tomog-
raphy with the minimum number of d + 1 measurements is
indeed possible. In fact, such bases maximize the information
extraction per measurement and minimize the effects of
statistical errors [4]. Besides state tomography, MUBs play
an important role in quantum key distribution [6,7], and
solutions to the so-called mean king problem [8,9]. Moreover,
they have recently been shown to be useful for entanglement
detection [10]. Furthermore, it was discovered that they
have interesting connections to symmetric informationally
complete positive-operator-valued measures [11] and complex
t-designs [12,13].

The reason why MUBs have found several of the appli-
cations mentioned above is mainly due to the fact that if a
system is prepared in one of the states constituting a particular
basis Bk , then any measurement outcome of an observable
whose eigenbasis, Bl , is mutually unbiased with respect to Bk

is equally likely. Consequently, pairs of observables whose
eigenbases are mutually unbiased are complementary. In
particular, there is no state such that the outcome with respect
to both observables is predictable with certainty, a fact which is
exploited, for instance, in quantum key distribution protocols.
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Whereas d + 1 MUBs are sufficient to reconstruct a density
matrix of a d-dimensional system, it is a priori not clear how
many such bases exist for a given dimension d. However, it
is easy to show that d + 1 is not only the required number of
MUBs for complete state tomography, but also the maximum
number of MUBs [4]. For this reason, d + 1 MUBs are called
a complete set of MUBs. For any dimension d which is a power
of a prime number, it was shown via an explicit construction
that there always exists a complete set of MUBs [4]. However,
for all remaining dimensions not even a single example of
a complete set is known. In fact, there is evidence that,
in general, there exists no such complete set. For instance,
recent numerical searches in Refs. [14–16] and analytical
investigations in Refs. [17–21] indicate that there are only
three MUBs in dimension d = 6, whereas a complete set
would consist of seven. Nevertheless, a rigorous proof for the
nonexistence of complete sets of MUBs in nonprime power
dimensions is still missing.

The original construction of complete sets of MUBs for
Hilbert spaces of dimension d with d being an odd prime
number is based on quadratic exponential sums [2]. This
method was later generalized to d being a power of a prime
number by making use of the theory of finite extension fields,
or Galois fields [4]. It is based on so-called Weil sums [22].
A different method to construct complete sets of MUBs for
dimensions of prime powers, was presented in Ref. [23].
Herein, it is shown that MUBs can be extracted from a partition
of the associated operator space into certain commuting sets.
These methods have then also been used to construct so-called
unextendible MUBs [24]. As will become clearer later, both
methods have their advantages compared to the other. Whereas
the first one can be easily used to generate MUBs, once the
group theoretic results are applied, the second is solely using
the properties of generalized Pauli operators. However, in order
to construct the desired complete set, some relations between
these operators have to be verified.

In this paper, we present an alternative formalism to
construct complete sets of MUBs. The key idea is to use
tools form quantum information theory, rather than abstract
mathematical concepts. Here our starting point is the fact
that, with respect to the computational basis, the elements of
corresponding MUBs belong to the class of so-called locally
maximally entanglable (LME) states [25]. Those states can

052323-11050-2947/2013/88(5)/052323(21) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.052323


CHRISTOPH SPENGLER AND BARBARA KRAUS PHYSICAL REVIEW A 88, 052323 (2013)

be generated solely by applying phase gates to an initial
state, which is the equally weighted superposition of all
computational basis states. A special class of LME states
are the so-called graph states [26–29], where operations on
the initial state are restricted to two-body interactions with
a particular fixed phase. These states play a key role in a
variety of quantum information processing schemes such as,
for example, quantum error correction (see, e.g., Ref. [28,29]
and references therein) and measurement-based quantum
computing [30]. Here we show that a minor generalization of
graph states, where one-body phase gates are also allowed, may
be utilized to construct MUBs. As in the two previously men-
tioned constructions, we obtain a simple sufficient condition
for mutual unbiasedness on the adjacency matrices defining the
generalized graph states. Then we show how this condition
can be met for a complete set of MUBs using symmetric
matrix representations of finite fields. We show that such
representations always exist for all prime power dimensions
and give a constructive algorithm for obtaining them. This
concept allows us to prove that a single symmetric matrix
whose characteristic polynomial cannot be factorized (i.e., is
irreducible) is sufficient to construct a complete set of MUBs
for any prime power dimension. Furthermore, for multipartite
qubit systems, we show that a complete set of MUBs may be
encoded in a single n-dimensional vector whose components
are the diagonal elements of a tridiagonal matrix. Here we
show that one can either consider the generalized graph states
corresponding to all pn − 1 powers of those matrices or the
ones corresponding to arbitrary linear combinations of the first
n powers of them. In the first case, we call the corresponding
graph state a primitive graph state, whereas the set of graph
states occurring in the latter case are called fundamental
graph states. As we will see, the graphical representation of
generalized graph states will make it possible to easily extend
the n fundamental graph states to a set of states corresponding
to a complete set of MUBs. These simple and constructive
methods lead to a set of pn + 1 MUBs for all prime power
dimensions.

Our results also provide a general method for implementing
complementary measurements by means of quantum circuits
consisting of a few elementary gates. First attempts in this
direction have recently been made in Ref. [31] for a restricted
class of qubit systems and in Ref. [32] for bipartite systems
of prime dimension. Here we present a complete framework
for constructing MUBs using only two local operations and
one entangling gate. In particular, our scheme does not only
work for the special cases discussed in Refs. [31,32], but for
all multipartite prime-dimensional systems. Besides the fact
that our formalism is mathematically simple, it also makes
it possible to easily address questions related to the presence
of entanglement in basis states of complete sets of MUBs.
Questions of this type have been considered in Refs. [32–34];
however, not much is known about the entanglement structure
in MUBs beyond tripartite systems. In this respect, our
descriptive formalism in terms of graphs may lead to new
insights on the role of entanglement in MUBs for more
complex many-body systems.

The remainder of the paper is organized as follows.
In Sec. II, we briefly review the concept of finite fields
and their extension, as well as the two most commonly

used constructions of MUBs. In Sec. III, the generalized
graph-state formalism for multipartite-multilevel systems is
introduced. Subsequently, for a pair of bases whose elements
are generalized graph states, we derive a sufficient condition
for mutual unbiasedness in Sec. IV. In Sec. V, we present a
simple method to construct complete sets of MUBs in terms
of generalized graph states for all prime power dimensions.
As mentioned before, in contrast to other construction, we
derive a very simple construction, which is based on a single
graph. We demonstrate that the complete set of MUBs can
then be easily obtained from this graph. Moreover, we show
that the MUBs can be easily read off from the graphical
representation of n fundamental graphs. In Sec. VI, we use
the graph-state formalism to study aspects of entanglement for
MUBs in some examples. A connection between the adjacency
matrices corresponding to complete sets of MUBs and the
average purity of reduced density matrices is established in
Sec. VII. Finally, we discuss the experimental implementation
of complementary measurements using a sequence of one-
body and two-body phase gates in Sec. VIII and give a brief
conclusion in Sec. IX.

II. PRELIMINARIES AND ESTABLISHED
CONSTRUCTIONS

In this section, we first give a brief summary of some basic
concepts related to finite fields and their extensions and then
summarize two most commonly used constructions of MUBs
for prime power dimensions introduced by Wootters and Fields
in Ref. [4] and Bandyopadhyay et al. in Ref. [23]. Readers who
are already familiar with these constructions might just want to
have a brief glance at this section in order to become familiar
with the notation used throughout the paper.

A. Finite fields and their extensions

A finite field, Fd = (Sd, + ,·), is defined as a set Sd ,
with finitely many elements |Sd | = d, on which two binary
operations, + (addition) and · (multiplication), are defined
such that (Sd,+) and (Sd\{0},·) form Abelian groups, and α ·
(β + γ ) = α · β + α · γ for all α,β,γ ∈ Sd . Here the element
0 denotes the neutral element of the additive group (Sd,+),
and 1 denotes the neutral element of the multiplicative group
(Sd\{0},·). Furthermore, −α represents the additive inverse
of α ∈ Sd , i.e., α + (−α) = α − α = 0, and β−1 denotes the
multiplicative inverse of β ∈ Sd\{0}, i.e., β · β−1 = 1. Finite
fields were shown to exist if and only if the number of
elements of Sd is a prime power, i.e., d = pn where here and
in the following p is a prime number, and n is an arbitrary
integer [35,36].

Prime fields Fp are isomorphic to Zp = ({0, . . . ,p − 1}, +
,·), i.e., the set of integers {0, . . . ,p − 1} with addition (+)
and multiplication (·) performed modulo p. An extension of a
field, Fd , is a field (under the operations of Fd ) which contains
Fd . A prime field Fp

∼= Zp can be extended to a prime power
fieldFpn for an arbitrary integer n as follows. Consider a monic
polynomial [37], f (x) = xn + cn−1x

n−1 + · · · + c1x + c0, of
degree n with coefficients ci ∈ Zp which cannot be factorized
over Zp, i.e., a so-called irreducible polynomial. A necessary
condition for irreducibility is that the polynomial does not have
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a root in Zp. Let us denote by α /∈ Zp one of the roots of f (x),
i.e., f (α) = 0. The elements of an extension field Fpn can then
be represented by all polynomials in α over Zp up to degree
n − 1; i.e., {1,α,α2, . . . ,αn−1} is a basis of Fpn . The multi-
plication (·) and addition (+) of these elements is performed
modulo f (α). In other words, the extension field Fpn can be
viewed as the residue class ring of Fp[x]/[f (x)], i.e., the ring
of polynomials with coefficients in Zp modulo the irreducible
polynomial f (x) [38]. Since each of those polynomials can
be written as a linear combination of the basis elements (and
thus are characterized by n coefficients ci ∈ Zp), they can
be represented by an n-dimensional vector (c0, . . . ,cn−1). The
number of different polynomials, i.e., the number of elements
of Fpn , is therefore pn. It is important to note that neither
the choice of the irreducible polynomial nor the choice of
the root changes the structure of the extension field, in the
sense that they are all isomorphic. As an example we consider
the prime field Z3 and the irreducible polynomial f (x) =
x2 + x + 2 ∈ Z3[x]. Let us denote by α one of the roots of
f (x). The extension field F32 then consists of the following
nine elements: 0, 1, 2, α, α + 1, α + 2, 2α, 2α + 1, 2α + 2,
i.e., all polynomials over Z3 with degree smaller than two.

The minimal polynomial of an element γ ∈ Fpn is defined as
the monic polynomial p(x) = xm + cm−1x

m−1 + · · · + c1x +
c0 over Zp of smallest degree m for which p(γ ) = 0. Every
element of Fpn has a unique minimal polynomial, which is
necessarily irreducible (over Zp). If the minimal polynomial
of an element γ is of the order n, then the set of its powers
{γ i}n−1

i=0 constitutes a basis of Fpn , i.e., every element of Fpn

can be uniquely represented as b0 + b1γ + · · · + bn−1γ
n−1.

Since the multiplicative group Fpn\{0} is cyclic [36] (as
the multiplicative group of any finite field), it contains a
so-called primitive element γ with the property that its
first pn − 1 powers generate all nonzero elements of the
field, i.e., Fpn\{0} = {γ i}pn−2

i=0 . The minimal polynomial of
a primitive element is called a primitive polynomial. The
crucial characteristic of a primitive polynomial p(x) is that the
smallest positive integer m for which it becomes a factor of the
polynomial xm − 1 overZp is m = pn − 1. That is, if p(x) is a
primitive polynomial, then for any m < pn − 1 there exists no
polynomial g(x) over Zp such that xm − 1 = g(x)p(x). Every
such polynomial is necessarily of order n and irreducible.
Hence, if a primitive polynomial is used from the beginning
as the irreducible polynomial f (x) for which f (α) = 0, to
construct the extension field Fpn , then the element α is itself
a primitive element and therefore Fpn\{0} = {αi}pn−2

i=0 . A list
of irreducible and primitive polynomials can be found in
Refs. [36,39]. In addition, nowadays there are also several
commercial software packages, such as the Communications
System Toolbox for MATLAB, which are able to automatically
generate those polynomials.

Finally, let us note that for an element γ ∈ Fpn , the trace
operator is defined as

tr(γ ) =
n−1∑
k=0

γ pk = γ + γ p + · · · + γ pn−1
. (1)

It can be shown that the trace operator is a linear map from
Fpn to Fp

∼= Zp.

B. MUBs from finite field extensions

An important result within field theory, which was used to
construct complete set of MUBs, is that∣∣∣∣∣∣

∑
l∈Fpn

ωtr(kl2+ml)
p

∣∣∣∣∣∣ =
√

pn, (2)

for p � 3 prime, arbitrary m ∈ Fpn , nonzero k ∈ Fpn , and
ωp = e2πi/p. Using this relation, it follows immediately that
the following set constitutes a complete set of MUBs for
all odd prime power dimensions [2,4]. The first basis is
the computational basis BC . The remaining d bases Bk =
{|vk(m)〉}m∈Fpn , which are pairwise mutually unbiased, are
given by

|vk(m)〉 = 1√
d

∑
l∈Fpn

ωtr(kl2+ml)
p |e(l)〉 , (3)

with k,m ∈ Fpn , where |e(l)〉 ∈ BC are the elements of the
computational basis (in arbitrary order).

Since for n = 1 it holds that tr(kl2 + ml) = kl2 + ml, the
complete set of MUBs is given, apart form the computational
basis, by the bases Bk containing the vectors

|vk(m)〉 = 1√
p

p−1∑
l=0

ωkl2+ml
p |e(l)〉 , (4)

where k,m ∈ Zp and ωp = e2πi/p [2]. The bases are clearly
mutually unbiased, since∣∣∣∣∣

p−1∑
l=0

ω(kl2+ml)
p

∣∣∣∣∣ = √
p, (5)

for any k �= 0 (mod p) and p an odd prime, which is known
as a quadratic Gauss sum.

In Ref. [4] the relation in Eq. (2) has been rewritten to
avoid the use of the trace operator (which is generally hard
to evaluate) and to generalize the construction to powers of
two. As mentioned before, we can represent any element in
Fpn by an n-dimensional vector. More precisely, we choose a
basis {bi}ni=1, in Fpn (for instance {1,α,α2, . . . ,αn−1}, where
α denotes a root of an irreducible polynomial) and write
l =∑i libi . The vector associated with the polynomial l is then
�l = (l1, . . . ln)T ∈ Zn

p. The basic idea in rewriting Eq. (2) was
to exploit the fact that the trace operator is linear. Therefore,
tr(kl2 + ml) can be rewritten as �lT (

∑n
i=1 kiM

(i))�l + �mT �l,
where M (i) are n × n symmetric matrices whose components
M (i)

u,v are defined by the relation

bubv =
n∑

i=1

M (i)
u,vbi, (6)

and the n-dimensional vector �m is defined by tr(ml) =∑
i mili , and ki = tr(kbi). The complete set of MUBs is

then given, apart form the computational basis, by B�k =
{|v�k( �m)〉}�k∈Zn

p
, with

|v�k( �m)〉 = 1√
d

∑
�l∈Zn

p

ω
�lT S�k�l+ �mT �l
p |e(�l)〉, (7)
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where S�k ≡∑n
i=1 kiM

(i). Note that the basis vectors |v�k( �m)〉
are uniquely defined solely by the n × n matrices M (i). The
requirement that the bases are mutually unbiased for all pn

different values of �k, has then been shown without using
the relation in Eq. (2). This is achieved by first noting that
any symmetric matrix, as M (i), is diagonalizable in case p

is odd [40]); i.e., M (i) = P (i)D(i)(P (i))T , for any i, where
P (i) is invertible and D(i) is diagonal and by proving that
any nontrivial linear combination of these matrices, i.e.,
S�k ≡∑n

i=1 kiM
(i), where �k �= 0, is invertible over Zp. This

implies that the expression for the scalar product can then be
written as an n-fold product of Eq. (4) [4]. Note that from this
result it follows that for any nonsingular symmetric matrix S

over Zp, i.e., det S �= 0 mod p, it holds that∣∣∣∣∣∣∣
∑
�l∈Zn

p

ω
�lT S�l+ �mT �l
p

∣∣∣∣∣∣∣ =
√

pn. (8)

Note that for dimensions d = 2n, Eq. (2) does not hold.
In fact, the absolute value would vanish, as can be easily
verified. This prevents a straightforward generalization of the
construction explained above to this case. In order to overcome
this problem, the fourth root of unity, ω4 = i, has been used
in Ref. [4]. In this way, a result similar to Eq. (8) has been
obtained. Namely,∣∣∣∣∣∣

∑
�l∈Zn

2

i
�lT S�k�l(−1) �mT �l

∣∣∣∣∣∣ =
√

2n, (9)

where the sum runs over all elements �l of Zn
2. Herein, S�k

is again any nontrivial combination of the matrices M (i), as
defined in Eq. (6). The crucial property of the matrices S�k =∑n

i=1 kiM
(i) is that they are symmetric n × n and have an

odd determinant for all nonzero �k ∈ Z2. Using this result, a
complete set of MUBs for d = 2n has been constructed similar
to Eq. (3), namely, the computational basis together with the
bases B�k , where �k ∈ Zn

2, defined by the vectors

|v�k( �m)〉 = 1√
d

∑
�l∈Zn

2

i
�lT S�k�l(−1) �mT �l|e(�l)〉, (10)

where �k, �m ∈ Zn
2, and each vector |e(�l)〉 corresponds to an

element of the computational basis BC .
Thus, summarizing this construction, one chooses a basis,

{bi}ni=1 of Fpn and determines the symmetric matrices M (i)

according to Eq. (6). The MUBs are then given, apart from the
computational basis, as in Eq. (3) for p � 3 and Eq. (10) for
p = 2, respectively.

C. MUBs from maximally commuting bases

Another construction of complete sets of MUBs for prime
power dimensions was presented in Ref. [23]. Consider a
complex Hilbert space of dimension d (not necessarily a prime
power), i.e., H = Cd . First note that the maximal number of
pairwise orthogonal commuting unitary matrices {Ui} acting
on Cd is d, which can be easily verified since the matrices
are diagonal in the same basis. Let M = {U1, . . . ,Ud2} be an

orthonormal basis of unitaries of the operator space, where,
without loss of generality, U1 = 1ld . The set M is called
a maximally commuting basis if it can be partitioned as
M = {1l}⋃ C1 · · ·⋃ Cd+1, where each class Ci contains d − 1
commuting unitaries [41]. In Ref. [23], it was shown that if
there exists such a maximal commuting basis of orthogonal
unitary d × d matrices, then there exists a complete set of
MUBs. The MUBs are simply the common eigenbases of the
commuting operators within each class Ci .

In order to construct complete sets of MUBs for prime
power dimensions one can make use of the generalized Pauli
operators [23]. For a Hilbert space Cp, these are defined as

X =
p−1∑
k=0

|(k + 1) mod p〉 〈k| , (11)

Z =
p−1∑
k=0

ωk
p |k〉 〈k| , (12)

where ωp = e2πi/p. In the following we call a prime-
dimensional quantum system a qupit, in order to stress the
difference to a qudit, which can have arbitrary dimension.
As can be easily seen, for prime dimension, i.e., d = p, the
eigenbases of the p + 1 operators, Z,X,XZ, . . . ,XZp−1, form
a complete set of MUBs. For the more general case of prime
powers, d = pn, the generalized Pauli group on the Hilbert
space, H = Cd 
 (Cp)⊗n, is generated by the set of operators

P (�k,�l, �m) = U (k1,l1,m1) ⊗ · · · ⊗ U (kn,ln,mn), (13)

wherein the operators U (ki,li ,mi) acting on system i are of the
form

U (k,l,m) = ωk
pXlZm, where k,l,m ∈ Zp, (14)

and the n-dimensional row vectors �k,�l, �m are an abbreviation
for the exponents, e.g., �k = (k1, . . . ,kn). It can be straightfor-
wardly shown that two elements of the Pauli group commute,
i.e., [P (�k,�l, �m),P ( �k′,�l′, �m′)] = 0, if and only if

�l · �m′ − �m · �l′ = 0 (mod p). (15)

Moreover, two operators P (�k,�l, �m) and P (�k′,�l′, �m′) for which
the corresponding 2n-dimensional vectors (�l, �m) and (�l′, �m′)
do not coincide are always mutually orthogonal. The class Cj

is then defined via the n operators S
j

i = P (0,�ei, �mj

i ) wherein
�ei denotes the ith unit vector, and the vectors �mj

i are to be
determined. For conciseness, the 2n-dimensional row vectors
(�ei | �mj

i ) may be gathered in an n × 2n matrix for each j . In this
way, one obtains matrices of the form Ej = (1ln,Aj ). Using the
condition above, Eq. (15), one finds that the n Pauli operators
S

j

i commute for any fixed j if the corresponding matrix Aj is
symmetric. The class Cj is then the set of all possible products
of the generators, Sj

i (excluding the identity), which are clearly
all mutually commuting. Note that the multiplication of the
operators amounts to the summation of the corresponding row
vectors in Ej modulo p. Thus, the common eigenbases of the
operators in Cj are mutually unbiased if the corresponding
generators are mutually orthogonal, which they are, as long
as they are mutually independent. That is, the condition of
mutual unbiasedness is that none of the generators S

j

i can be
written as a product of the operators from the other sets {Sk

i }ni=1
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with k �= j . This last condition is equivalent to the condition
that there exists no nonzero n-dimensional (row) vector �v
such that �vAj = �vAk for k �= j . Hence, a sufficient condition
for this independency is that det(Aj − Ak) �= 0 (mod p)
for all j �= k. Since this is exactly the same condition as
the one required in the construction of MUBs presented in
Ref. [4], a possible choice is Ak =∑n

i=1 kiM
(i), with �k =

(k1, . . . ,kn) ∈ Zn
p and M (i) defined in Eq. (6). In this way, it

has been shown that there exists a maximally commuting basis
M = {1l}⋃ C1 · · ·⋃ Cd+1 for all prime power dimensions.
The complete set of MUBs are simply the common eigenbases
of the generators {Sk

i }ni=1 of the stabilizer corresponding to each
matrix Ak .

III. GENERALIZED GRAPH STATES

Graph states, as the name indicates, are states which
are characterized by mathematical graphs, i.e., a set of
vertices and edges. The edges of a graph are gathered in
a so-called adjacency matrix whose dimension corresponds
to the number of vertices. There are two mathematically
equivalent characterizations of graph states [26]. The first is the
interaction picture. It tells us how the generalized graph states
are constructed for a given adjacency matrix, by applying a
particular class of one- and two-body phase gates. The second
is the stabilizer picture. Here, a graph state is uniquely defined
via a set of operators—the generators of a stabilizer—which
are elements of the Pauli group. In particular, the graph state
is defined as the unique eigenstate with eigenvalue one of all
these operators.

A. Definition

Let G = (V,E) be an undirected graph with n vertices
V = {v1, . . . ,vn} and a multiset E = {ei,j } of edges ei,j =
(vi,vj ). For our purpose, we permit multiple edges as well
as self-loops; i.e., an edge ei,j may occur several times in
E, and self-connections of the form ei,i are also allowed.
Analogously to the case of simple graphs, such an undirected
generalized multigraph may be represented by a symmetric
n × n matrix A, the adjacency matrix, where an entry Ai,j =
Aj,i corresponds to the number of edges ei,j between the
vertices vi and vj (see also Refs. [27–29]). In particular, the
diagonal entries Ai,i represent self-loops, and if two nodes
vi and vj are not connected, then Ai,j = 0 (see Fig. 1 as an
example).

FIG. 1. (Color online) An example of a generalized multigraph
and its associated adjacency matrix A. Edges between different
vertices ©i are represented by (red) lines, and self-loops by (red)
circles. For instance, the vertex ©1 has three outgoing edges and two
self-loops.

Consider an n × n adjacency matrix A with entries inZp =
{0, . . . ,p − 1}, where p is a prime number. Given this matrix,
a generalized graph state is defined as follows. To each of the n

vertices, we associate a corresponding Hilbert space Cp, with
the standard basis {|0〉 , . . . , |p − 1〉}. Let the state |+〉 ∈ Cp

be the equally weighted superposition of all basis states; i.e.,

|+〉 = 1√
p

p−1∑
i=0

|i〉 . (16)

Furthermore, we define the one-qupit phase operators,

Ui,i =
{∑1

k=0 ωk
4 |k〉 〈k|i for p = 2,∑p−1

k=0 ω
k(k−1)/2
p |k〉 〈k|i for p � 3,

(17)

and the two-qupit controlled-phase operator,

Ui,j =
p−1∑
k,l=0

ωkl
p |k〉 〈k|i ⊗ |l〉 〈l|j

for i �= j

=
p−1∑
k=0

|k〉 〈k|i ⊗ Zk
j .

(18)

Here and in the following we use the notation ωp = e2πi/p,
and Z denotes the Pauli operator (local phase gate) as defined
in Eq. (12), where the index i refers to the system the operator
is acting on, e.g.,

|k〉 〈k|i = 1 ⊗ · · · ⊗ 1 ⊗ |k〉 〈k|︸ ︷︷ ︸
ith qupit

⊗1 ⊗ · · · ⊗ 1. (19)

Note that all phase operations Ui,j and Zk commute ∀ i,j,k as
they are diagonal in the computational basis.

For a given adjacency matrix A with entries Ai,j , we define
the generalized graph state via the above operations as

|G〉 =
∏
i�j

U
Ai,j

i,j |+〉⊗n . (20)

Note that this is the standard description of graph states
[26,28] which makes use of the two-body interactions given in
Eq. (18), extended by the local unitaries given in Eq. (17). The
resulting states are also called labeled graph states [27,29].
Let us note that the operations Ui,i , which may be regarded as
self-controlled phase gates, are local unitary operators which
do not affect the entanglement properties of a graph state.

For any Hilbert space H = (Cp)⊗n, one can construct an
orthonormal basis in terms of graph states. Namely, we define
the graph-state basis BG = {|G(m1, . . . ,mn)〉}mi∈Zp

via

|G(m1, . . . ,mn)〉 = Zm1 ⊗ · · · ⊗ Zmn |G〉 , (21)

where Z denotes the generalized Pauli operator as defined in
Eq. (12). All basis states |G(m1, . . . ,mn)〉 are local-unitarily
equivalent since each Z acts locally.

Consequently, each graph (i.e., adjacency matrix) cor-
responds to a basis of the Hilbert space. The following
construction of MUBs is based on these particular bases. That
is, each basis of a set of MUBs is represented by a single
graph. In this context, it should be noted that the diagonal
entries of the adjacency matrix for qubits (p = 2) can be
treated modulo 2, even though the local phase in Ui,i is ω4.

052323-5



CHRISTOPH SPENGLER AND BARBARA KRAUS PHYSICAL REVIEW A 88, 052323 (2013)

This is because a change of the entry Ai,i from 2 to 0 (or 3 to 1)
results in the same basis BG but with permuted basis elements
[m′

i = (mi + 1) mod 2], as for p = 2 it holds that U 2
i,i = Zi .

B. Stabilizers of generalized graph states

As mentioned above, generalized graph states can be
characterized in terms of stabilizers from the Pauli group,
which can be determined straightforwardly. In particular, a
graph state |G(m1, . . . ,mn)〉, corresponding to the adjacency
matrix A, is stabilized by a group of operators which is defined
by n generators, {Si}ni=1. The graph state |G〉 = |G(0, . . . ,0)〉
is the unique eigenstate of all Si to eigenvalue one. In Ref. [27],
it was shown that, for p = 2, any graph state |G(m1, . . . ,mn)〉
defined by the adjacency matrix A satisfies

Si |G(m1, . . . ,mn)〉 = ω
mi

2 |G(m1, . . . ,mn)〉 , (22)

where

Si = (ωAi,i

4 XiZ
Ai,i

i

)⊗
j �=i

Zj
Ai,j , 1 � i � n. (23)

Similarly, for p � 3, it was shown (see Ref. [29]) that any
graph state |G(m1, . . . ,mn)〉 defined by the adjacency matrix
A satisfies

Si |G(m1, . . . ,mn)〉 = ω−mi

p |G(m1, . . . ,mn)〉 , (24)

where

Si = (XiZ
Ai,i

i

)⊗
j �=i

Zj
Ai,j , 1 � i � n. (25)

IV. MUTUAL UNBIASEDNESS OF GRAPH STATES

In the following sections we present a formalism that
allows us to attain mutual unbiasedness (MU) between pairs
of graph-state bases. Instead of starting with condition Eq. (2),
we consider the overlap of pairs of generalized graph states.
Using some of the concepts given in Ref. [4], we rederive a
sufficient condition for MU from Secs. II B and II C, which
allows us to establish its connection to the adjacency matrices
of generalized graph states. In this way, we obtain a simple
and insightful graphical representation of MUBs. We start out
by deriving the condition for MU in the cases of a single qupit
(Sec. IV A) and two qupits (Sec. IV B). Here we only need the
well-known orthogonality relation

p−1∑
l=0

ωkl
p = δk,0p, (26)

in order to prove that certain states are mutually unbiased.
Those results will then be combined in Sec. IV C to derive
the conditions for MU for multipartite states. Note that the
following arithmetics in the exponent of ωp are to be read
modulo p, since it holds that ωk

p = ω
k+p
p for any exponent k

of ωp.

A. Mutual unbiasedness for a single qupit

Consider the 1 × 1 adjacency matrix A = (A1,1) over Zp.
In the following we use the abbreviation r ≡ A1,1. Let us
begin by showing that the p different one-qupit graph states

|Gr〉 = Ur
1,1 |+〉 with different r ∈ Zp and associated bases

Br = {|Gr (m1)〉}m1∈Zp
are mutually unbiased; i.e., for any pair

r,r ′ ∈ Zp with r �= r ′ it holds that

H1 = |〈Gr ′ (m′
1)|Gr (m1)〉|2 = 1

p
, (27)

for all m1,m
′
1 ∈ Zp.

First, consider a single qubit and the quantity H1 =
| 〈+| U1,1Z

m1
1 |+〉 |2, which corresponds to the overlap of an

arbitrary pair of graph states that differ by the local operations
U1,1 and an arbitrary Z

m1
1 with m1 ∈ Z2. It is straightforward

to verify that H1 = 1
2 holds for any m1 ∈ Z2, since U1,1 |+〉 =

1√
2
(|0〉 + i |1〉) and Z1U1,1 |+〉 = 1√

2
(|0〉 − i |1〉). Hence, this

is simply a compact reformulation of the well-known fact that
the bases

B0 =
{

1√
2

(|0〉 + |1〉), 1√
2

(|0〉 − |1〉)
}

, (28)

B1 =
{

1√
2

(|0〉 + i |1〉), 1√
2

(|0〉 − i |1〉)
}

, (29)

which are the normalized eigenvectors of the Pauli matrices X

and Y , are mutually unbiased.
Next, for a single qupit with p � 3, H1 as given in Eq. (27)

can be written as | 〈+| Ur−r ′
1,1 Z

m1−m′
1

1 |+〉 |2, where D1,1 ≡ r −
r ′ �= 0. Thus, in order to show that all p different bases, Br =
{|Gr (m1)〉}m1∈Zp

, for r = 0, . . . ,p − 1, are mutually unbiased,

we show that H1 = | 〈+| UD1,1

1,1 Z
m1
1 |+〉 |2 = 1

p
for all D1,1 �= 0.

This can easily be shown as follows. Consider

H1 = 1

p2

∣∣∣∣∣
p−1∑
k=0

ωD1,12−1k(k−1)+m1k
p

∣∣∣∣∣
2

, (30)

wherein 2−1 = p+1
2 ∈ Zp denotes the multiplicative inverse

of the element 2 ∈ Zp. Using the abbreviation m′
1 = m1 −

2−1D1,1, we have

H1 = 1

p2

(
p−1∑
k=0

ω
2−1D1,1k

2+m′
1k

p

)(
p−1∑
l=0

ω
−2−1D1,1l

2−m′
1l

p

)

= 1

p2

p−1∑
k,l=0

ω
(2−1D1,1(k+l)+m′

1)(k−l)
p . (31)

The last equation can be rewritten as

H1 = 1

p2

([∑
k=l

ω
(2−1D1,1(k+l)+m′

1)(k−l)
p

]

+
⎡
⎣∑

k �=l

ω
(2−1D1,1(k+l)+m′

1)(k−l)
p

⎤
⎦
⎞
⎠ . (32)

Here the first of the two terms in square brackets is
equal to p since k − l = 0. Substituting (k − l) with
s ∈ {1, . . . ,p − 1}, the second term can be written as∑p−1

s=1 (
∑p−1

l=0 ω
[2−1D1,1(2l+s)+m′

1]s
p ). As p � 3 is prime, the

function t : Zp → Zp, t(l) = 2−1D1,1(2l + s) + m′
1 is bi-

jective for any D1,1 �= 0. Hence, for any s �= 0 (and any

D1,1 �= 0) we have
∑p−1

l=0 ω
[2−1D1,1(2l+s)+m′

1]s
p =∑p−1

t=0 ωts
p = 0,
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which implies that H1 = 1
p

, as claimed. Therefore, all bases
Br = {|Gr (m1)〉}m1∈Zp

are mutually unbiased for different
values of r ∈ Zp. Here, recall that r = A1,1. Note that the
one-qupit phase operator Ui,i was simply defined in accordance
with the quadratic Gauss sum from Eq. (5).

B. Mutual unbiasedness for two qupits

We derive an analogous result for two qupits via the two-
body phase gate defined in Eq. (18). Namely, the p different
two-vertex graph states |Gr〉 = Ur

1,2 |+〉⊗2 with different r ∈
Zp and associated bases Br = {|Gr (m1,m2)〉}m1,m2∈Zp

are
mutually unbiased. More specifically, each r corresponds to
a graph-state basis defined by a 2 × 2 adjacency matrix with
entries A1,1 = A2,2 = 0 and A1,2 = A2,1 = r .

We first consider the quantity H2 =
| 〈+|⊗2 U1,2Z

m1
1 Z

m2
2 |+〉⊗2 |2, which corresponds to the

overlap of a pair of two-qupit graph states that differ by the
entangling operation U1,2, where m1,m2 ∈ Zp is arbitrary.
Explicitly, H2 reads

H2 = 1

p4

∣∣∣∣∣
p−1∑
k,l=0

ωkl+m1k+m2l
p

∣∣∣∣∣
2

. (33)

Splitting the inner sum into two parts with k = −m2 and k �=
−m2, we obtain

1

p4

∣∣∣∣∣∣
[

p−1∑
l=0

ω−m1m2
p

]
+
⎡
⎣ ∑

k �=−m2

ωm1k
p

(
p−1∑
l=0

ω(k+m2)l
p

)⎤⎦
∣∣∣∣∣∣
2

.

Herein, the first of the two terms in square brackets is equal to
p × ω−m1m2

p , whereas the second term vanishes since for any

k satisfying k + m2 �= 0 it holds that
∑p−1

l=0 ω(k+m2)l
p = 0 [see

Eq. (26)]. Hence, in total we have H2 = 1
p4 |p ω−m1m2

p |2 = 1
p2 .

For p prime, the same result is obtained for all nonzero powers
A1,2 ∈ {1, . . . ,p − 1} of U1,2 in H2, as replacing the running
index k by any k′ = A1,2k (in the sum which vanishes) clearly
does not affect the result.

Thus, we have shown that for any pair of adjacency matrices
of the form

A =
(

0 r

r 0

)
, A′ =

(
0 r ′

r ′ 0

)
, (34)

with r �= r ′, the corresponding graph-state bases
Br = {|Gr (m1,m2)〉} and Br ′ = {|Gr ′(m′

1,m
′
2)〉} are

mutually unbiased as |〈Gr ′(m′
1,m

′
2)|Gr (m1,m2)〉|2 =

|〈+|⊗2Cr−r ′
1,2 Z

m1−m′
1

1 Z
m2−m′

2
2 |+〉⊗2|2 = H2 = 1

p2 for all
D1,2 = r − r ′ �= 0 and all mi,m

′
i ∈ Zp with i = 1,2.

C. Mutual unbiasedness for several qupits

We now combine the observations we have made for a single
qupit and a pair of qupits to construct MUBs for arbitrary
multiqupit systems. First, consider the general overlap

Hn = |〈G′(m′
1, . . . ,m

′
n)|G(m1, . . . ,mn)〉|2

=
∣∣∣∣∣∣〈+|⊗n

∏
i�j

U
Ai,j −A′

i,j

i,j

n∏
k=1

Z
mk−m′

k

k |+〉⊗n

∣∣∣∣∣∣
2

(35)

of a pair of graph states in H = (Cp)⊗n. First, note that the
overlap Hn factors into a product whenever the difference
between the adjacency matrices, D = A − A′, is block diago-
nal. Second, according to the previous section, a 1 × 1 block

(Di,i) �= 0 yields a factor H1 = 1
p

, and a 2 × 2 block ( 0 Dj,k

Dj,k 0
)

with Dj,k �= 0 gives a factor H2 = 1
p2 . Consequently, if the

difference between the adjacency matrices, D = A − A′, is a
direct sum of 1 × 1 and 2 × 2 blocks of this kind, the overlap
becomes Hn = H

h1
1 H

h2
2 , where h1 and h2 are the multiplicities

of the corresponding blocks, where h1 + 2h2 = n. Hence, in
total we get Hn = 1

pn in this case, which means that the two
bases are mutually unbiased.

We show now that the sufficient condition that the difference
between the adjacency matrices, D = A − A′, is block diag-
onal, as mentioned above, is not necessary for the two states
(and the corresponding bases) to be mutually unbiased. In fact,
we show that whenever D is a symmetric n × n matrices with
full rank (or equivalently, nonzero determinant in Zp), the
corresponding graph-state bases are MUBs. In order to do so
we treat the two cases, p � 3 [case (i)] and p = 2 [case (ii)]
separately.

Case (i). First, consider an arbitrary multiqupit system d =
pn with p � 3. Suppose D has the required block structure,
i.e., is a direct sum of 1 × 1 and 2 × 2 regular blocks, such
that

Hn = 1

p2n

∣∣∣∣∣∣
p−1∑

k1,...,kn=0

ω

∑
l 2−1Dl,lk

2
l +
∑

i<j Di,j kikj +
∑

x mxkx

p

∣∣∣∣∣∣
2

(36)

satisfies Hn = 1
pn , where the mx ∈ Zp are arbitrary. Using

ω
Di,j kikj

p = ω
2×2−1Di,j kikj

p , we can write the sum in the exponent
as a quadratic form, i.e.,

Hn = 1

p2n

∣∣∣∣∣∣
∑

�k
ω2−1 �kT D�k+ �mT �k

p

∣∣∣∣∣∣
2

, (37)

where �k = (k1, . . . ,kn)T .
Obviously, the overlap is invariant under reordering of the

summation over �k. Changing the order of the summation is
equivalent to a transformation �k → P �k using an invertible
n × n matrix P with entries in Zp. Inserting this in Eq. (37)
leads to a congruence transformation P T DP = D′ (and �m′ =
P T �m). Therefore, one realizes that not only all matrices D

possessing the proper block structure lead to MU, but also all
matrices D′ which are congruent to them. Note that these are
simply all symmetric invertible matrices, since it has been
shown that any symmetric matrices over Zp, with p � 3,
can be transformed into a diagonal matrix via a congruence
transformation [42].

Case (ii). The same procedure can also be adapted to
multiqubits, i.e., to the case where d = 2n. There,

Hn = 1

22n

∣∣∣∣∣∣
1∑

k1,...,kn=0

ω
∑

l Dl,lkl

4 ω

∑
i<j Di,j kikj +

∑
x mxkx

2

∣∣∣∣∣∣
2

. (38)
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For ki , being an element of Z2, we have ki = k2
i and ω2 =

ω2
4, and therefore we can write

Hn = 1

22n

∣∣∣∣∣∣
1∑

k1,...,kn=0

ω

∑
l Dl,l k

2
l +
∑

i<j 2Di,j kikj +
∑

x 2mxkx

4

∣∣∣∣∣∣
2

= 1

22n

∣∣∣∣∣∣
∑

�k
ω

�kT D�k+2 �mT �k
4

∣∣∣∣∣∣
2

. (39)

Note that the matrix D now can have entries in Z4 as the
base of the exponent is ω4, which means that the arithmetics
are to be done modulo 4. However, in Eq. (38) we see that
the off-diagonal elements Di,j can be treated modulo 2, as
they are actually exponents of ω2 = −1. Furthermore, writing
the diagonal elements Dl,l as Dl,l = ol + 2el , where ol = Dl,l

mod 2 with ol,el ∈ Z2, we see that the even parts, el , of the
diagonal elements can always be shifted into the vector �m.
That is, we can rewrite Eq. (39) as

Hn = 1

22n

∣∣∣∣∣∣
1∑

k1,...,kn=0

ω
∑

l ol,l kl

4 ω

∑
j>i Di,j kikj +

∑
x (mx+ex )kx

2

∣∣∣∣∣∣
2

,

which means that the vector �m changes to �m′ = �m + �e. As the
odd parts ol are simply ol = (Dl,l mod 2), we finally conclude
that all entries of D may be treated modulo 2. Therefore,
similarly to the qupit case, where p � 3, one realizes that all
matrices D′ over Z2 which are congruent to D = (1)⊕h1 ⊕
( 0 1

1 0
)⊕h2 with h1 + 2h2 = n give rise to MU. Again, a matrix

fulfills this condition if and only if it is a symmetric n × n

matrix with full rank; i.e., the determinant is one (Z2) [42].
Thus, we have shown that for any p and n, the overlap as

given in Eq. (37) [case (i)] or in Eq. (39) [case (ii)] equals

1/pn if D is congruent (in Zp) to D ⊕ ( 0 1
1 0

)⊕h2 , where D is

a h1 × h1 diagonal matrix with nonzero diagonal elements in
Zp and h1 + 2h2 = n. Due to an established result of matrix
analysis [42], those matrices are easily characterized, since
D over Zp fulfills the above condition if and only if D

is a symmetric n × n matrix with full rank or, equivalently,
nonzero determinant over Zp. Let us summarize this fact in
the following lemma (see also Refs. [4,23] and Sec. II).

Lemma 1. Let Ar and As be a pair of symmetric n × n

matrices over Zp. If it holds that

det(Ar − As) �= 0 mod p, (40)

then the graph-state bases [see Eq. (21)] corresponding to the
adjacency matrices Ar and As are mutually unbiased.

V. COMPLETE SETS OF MUTUALLY UNBIASED BASES

Now, we exploit these results to construct complete sets of
d + 1 MUBs for arbitrary dimensions, d = pn. First, notice
that any graph state as defined in Eqs. (20) and (21) is
always mutually unbiased with respect to the computational
basis. Therefore, a set of pn mutually unbiased graph-state
bases is tantamount to a complete set of pn + 1 MUBs [43].
Moreover, each basis is obtained from a single graph state by
applying local Z operations [see Eq. (21)]. For instance, the

FIG. 2. (Color online) A complete set of graph-state MUBs for
two qutrits generated by the vector �d = (1,0) defining a symmetric
tridiagonal matrix Q, as given in Eq. (56), whose characteristic
polynomial f (x) = char(Q) is irreducible. Note that the first two
graphs in the picture are fundamental; i.e., all others are linear
combinations of them over Z3.

nine multigraphs in Fig. 2 correspond to a complete set of
9 + 1 = 10 MUBs for the Hilbert space H = C9. Note that
the computational basis is never illustrated.

According to Lemma 1, we need to find a set of pn

adjacency matrices, S = {A0, . . . ,Apn−1}, such that det(Ar −
As) �= 0 mod p for all r �= s [as was also required in the other
approaches (see Sec. II)]. If this condition is satisfied, then
the graph-state bases corresponding to the adjacency matrices
{A0, . . . ,Apn−1} form a complete set of MUBs. The existence
of such matrices for all prime powers is already guaranteed by
the results presented in Ref. [4]. As mentioned in Sec. II A it
has been shown there that one possible choice would be the
matrices Ak =∑n

i=1 kiM
(i), where each k corresponds to one

of the pn possible settings of the vector �ki = (k1, . . . ,kn) ∈ Zn
p,

with the n different symmetric n × n matrices M (i) as defined
in Eq. (6).

Here, we present an alternative, constructive method which
yields sets of matrices that satisfy the required condition. In
contrast to the set of matrices {M (i)}ni=1 we give a simple
method to construct a single symmetric matrix, whose powers
(and sums of powers) will lead to the desired set. Moreover,
we show that the complete set of MUBs can be encoded by a
single n-dimensional vector.

To this end, we adopt concepts from the theory of finite
fields and their representations [36]. For our construction we
are going to exploit the simple observation that the difference
δ = α − β of any two unequal elements α,β ∈ Fpn of a finite
field has a multiplicative inverse δ−1, since δ is a member of the
multiplicative group (Fpn\{0},·). Suppose now that the set of
symmetric n × n matrices S = {A0, . . . ,Apn−1} overZp was a
matrix representation ofFpn with respect to the ordinary matrix
addition and matrix multiplication. In this case, all matrices
Dr,s = Ar − As would be invertible for Ar �= As . Thus, the
set S would have the desired property.

We now discuss how such a representation may be obtained.
Note that the following ideas are based on the matrix
representation given in Ref. [36]. Here, and in the following,
we denote the n × n zero matrix by On and the n × n

identity matrix by 1n. Consider an n × n matrix Q and
the polynomials

∑
i c

′
iQ

i , both over Zp. Let fm(x) = xm +
am−1x

m−1 + · · · + a0x
0 be the (monic) polynomial (over Zp)

of minimal degree m such that fm(Q) = On. Then, as it
holds that Qm = −am−1Q

m−1 − · · · − a0Q
0, any polynomial∑

i c
′
iQ

i of arbitrary degree equals a polynomial
∑m−1

i=0 ciQ
i

of degree smaller than m. Therefore, there are only pm
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polynomials, namely, the elements of the residue class
Fp[Q]\[fm(Q)] [44]. As Fp[Q]\[fm(Q)] is isomorphic to
Fp[x]\[fm(x)], we have that if fm(x) is of degree m = n and
irreducible over Zp, then Fp[Q]\[fm(Q)] represents the finite
field Fpn , as discussed in Sec. II A. In order to achieve this,
it suffices to choose Q such that its characteristic polynomial
fc(x) = char(Q) = det(x1 − Q) is irreducible, as in this case
it automatically holds that fm(x) = fc(x) with polynomial
degree deg[fm(x)] = n [45]. Therefore, if the characteristic
polynomial of Q is irreducible over Zp, then the set {Qi}n−1

i=0
forms a basis of the representation of Fpn . We state this fact in
the following lemma.

Lemma 2. Let Q be an n × n matrix over Zp, whose
characteristic polynomial is irreducible. Then, the polynomials
in Q over Zp of degree less than n, i.e.,

S =
{

n−1∑
i=0

aiQ
i,�a = (a0, . . . ,an−1) ∈ Zn

p

}
, (41)

are a matrix representation of Fpn , with respect to matrix
addition and matrix multiplication.

A further property that we can exploit is that the mul-
tiplicative group (Fpn\{0},·) is cyclic [36]. Hence, there
always exists a primitive element, which generates the whole
group (apart form the 0 element). In case the matrix Q

constitutes a primitive element, then any nonzero element
of {∑n−1

i=0 aiQ
i,�a = (a0, . . . ,an−1) ∈ Zn

p} is a power Qi . This
leads to the following.

Corollary 1. Let Q be an n × n matrix over Zp whose
characteristic polynomial is a primitive polynomial. Then, the
powers of Q of degree less than pn − 2, i.e.,

{Qi}pn−2
i=0 , (42)

are a representation of Fpn\{0}.
In order to obtain the representation ofFpn one simply has to

include the n × n zero matrix, On, i.e., S = {Qi}pn−2
i=0

⋃{On}.
Since this is a matrix representation of Fpn , all matrices
corresponding to a difference of those matrices are invertible.
However, in order to find the desired set S, it remains to
show that we can always find a symmetric matrix Q whose
characteristic polynomial is irreducible.

In the subsequent sections we show that a matrix rep-
resentation of Fpn in terms of symmetric n × n matrices
S = {A0, . . . ,Apn−1} over Zp indeed always exists. Moreover,
we present two constructive methods of finding the single
matrix Q required to construct the set S. Whereas the first
method is proven to work in general, i.e., for p and n arbitrary,
the second is proven to work only for multipartite qubits, i.e.,
p = 2. However, numerically we observe that this method
also works for other values of p. The advantage of the second
method is that a complete set of MUBs can be presented in a
single n-dimensional vector.

Before explaining in detail the construction let us analyze
what the corresponding complete set of MUBs looks like.
Suppose that Q is a symmetric n × n matrix such that
S = {∑n−1

i=0 aiQ
i,�a = (a0, . . . ,an−1) ∈ Zn

p} over Zp repre-

sents Fpn . Each of the pn matrices
∑n−1

i=0 aiQ
i , with ai ∈ Zp,

is an adjacency matrix. According to the discussion above,
the corresponding complete set of MUBs is then given by pn

FIG. 3. (Color online) A complete set of graph-state MUBs
for three qubits resulting from the vector �d = (1,0,0) defining a
tridiagonal matrix Q, as given in Eq. (56), whose characteristic
polynomial f (x) = char(Q) = x3 + x2 + 1 is irreducible. Below
each graph we give its adjacency matrix. Note that any of the eight
adjacency matrices is a linear combination (over Z2) of the first three
adjacency matrices, which are the powers 0, 1, and 2 of the matrix Q.
In a graphical sense, this means that by overlaying any two graphs in
the picture, we get another graph from the set. Here overlaying (i.e.,
superimposing) amounts to summing up the (red) lines, modulo p

(which is 2 in this case). Note further that the set of possible linear
combinations also includes the zero matrix O3, which corresponds to
a graph-state basis Eq. (21) defined by |G〉 = |+〉⊗3. As f (x) is also
a primitive polynomial, any nonzero adjacency matrix is a power of
Q. The illustrated set has the following entanglement properties. In
the first and last graph all vertices are disconnected, and therefore
the corresponding bases are fully separable. The six other graphs
represent bases whose elements are local-unitarily equivalent to the
GHZ state |GHZ〉 = 1√

2
(|000〉 + |111〉).

graph-state bases Eq. (21), together with the computational
basis BC . Let us now call the graphs corresponding to the n

adjacency matrices F = {Q0, . . . ,Qn−1} (which constitute a
basis of Fpn), fundamental graphs. The fact that the adjacency
matrices of all the other graphs is just a linear combination of
the ones corresponding to the fundamental graphs is also nicely
reflected in the corresponding graphs (see Figs. 2–4). Consider
for instance the case p = 2 and n = 3. In Fig. 3 a complete set
of MUBs is depicted. The first three graphs are the fundamental
graphs. All the other graphs can be easily read off from those
three graphs. For instance, the fourth graph, which corresponds
to Q0 + Q2, is obtained by adding all the edges and self-loops

FIG. 4. (Color online) Fundamental graphs and corresponding
adjacency matrices of a complete set of MUBs for four qupits p = 5
defined by the tridiagonal matrix Q, as defined in Eq. (56), with
diagonal �d = (2,3,2,1). A complete set of 54 graphs is obtained
through all possible linear combinations of the above adjacency
matrices over Z5.
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FIG. 5. (Color online) Example of a primitive graph correspond-
ing to a complete set of MUBs for five qutrits (i.e., n = 5 and p = 3)
with �d = (2,1,2,0,1). If the diagonal of the matrix Q, as defined in
Eq. (56), is chosen such that its characteristic polynomial char(Q) is a
primitive polynomial, then the set of matrix powers {Qi}pn−2

i=0 together
with the zero matrix On describe a complete set of MUBs.

modulo 2 of the graphs corresponding to Q0 and Q2. Similarly,
all other graphs can be obtained. Thus, it is only necessary
to draw the graph of the n fundamental graphs in order to
present the complete set of pn MUBs. As mentioned before,
a single matrix Q is required to encode the complete set of
MUBs. Likewise, a graph that corresponds to a matrix Q whose
characteristic polynomial is primitive, which we call primitive
graph in the following, encodes the corresponding complete
set of MUBs. In Fig. 5 we depict a primitive graph for the
case of five qutrits. Whereas the complete set of MUBs can be
easily constructed given a primitive graph, the corresponding
graphs cannot be easily read off the primitive graph, since
they are obtained via matrix multiplication. Note, however,
that using the presented graph-state formalism in combination
with a symmetric matrix Q whose characteristic polynomial is
irreducible, it is possible to encode complete sets of MUBs in
an extraordinarily compact way. Note further that the matrix Q

may also be used to construct a maximally commuting bases
as required for the construction presented in Ref. [23] and
discussed in Sec. II C.

A. Construction via symmetrized companion matrices

Now let us discuss how one can find a symmetric matrix Q

whose characteristic polynomial is irreducible. We begin with
the matrix representation of Fpn as introduced in Ref. [36].
The companion matrix C of a monic polynomial f (x) = xn +
cn−1x

n−1 + · · · + c1x + c0 is defined as the n × n matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

0
. . .

. . .
. . .

0 1

−c0 −c1 . . . . . . −cn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

It is straightforward to show that the characteristic polynomial
char(C) = det(x1 − C) of the companion matrix equals f (x).
Consequently, if C is the companion matrix of a monic
irreducible polynomial f (x) of degree n over Zp, then the
pn polynomials an−1C

n−1 + · · · + a1C + a01 of degree less
than n with coefficients ak ∈ Zp yield a matrix representation
ofFpn , where {C0, . . . ,Cn−1} constitutes a basis ofFpn . Hence,
given an irreducible polynomial of degree n it is straightfor-
ward to construct this matrix representation. However, this
representation is not symmetric.

We now determine a similarity transformation, P (leaving
the characteristic polynomial unchanged), such that the com-
panion matrix, C, is transformed into a symmetric matrix Q.
In fact, one can show that any n × n matrix whose charac-
teristic polynomial is irreducible is similar to the companion
matrix [46]. In this way, the whole representation becomes
symmetric, since any power of a symmetric matrix and the sum
of symmetric matrices is again symmetric. Thus, our aim now
is to find an invertible matrix P such that Q = PCP−1 satisfies
Q = QT . The existence of such a similarity transformation has
already been proven in Refs. [42,47] for any companion matrix
of an irreducible polynomial. Hence, the existence of the
desired symmetric matrix representation of Fpn is guaranteed
for all p and n. Here we briefly summarize this observation and
show how to systematically find P , and therefore Q, for any
C being associated to an irreducible polynomial. Note that an
implementation of the following algorithm for MATHEMATICA

is available online in the Wolfram Library Archive [48].
First, notice that the requirement PCP−1 = (PCP−1)T can

straightforwardly be rewritten as CB = BCT , where B is of
the form B = P −1P −1T

. Consequently, finding P can be
divided into two steps. First, determine a symmetric invertible
matrix B such that CB = BCT . Second, specify a factorization
of the form B = P −1P −1T

. The second step is equivalent
to finding an invertible matrix, P , such that PBPT = 1n.
In order to present a systematic method achieving that, we
consider again the two cases, p = 2 [case (i)] and p � 3
[case (ii)] separately.

Case (i). Consider the case where p = 2. Here, as shown
in Ref. [47], the symmetric matrix

B =

⎛
⎜⎜⎜⎜⎝

1 0 · · · 0

0 b1

... . .
. ...

0 b1 · · · bn−1

⎞
⎟⎟⎟⎟⎠ , (44)

where the coefficients bk are defined via the coefficients ck of
the monic polynomial f (x) of degree n as

b1 = c0, (45)

bi =
i−1∑
k=1

cn−i+kbk, (46)

satisfies the condition CB = BCT . Now it remains to diago-
nalize B through a congruence transformation, i.e., to find a
matrix P such that PBPT = 1n. In Appendix A1, we show how
P can be computed using the following toolbox of operations:

�i,j =
(

0 1

1 0

)
i,j

, �−1
i,j = �i,j ,

	i,j =
(

1 0

1 1

)
i,j

, 	−1
i,j = 	i,j , (47)


i,j,k =

⎛
⎜⎝1 1 0

1 0 1

1 1 1

⎞
⎟⎠

i,j,k

, 
−1
i,j,k =

⎛
⎜⎝

1 1 1

0 1 1

1 0 1

⎞
⎟⎠

i,j,k

.
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Here each matrix �i,j , 	i,j , or 
i,j,k is to be read as an n × n

matrix that affects the rows and columns i,j,k while all other
rows and columns remain unchanged (i.e., identity on the rest);
e.g., for n = 4 the matrix 	2,4 reads

	2,4 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

⎞
⎟⎟⎟⎠ , (48)

with the identity on the rows and columns 1 and 3.
Specifically, in Appendix A 1 we show that any nonsingular

symmetric n × n matrix B over Z2 which has at least one
diagonal element equal to 1 can be transformed into the
identity matrix using a sequence of the above operations for
congruence transformations. The given proof is constructive
and leads to a systematic way to determine the matrix P .
Since the matrix B given in Eq. (44) belongs to this class
of matrices, we accomplished the task of finding a similarity
transformation P , which transforms the companion matrix
into the symmetric matrix PCP−1 (having the same irreducible
characteristic polynomial).

Case (ii). Consider the case where p � 3. Again, we seek a
matrix B, which satisfies CB = BCT and which is congruent to
the identity matrix; i.e., PBPT = 1n. As explained above, the
matrix P then symmetrizes the companion matrix C via the
similarity transformation PCP−1 = Q. According to Ref. [47],
for p � 3 the matrix B can be chosen to be of the form

B = gB0. (49)

Here B0 is the lower-right triangular and symmetric matrix,

B0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 b1

. .
.

b1 b2

. .
.

. .
.

. .
. ...

1 b1 . .
.

bn−2

1 b1 b2 · · · bn−2 bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (50)

where the coefficients bk are defined via the coefficients ck of
the monic polynomial f (x) of degree n as

b0 = 1, (51)

bi = −
i−1∑
k=0

cn−i+kbk, (52)

and g is either a constant in Zp or a polynomial in the
companion matrix C over Zp of degree less than or equal
to n − 1; i.e., an−1C

n−1 + · · · + a1C + a01.
Here g has to be chosen such that det(B) is a quadratic

residue. A quadratic residue q ∈ Zp\{0} is an element which
has a square root in Zp\{0}; i.e., for q there exists an element
s ∈ Zp\{0} such that q = s2. An element q̂ ∈ Zp\{0} for
which there exists no such element is called a quadratic
nonresidue; that is, q̂ �= s2 holds for all s ∈ Zp\{0}.

It can be shown that B is congruent to 1n if and only if
det(B) is a quadratic residue [35]. In Appendix A 2, we give

a constructive proof of this fact. There, we make use of the
toolbox of operations

�i,j =
(

0 1

1 0

)
i,j

, �−1
i,j = �i,j ,

	i,j =
(

1 0

a 1

)
i,j

, 	−1
i,j =

(
1 0

−a 1

)
i,j

, (53)


i,j =
(

1 1

1 −1

)
i,j

, 
−1
i,j =

[
p + 1

2

(
1 1

1 −1

)]
i,j

,

�i,j =
(

1 b

−b 1

)
i,j

, �−1
i,j =

[
(1 + b2)−1

(
1 −b

b 1

)]
i,j

.

In terms of these operations, one obtains a systematic
procedure to determine P for which PBPT = 1n, where B

is any nonsingular symmetric n × n matrix over Zp whose
determinant det(B) is a quadratic residue. This procedure is
presented in Appendix A 2 .

Now it remains to discuss how to choose g such that the
determinant of B is a quadratic residue. As can easily be
seen [47], for the matrix B0 we have

det(B0) =
{

1 if (n mod 4) = 0 or 1,

−1 if (n mod 4) = 2 or 3.
(54)

As 1 is always a quadratic residue we can choose g = 1
whenever (n mod 4) = 0 or 1. The same also holds for
(n mod 4) = 2 or 3 in case for the given p the element
(−1 mod p) ∈ Zp is a quadratic residue [49]. That is, in
these cases we can simply choose B = B0. However, if
(n mod 4) = 2 or 3 and furthermore (−1 mod p) ∈ Zp is
not a quadratic residue for the particular p we cannot choose
g = 1. In these cases one might proceed as follows (see
also Ref. [47]). If (n mod 4) = 3, the number n is odd
and n − 1 is even. For a constant g ∈ Zp\{0} we obtain
det(B) = det(gB0) = gn det(B0) = gn−1[g det(B0)]. As n − 1
is even the factor gn−1 is a quadratic residue. Thus, as a product
of two nonresidues is a quadratic residue [50] we simply
choose g = q̂ to be an arbitrary nonresidue q̂ ∈ Zp\{0} to
achieve that the second factor g det(B0) becomes a quadratic
residue as well. For the remaining case (n mod 4) = 2 this
does not work as n − 1 is odd and for any constant g ∈ Zp the
determinant det(gB0) remains a nonresidue. Here, however,
for f (x) being an irreducible polynomial and C being its
associated companion matrix, it was shown in Ref. [47] that
there always exists a matrix g = an−1C

n−1 + · · · + a1C +
a01, which is a polynomial in C over Zp, with the property
that its determinant, det(g), is a quadratic nonresidue. Using
such a matrix g the determinant det(B) = det(g) det(B0) is a
product of two nonresidues which is again a quadratic residue.

In order to circumvent the search for the coefficients
ai of g = an−1C

n−1 + · · · + a1C + a01 such that det(g) is
a quadratic nonresidue, the simplest way is to directly
choose f (x) to be a primitive polynomial. For any primitive
polynomial f (x) over Zp and p � 3 it holds that the
determinant of the associated companion matrix, which is
det(C) = (−1)nc0, is a quadratic nonresidue. This is because
the element (−1)nc0 ∈ Zp, where c0 is the lowest coeffi-
cient of a primitive polynomial over Zp with p � 3, is
always a quadratic nonresidue (which is a consequence of
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Theorem 3.18 in Ref. [36]). Consequently, whenever we have
(n mod 4) = 2 and (−1 mod p) ∈ Zp is not a quadratic
residue, we simply specify the companion matrix C and the
matrix B0 of a primitive polynomial f (x) and choose g = C.
Then the determinant of the matrix B = gB0 = CB0 is a
quadratic residue and, therefore, B is congruent to the identity
matrix 1n.

In summary, we have demonstrated here how a symmetric
matrix representation of any finite field Fpn can be found. That
is, we showed how the companion matrix C of an irreducible
polynomial f (x) may be symmetrized by means of a con-
structive algorithm. From this symmetrized companion matrix
Q = PCP−1, we obtain a set of pn adjacency matrices via
the possible linear combinations of the matrix powers {Qi}n−1

i=0
over Zp, i.e., the matrices an−1Q

n−1 + · · · + a1Q + a01 for
the different settings of the n-tuple (a0, . . . ,an−1) ∈ Zn

p. Thus,
a complete set of MUBs for dimension d = pn can always
be encoded in a single matrix Q ∈ Zn×n

p . As the matrix Q is
symmetric, it is characterized by n(n + 1)/2 coefficients from
Zp. An example in which this method is used to construct
a complete set of MUBs for d = 33 = 27 can be found in
Appendix C.

B. Construction via tridiagonal matrices

In this section, we give an alternative way to specify
a symmetric matrix Q whose characteristic polynomial is
irreducible. In particular, we show that the set of adjacency
matrices may even be represented by a single n-dimensional
vector with coefficients in Zp. This vector corresponds to the
diagonal entries of the symmetric n × n matrix Q as given
in Eq. (56). Note that in the graph state corresponding to this
particular adjacency matrix only nearest-neighbor interactions
occur.

The following ideas are inspired by the fact that any matrix
over the complex numbers is similar to a tridiagonal matrix
(see, e.g., Ref. [51]). Suppose now that the same holds true for
matrices over finite fields. In this case it would be sufficient to
make an ansatz for the matrix Q in the tridiagonal form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� �

� � �

�
. . .

. . .

. . .
. . . �

� �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

where each � is an arbitrary element of Zp. Our intention
here is to achieve that the characteristic polynomial of Q

is irreducible. Consequently, a necessary condition on the
tridiagonal matrix Q is that all elements in the sub- and
superdiagonal are nonzero, because otherwise the character-
istic polynomial would factor into char(Q) = det(x1 − Q) =
f1(x) · f2(x) according to the block structure [f1(x) and f2(x)
correspond to the characteristic polynomials of the blocks
B1 and B2, respectively; see Fig. 6]. In the binary case Z2,
this implies that whenever the characteristic polynomial of a

FIG. 6. The characteristic polynomial f (x) of a tridiagonal
matrix which has a zero in the off diagonal is a product of the
characteristic polynomials f1(x) and f2(x), of the submatrices B1 and
B2. Therefore, the characteristic polynomial f (x) = f1(x) · f2(x) is
not irreducible.

tridiagonal matrix Q is irreducible, it can only be of the form

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 1

1 d2 1

1
. . .

. . .

. . .
. . . 1

1 dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (56)

because 1 is the only nonzero element in Z2. Hence, if there
exists a tridiagonal matrix Q over Z2, whose characteristic
polynomial is irreducible, then it is automatically symmetric
as desired. Let us focus on this case for the moment. As can
easily be seen, if we set 0 = 1 and −1 = 0, the characteristic
polynomial of the matrix Q given in Eq. (56) satisfies the
recursion relation

k = (x − d(n+1−k))k−1 − k−2, (57)

for 1 � k � n, wherein k is the characteristic polynomial of
the k × k submatrix defined by the last k components of each
row and column of Q (e.g., n is simply the characteristic
polynomial of Q itself). Note that each polynomial k with
1 � k � n has exactly degree k. Now if any irreducible
polynomial f (x) is a characteristic polynomial of a particular
tridiagonal matrix, it must hold that for n ≡ f (x) there exists
a set of n polynomials {k}nk=1, wherein each k is of degree k

and satisfies the recursion relation Eq. (57) for all 1 � k � n.
The existence of such a set of polynomials {k}nk=1 for any
irreducible polynomial with arbitrary degree n was indeed
proven in Ref. [52]. Hence, for any irreducible polynomial
f (x) of degree n overZ2 there exists a tridiagonal n × n matrix
Q of the form given in Eq. (56), such that char(G) = f (x).

It now remains to discuss how to find appropriate diagonals
for Q. The simplest, but very time-consuming, method is to
straightforwardly compute the characteristic polynomials of
Q given in Eq. (56) for different settings of �d = (d1, . . . ,dn) ∈
Zn

2 until an irreducible polynomial is found. Another way is
to choose an arbitrary irreducible polynomial f (x), and then
to tridiagonalize the associated companion matrix C. As an
example, consider p(x) = x3 + x + 1 over Z2 possessing the
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companion matrix

C =

⎛
⎜⎝ 0 1 0

0 0 1

1 1 0

⎞
⎟⎠ . (58)

Using

P = P −1 =

⎛
⎜⎝1 0 0

1 1 0

0 0 1

⎞
⎟⎠ , (59)

one obtains

Q = PCP−1 =

⎛
⎜⎝1 1 0

1 1 1

0 1 0

⎞
⎟⎠ , (60)

and thus �d = (1,1,0). Note that a suitable tridiagonalization
algorithm for matrices over Z2 was introduced in Ref. [53].

An alternative method to analytically derive �d is to utilize
Newton’s identities. For an n × n matrix Q, the following
relations between the traces tk = tr(Qk) and the coefficients
cn of the characteristic polynomial p(x) = xn + cn−1x

n−1 +
· · · + c1x + c0 hold [54]:

t1 + cn−1 = 0, (61)

tk + cn−1tk−1 + · · · + cn−k+1 + kcn−k = 0, (62)

where 2 � k � n. Using these identities enables one to find
�d for a desired irreducible polynomial. Consider again the
example p(x) = x3 + x + 1 over Z2, i.e., c0 = 1, c1 = 1,
and c2 = 0. After elementary simplifications, one finds t1 =
d1 + d2 + d3, t2 = d1 + d2 + d3, t3 = d2. Thus, we have the
relations

t1 + c2 = d1 + d2 + d3 = 0, (63)

t2 + c2t1 = d1 + d2 + d3 = 0, (64)

t3 + c2t2 + c1t1 + c0 = d1 + d3 + 1 = 0. (65)

From Eqs. (64) and (65) it follows that d2 = 1, and then
from Eq. (63) that d1 + d3 = 1. There are two vectors that
fulfill d2 = 1 and d1 + d3 = 1, namely, the vectors �d = (1,1,0)
and �d = (0,1,1). Note that both lead to the same irreducible
polynomial p(x) = x3 + x + 1. Notice that any vector �d =
(d1, . . . ,dn) and its reversed counterpart �dr = (dn, . . . ,d1)
always lead to the same characteristic polynomial as their
associated matrices (say Q and Qr ) are similar.

Finally, note that the tridiagonal matrices discussed here
also occur in the context of so-called one-dimensional linear
hybrid cellular automata. In this regard, a more advanced
technique for determining the vector �d = (d1, . . . ,dn) which
is based on a quadratic congruence relation was introduced in
Ref. [55]. Using this method, the same authors derived a list
of solutions for n up to 300, which can be found in Ref. [56].

So far, we have just considered the case of tridiagonal
matrices over Z2. Let us now have a brief look at the more
general case Zp. Here, the off-diagonal elements of a tridiago-
nal matrix whose characteristic polynomial is irreducible can
have arbitrary nonzero entries between 1 and p − 1. Note that
the proof in Ref. [52] is restricted to Z2 and that it is not clear

whether there exists for any irreducible polynomial, f (x), a
tridiagonal matrix whose characteristic polynomial coincides
with f (x). However, by computing the possible settings of
the vector �d = (d1, . . . ,dn) with entries in Zp in the ansatz
given in Eq. (56) for numerous cases, p and n, we have
made the experience that this form already comprises a variety
of irreducible polynomials [57]. Thus, it could well be that
for any p and n there exists a vector �d = (d1, . . . ,dn) ∈ Zn

p,
defining the diagonal of a tridiagonal matrix Q whose sub- and
superdiagonal elements are all 1, such that the characteristic
polynomial of Q is irreducible. An extensive list of solutions,
for p = 2, . . . ,7 and n = 2, . . . ,8, in terms of vectors �d
describing the diagonal of the tridiagonal matrix Eq. (56) can
be found in Appendix B. An example in which a tridiagonal
matrix is used to construct a complete set of MUBs for d = 8
is given in Appendix D .

VI. ENTANGLEMENT STRUCTURES

The graph-state formalism is ideally suited to investigate
entanglement structures arising in MUBs. That is, all in-
formation can readily be obtained simply by looking at the
form of the underlying graphs (i.e., the adjacency matrices).
For example, for multiqubits it is well-known (see Ref. [26])
that star graphs and fully connected graphs are local-unitarily
(LU) equivalent to the GHZ state |GHZ〉 = |0〉⊗n + |1〉⊗n. In
the following, all states with this property are referred to
as GHZ-type states. Thus, e.g., in Fig. 3, we immediately
see that six of the eight three-qubit MUBs are of GHZ-type,
while two bases are fully separable. Hence, together with the
computational basis (also fully separable), the complete set
of MUBs consists of three bases which only contain product
states, and six bases which only contain so-called genuinely
(or truly) multipartite entangled states [58,59].

This structure generalizes to all three qupit MUBs of
arbitrary local dimension p. As our construction of the ad-
jacency matrices {A0, . . . ,Ad−1} always contains the identity
A0 = 1n (which is the neutral element of the multiplicative
group) and all its multiplicatives over Zp, we always obtain
p graphs which do not have any edges. That is, all n vertices
are isolated in these cases. Together with the computational
basis BC , these graphs give rise to a set of p + 1 bases
whose elements are completely factorized (i.e., separable)
with respect to the tripartite Hilbert space Cp ⊗ Cp ⊗ Cp.
For the moment, denote the elements of these p + 1 bases
by {|ki〉 ⊗ |li〉 ⊗ |mi〉}p−1

k,l,m=0, where the index corresponds to
the different bases; i.e., i ∈ {0, . . . ,p}. Furthermore, in the
tripartite case, any bipartition of the system separates one
qupit vs two qupits; e.g.,H = H(1) ⊗ H(2,3), whereH(1) = Cp

and H(2,3) = Cp2
. Now, assume there was another graph

(besides the p graphs whose adjacency matrices are the
multiplicatives of 1n) that had no connection with respect
to the bipartition (1|23). In this case, all elements of the
corresponding basis would be separable regarding the splitting
H(1) ⊗ H(2,3) of the Hilbert space. Let us denote these states
by {|ψ(r)(1)〉 ⊗ |φ(s)(2,3)〉}, where r ∈ {0, . . . ,p − 1} and s ∈
{0, . . . ,p2 − 1}. For any pair of basis states, |ψ(r)(1)〉 ⊗
|φ(s)(2,3)〉 and |ki〉 ⊗ |li〉 ⊗ |mi〉, the mutual overlap fac-
tors into H3 = |〈ψ(r)(1)|ki〉|2|〈φ(s)(2,3)|li〉 ⊗ |mi〉|2 = H (1) ·
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H (2,3). According to the MU assumption and our construction,
we must have H (1) = 1/p and H (2,3) = 1/p2, such that the
overall overlap is H3 = 1/p3. This, however, is not possible,
as on the Hilbert space H(1) = Cp, the basis {|ψ(r)(1)〉}p−1

r=0

cannot be MU with respect to all p + 1 bases B(1)
i = {|ki〉}p−1

k=0 ,
because if this was true we would have found p + 2 MUBs for
a p-dimensional Hilbert space, which is, of course, impossible.
Thus, this assumption leads to a contradiction. Consequently,
in all the p3 − p remaining graphs each vertex must at least
have one outgoing edge to another vertex. Thus, from our
construction it follows that for a tripartite qupit system, there
always exists a complete set of MUBs consisting of p + 1
bases whose elements are product states (i.e., fully separable)
and p3 − p bases whose elements are entangled with respect
to all bipartitions (i.e., genuinely multipartite entangled).

Besides this, one can also use the graph-state formalism
to graphically analyze the action of entangling operations on
complete sets of MUBs. As any unitary U which is collectively
applied to a set of bases {B0,B1, . . .} → {UB0,UB1, . . .}
leaves the scalar product between pairs of basis vectors
invariant, i.e., |〈ik|U †U |jl〉|2 = |〈ik|jl〉|2, it is clear that MU
is invariant under such transformations. Using the graph-state
formalism, one can illustrate how the entanglement structure
changes under certain unitaries. For example, if a controlled
entangling operation U1,2 is applied between the first two
particles on the MUBs in Fig. 3, a connection between
the vertices 1 and 2 is added (mod 2) and the graphs
change to the ones given in Fig. 7. Now the complete set
consists of six biseparable bases, two GHZ-type bases (fully
connected graphs), and one completely separable basis (the
computational basis, which is clearly unaltered under U1,2 as
it only produces global phases in this case).

In general, applying an arbitrary unitary phase gate from
the set {Ui,j } to a set of graph-state bases {B0,B1, . . .} →
{Ui,jB0,Ui,jB1, . . .} is equivalent to increasing the entries
(i,j ) and (j,i) of all adjacency matrices {A0,A1, . . .} by one
(mod p). In fact, to any set of n × n adjacency matrices
{A0,A1, . . .} overZp which satisfy the MU condition det(Ar −
As) �= 0 (mod p), ∀ r �= s from Lemma 1, we are free to
add any symmetric matrix M over Zp, since det[Ar + M −
(As + M)] = det(Ar − As). Note that each matrix M which
has nonzero off-diagonal elements can alter the entanglement

FIG. 7. (Color online) A complete set of graph-state MUBs for
three qubits, which are the MUBs from Fig. 3 under the collective
action of the controlled phase U1,2. Not all vertices of the graphs 1–4,
6, and 8 are connected by an edge. Consequently, the corresponding
bases are biseparable, whereas graphs 5 and 7 are fully connected,
and thus the corresponding graph states are of GHZ type.

properties of a graph state. Thus, the entanglement structure
of a set of MUBs can change as well. Note further that the new
set of adjacency matrices S ′ = {A0 + M,A1 + M, . . .} does
not necessarily constitute a matrix representation of a finite
field [60], as is the case for the original set S = {A0,A1, . . .}
using our construction.

In the context of collective unitaries on complete sets of
MUBs, i.e., {UB1,UB2, . . .}, it may also be interesting to apply
more general m-body phase gates. Here, the resulting states
may no longer be graph states, but belong to the class of LME
states [25]. This gives a new perspective on other constructions
such as the one by Alltop [12], which for p � 5 was shown
to be equivalent to the construction by Wootters and Fields up
to a permutation of the vector components [61]. Note that for
LME states, such a permutation can always be rephrased in
terms of general phase gates [25].

VII. MUBS AND 2-DESIGNS

The graph-state formalism also makes it possible to illus-
trate the 2-design property of MUBs. A finite set of vectors
Dt = {|ψi〉} inH = Cd is called a complex projective t-design
if it holds that∫

H
|〈φ|ψ〉|2kdψ = 1

|Dt |
∑

|ψi 〉∈Dt

|〈φ|ψi〉|2k, (66)

for all k ∈ {0,1, . . . ,t}, and any |φ〉 ∈ H, where dψ is a
unitarily invariant and normalized measure [12,13,62]. In
other words, t-designs make it possible to compute uniformly
weighted integrals over the Hilbert space H = Cd , where the
integrand is a polynomial in |〈φ|ψ〉|2 of degree at most t , by
averaging over a finite set of vectors Dt = {|ψi〉}. In Ref. [12],
it was shown that the union of the basis vectors of complete
sets of MUBs constitute such a design. Namely, MUBs are
complex projective 2-designs.

Here we want to illustrate that this fact is also reflected
in the structure of the associated graphs. In Ref. [63], it was
found that the average purity of a reduceddensity matrix on a
bipartite Hilbert space H = HX ⊗ HY = CdX ⊗ CdY over all
pure states is given by〈

tr
(
ρ2

X

)〉 ≡ ∫
H

tr
(
ρ2

X

)
dψ = dX + dY

dXdY + 1
, (67)

where ρX = trY (ρ) is the reduced density matrix of ρ =
|ψ〉〈ψ |, and the average is taken with respect to dψ as
previously described. The integrand tr(ρ2

X) of this expression
contains absolute squares of vector components up to the
power k = 2 [13,62] and can thus be computed by means
of a complex projective 2-design D2, i.e.,〈

tr
(
ρ2

X

)〉 = 1

|D2|
∑

|ψi 〉∈D2

tr
(
ρi

2
X

)
, (68)

using a finite number of states ρi = |ψi〉 〈ψi | from the set
D2 = {|ψi〉}. As mentioned above, a possible choice for the
set D2 is the set of all basis vectors of an arbitrary complete
set of MUBs. Now recall that in our framework all vectors
{|Gr (m1, . . . ,mn)〉} within one graph-state basis Br are LU
equivalent. Thus, in order to evaluate 〈tr(ρ2

X)〉 from Eq. (68),
we only need to average over d + 1 vectors, i.e., one element
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per basis. Second, the purity tr(ρ2
X) of the reduced state ρX of

a graph state with respect to an arbitrarily chosen bipartition
(X|Y ) of the Hilbert space, can directly be derived from the
corresponding adjacency matrix, A [26]. In fact, it suffices to
determine the rank of the connectivity submatrix �(X|Y ), which
for a given adjacency matrix A is defined as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X Γ(X|Y )

Γ(X|Y )T
Y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (69)

wherein the blocks X and Y correspond to the bipartition of
the Hilbert space H = HX ⊗ HY , with HX (HY ) being the
Hilbert space of nX (nY ) qupits such that nX + nY = n. As
shown in Ref. [26], the purity of a reduced graph state onHX is
tr(ρ2

X) = p−rank(�(X|Y )), wherein rank(�(X|Y )) is computed over
Zp. Thus, given the adjacency matrices {A0, . . . ,Ad−1} of d

graphs that correspond to a complete set of MUBs, we have
that the average purity from Eq. (67) satisfies the relation

〈
tr
(
ρ2

X

)〉 = 1

d + 1

(
1 +

d−1∑
i=0

p−rank(�(X|Y )
i )

)
, (70)

wherein {�(X|Y )
1 , . . . ,�

(X|Y )
d } are the connectivity submatrices

of {A0, . . . ,Ad−1}. Herein, the first term in the bracket, i.e.,
the number 1, stems from the computational basis which is
separable and hence tr(ρ2

X) = 1, whereas the second term

follows from tr(ρi
2
X) = p−rank(�(X|Y )

i ) for each graph state |Gi〉.
Note that the combination of Eqs. (67) and (70) yields the
necessary condition 1 +∑d−1

i=0 p−rank(�(X|Y )
i ) = dX + dY on the

adjacency matrices {A0, . . . ,Ad−1} for any complete set of
graph-state MUBs.

Let us illustrate this connection by the example of a three-
qubit system using the MUBs shown in Figs. 3 and 7. Consider
an arbitrary bipartition of the system, say (1|23). Here, for each
graph Gi which has a connection with respect to the bipartition
(1|23) the 1 × 2-dimensional connectivity matrix �

(1|23)
i has

rank 1 and hence the corresponding graph state contributes
a purity of tr(ρi

2
X) = p−1 = 1/2. On the other hand, if for a

graph there is no connection between (1|23) then the rank of
�

(1|23)
i is 0 and therefore, in these cases, tr(ρi

2
X) = p−0 = 1.

In Figs. 3 and 7, we see that six of the eight graphs have
connections with respect to the bipartition (1|23), while two
of them do not. Thus, using Eq. (70) we obtain 〈tr(ρ2

X)〉 =
1
9 (1 + 2 × 1 + 6 × 1

2 ) = 6
9 in agreement with Eq. (67).

This result can be generalized to any bipartition of an
arbitrary three-qupit system. As explained in Sec. VI, for a
tripartite qupit system there always exists a complete set of p3

graphs, of which p graphs are completely disconnected (i.e.,
all n vertices are isolated) and p3 − p graphs have no isolated
vertices. For such a complete set we obtain the following. The
off-diagonal elements of the completely disconnected graphs
are all zero, and thus for them, the rank of the connectivity

matrix �
(1|23)
i is zero. Consequently, tr(ρi

2
X) = p−0 = 1 for

these graphs. On the other hand, for the p3 − p graphs with
no isolated vertices we have tr(ρi

2
X) = p−1, as the rank of the

1 × 2 connectivity matrix �
(1|23)
i is 1 if a vertex has at least

one outgoing connection. Consequently, using Eq. (70) we
obtain 〈tr(ρ2

X)〉 = 1
p3+1 [1 + p × 1 + (p3 − p) × 1

p
] = p+p2

p3+1 .
This result is again consistent with Eq. (67).

VIII. IMPLEMENTATION

Several schemes of quantum key distribution [6,7], state
tomography [4,5], and entanglement detection [10] rely on
measuring observables whose eigenbases are mutually unbi-
ased. In this section, we discuss how such measurements may
be experimentally realized using the MUBs presented in this
paper.

In experiments, we are generally interested in the prob-
abilities Pk(i) = |〈ik|ρ|ik〉|2 of obtaining the outcome i ∈
{0, . . . ,d − 1} in the measurement setting k, for a sys-
tem in the state ρ. If the setting k corresponds to a
basis from a complete set of MUBs from our construc-
tion, then each measurement outcome i is related to a
particular configuration of the n-tuple (m1, . . . ,mn) ∈ Zn

p,
which is related to either a state of the computational
basis |m1〉 ⊗ · · · ⊗ |mn〉 or a graph state |G(m1, . . . ,mn)〉.
Thus, in the present case the probabilities are either of
the form PC(m1, . . . ,mn) = |〈m1| · · · 〈mn|ρ|m1〉 · · · |mn〉|2, or
Pk(m1, . . . ,mn) = |〈Gk(m1, . . . ,mn)|ρ|Gk(m1, . . . ,mn)〉|2. If
the underlying physical system is indeed a composite n-body
qupit system, it is generally required to decompose a measure-
ment into experimentally accessible joint probabilities. For a
measurement in the computational basis BC this is directly the
case. On the other hand, for a measurement in a graph-state ba-
sis BG we have that |G(m1, . . . ,mn)〉 = UGF⊗n(

⊗n
i=1 |mi〉),

where UG =∏i�j U
Ai,j

i,j is the unitary operator from Eq. (20)

defining the graph state, and F = 1√
p

∑p−1
i,j=0 ω

ji
p |i〉 〈j | is

a local Fourier transform [29]. Therefore, Pk(m1, . . . ,mn)
is the joint probability of the local measurement outcomes
m1, . . . ,mn in the Fourier basis with the system being in the
state U

†
GρUG. Thus, in summary, one procedure to specify

probabilities in a graph-state basis is as follows.
(1) Let the state undergo the unitary transformation ρ →

U
†
GρUG, where U

†
G =∏i�j U

−Ai,j

i,j .
(2) Measure the joint probabilities P (m1, . . . ,mn) of the

state U
†
GρUG in the (local) Fourier basis.

This constitutes an experimentally friendly implementation
of measurements in MUBs, since it can be realized
with only three fundamental operations. The local
Fourier transform F , the local phase gate Ui,i , and the
two-body controlled phase operation Ui,j . Accordingly, to
experimentally measure in this complete sets of MUBs,
only few physical devices are needed, which are then
adjusted according to the desired measurement setting. In
particular, for a multiqubit system d = 2n, the construction
only requires standard gates from quantum computing.
Namely, the Hadamard gate H = F = 1√

2
(|0〉 〈0| +

|1〉 〈0| + |0〉 〈1| − |1〉 〈1|), the π/4-phase shift gate
Rπ/4 = Ui,i = |0〉 〈0| + i |1〉 〈1|, and the controlled-Z gate
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FIG. 8. (Color online) Implementation of MUBs. This illustration
shows the basic circuit that establishes a measurement in a generalized
graph-state basis. First, the state ρ undergoes a sequence of two-body
controlled phase gates Ui,j and local phase gates Ui,i . Depending
on which basis is to be realized, specific gates have to be switched
on or off (symbolized by the green and red switches) or applied
several times. Finally, a joint measurement is performed in the Fourier
basis. This is equivalent to locally applying F † and measuring in the
computational basis (black semicircles).

CZ = Ui,j = |00〉 〈00| + |01〉 〈01| + |10〉 〈10| − |11〉 〈11|.
Note that in order to realize d + 1 MUBs one may always use
the same experimental setup (see Fig. 8), but with different
elements of the circuit switched on or off, depending on which
setting is to be generated.

IX. SUMMARY

In this paper, we developed a graph-state formalism for the
construction of MUBs in prime power dimensions, d = pn. We
showed that a pair of graph-state bases are mutually unbiased if
the difference between the corresponding adjacency matrices
has a nonzero determinant over Zp. In order to construct
complete sets of MUBs, we used the theory of finite fields.
Namely, we showed that the required condition is automati-
cally fulfilled in case the set of adjacency matrices represents a
finite fieldFpn . We presented an explicit construction yielding a
symmetric matrix representation for any finite field of arbitrary
order. Here we showed that a complete set of adjacency
matrices can be generated from a single n × n matrix, and
gave a constructive algorithm to derive this matrix. Moreover,
we discussed that, in general, it is sufficient to specify a
single n-dimensional vector to construct a complete set of
MUBs. Based on this description, we found that any adjacency
matrix is a linear combination of n fundamental adjacency
matrices. Besides the fact that the introduced construction
of MUBs is comparatively simple and illustrative, we have
discussed several advantages of our formalism. For example,
our framework yields an experimentally friendly physical
implementation in terms of only three fundamental gates.
Furthermore, the presented formalism is ideally suited to
investigate entanglement structure within sets of MUBs. In
this direction, further research may be carried out to better
understand the role of entanglement in MUBs. In particular,
the condition on the average purity of mutually unbiased basis
states that follows from the 2-design property may be useful
to investigate the possible nonexistence of complete sets of
MUBs for nonprime power dimensions, or to exclude certain
classes of constructions of MUBs for those dimensions.

Note added in proof. Recently we learned that there is a
further paper [64] which proves the existence of symmetric

matrix representations over Zp for all finite fields Fpn .
Furthermore, related connections between affine planes over
finite fields and MUBs were also established in Ref. [65]. We
would like to thank Markus Grassl for pointing this out to us.
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APPENDIX A: SYSTEMATIC CONGRUENCE
TRANSFORMATION INTO IDENTITY

In this Appendix, we give a constructive algorithm to reduce
a symmetric nonsingular n × n matrix over Zp [as given in
Eqs. (44) and (49)] to the identity matrix 1n by means of a
sequence of congruence transformations.

1. Case (i): p = 2

We show that, using the operations from the toolbox
Eq. (47), any nonsingular symmetric n × n matrix B over Z2

which has at least one 1 on the diagonal can be transformed
into the identity matrix. [Note that the matrix from Eq. (44)
belongs to this class of matrices.] To show this, one can proceed
in a straightforward fashion similar to a Gaussian elimination:
First, the (1,1) element of the matrix B is made nonzero.
Either this is already the case, or we apply �1,jB�T

1,j = B ′
to permute an arbitrary 1 on the diagonal at position, say
(j,j ), to B ′

1,1. In the next step, we perform 	1,jB
′	T

1,j = B ′′

on all entries j � 2 for which B ′
j,1 �= 0. In this way, all

entries except the first entry of the first column and row
become 0. Let us denote this matrix by B(1). If B(1) has
further nonzero diagonal elements besides the element (1,1),
we can do the same for the next column and row. That is,
if necessary, we perform a permutation �2,jB

(1)�T
2,j = B(1)′

with j � 2 to make the (2,2) element nonzero, and then the
elimination 	2,jB

(1)′	T
2,j = B(1)′′ on all entries j � 3 for

which B(1)′
j,2 �= 0. As the applied operations leave the first

column and row invariant, we obtain a matrix, say B(2), whose
only nonzero elements in the first two columns and rows are
the two diagonal elements (1,1) and (2,2). This elimination
is repeated for the next columns and rows as long as after
each step the new matrix B(k), which acts like the identity
on the first k columns and rows, has a nonzero diagonal
element B(k)

m,m with m > k. Either we directly obtain the n × n

identity matrix in this way, or we arrive at a matrix whose
diagonal elements B(k)

m,m with m > k are all zero. In this case
we proceed as follows. According to our assumption, B(k) is
nonsingular. Therefore, there must exist at least one nonzero
entry in the (k + 1)th column of B(k). In order to keep track of
the order of our transformation, we want this to be the element
(k + 2,k + 1), and therefore, if necessary, we permute it to
this position by applying �k+2,jB

(k)�k+2,j = B(k)′, where j

corresponds to a nonzero element of column k + 1. Next, we
can exploit (see, e.g., Ref. [42]) that⎛
⎜⎝1 1 0

1 0 1

1 1 1

⎞
⎟⎠
⎛
⎜⎝1 0 0

0 0 1

0 1 0

⎞
⎟⎠
⎛
⎜⎝1 1 0

1 0 1

1 1 1

⎞
⎟⎠

T

=

⎛
⎜⎝ 1 0 0

0 1 0

0 0 1

⎞
⎟⎠.

(A1)
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Hence, after the congruence transformation

k,k+1,k+2B

(k)′
T
k,k+1,k+2 = B(k)′′ the diagonal elements

B
(k)′′
k,k , B

(k)′′
k+1,k+1, and B

(k)′′
k+2,k+2 are all 1. Subsequently, we

are again able to eliminate all off-diagonal elements of the
corresponding columns and rows by performing 	i,jB

(k)′′	T
i,j

to all i = k, k + 1, k + 2 (in ascending order) for which
the corresponding off-diagonal elements B

(k)
i,j

′′
are nonzero.

Note that by applying 
k,k+1,k+2, new nonzero elements may
have been introduced to column and row k, which have to
be eliminated again. In total, we obtain a new matrix B(k+2)

which acts like the identity on the first k′ = k + 2 columns
and rows. These steps are repeated until we arrive at the
overall identity matrix B(n) = 1n. Note that this procedure
always successfully leads to the identity if the given matrix
B is nonsingular and has at least one diagonal element
which is 1. If this procedure is applied to the matrix from
Eq. (44), we obtain P which diagonalizes B via congruence
transformation PBPT = 1n. Consequently, the same matrix
P then symmetrizes the associated companion matrix C

[Eq. (43)] via the similarity transformation PCP−1 = Q.

2. Case (ii): p � 3

We show that, using the operations from the toolbox
[Eq. (53)], any nonsingular symmetric n × n matrix B overZp,
whose determinant is a quadratic residue, can be transformed
into the identity matrix via congruence transformations. We
diagonalize B, similar to the case p = 2, by eliminating
off-diagonal elements column by column. Again, we want
to make the (1,1) element nonzero. Let us first assume that
there exists a nonzero element on the diagonal. If necessary,
we may permute a nonzero element (j,j ) on the diagonal to
(1,1) using the permutation �1,jB�1,j = B ′. Subsequently,
we can eliminate all off-diagonal elements of the first column
and row by applying 	1,jB

′	1,j = B ′′ for all j � 2 for which
B ′

j,1 is nonzero. In order to achieve this, the coefficient a in
each 	1,j has to be chosen such that aB ′

1,1 + B ′
j,1 = 0. Now

the only nonzero element of the first column and row is the
(1,1) element. If possible, i.e., if there are further diagonal
elements besides (1,1), we can repeat this for columns 2, 3,
4, etc. However, in case there are no nonzero elements on
the diagonal besides the ones for which the elimination has
already been performed, or in case B had no diagonal elements
from the beginning, we cannot make further diagonal elements
nonzero using merely the permutations �i,j . Nonetheless, for
p � 3 any symmetric 2 × 2 block with empty diagonal can be
diagonalized via

(
1 1

1 −1

)(
0 d

d 0

)(
1 1

1 −1

)T

=
(

2d 0

0 −2d

)
. (A2)

Thus, whenever we cannot make a diagonal element (k,k)
nonzero via a permutation, we permute a nonzero off-diagonal
element (j,k) to (k + 1,k) and then apply 
k,k+1. As in this way
a pair of diagonal elements, namely (k,k) and (k + 1,k + 1),
become nonzero. Subsequently, we can again eliminate the
corresponding off-diagonal elements of column k and k + 1,
if necessary. This is repeated until the matrix is diagonal.

After this diagonalization each individual diagonal element
can be a quadratic residue, or a quadratic nonresidue. However,
as we assume that the determinant of the matrix B is a quadratic
residue, the number of quadratic nonresidues must be even.
This follows from the fact that a product of any two quadratic
nonresidues is a quadratic residue, whereas the product of a
nonresidue with a residue yields a quadratic nonresidue [50].
Furthermore, for a pair of quadratic nonresidues, q̂1 and q̂2,
there always exists a quadratic residue q = s2 such that q̂1 =
qq̂2 [66]. We use these facts to proceed as follows. First, for
any quadratic residue q = s2 on the diagonal we can use⎛
⎜⎝ 1

s−1

1

⎞
⎟⎠
⎛
⎜⎝ �

q

�

⎞
⎟⎠
⎛
⎜⎝ 1

s−1

1

⎞
⎟⎠ =

⎛
⎜⎝ �

1

�

⎞
⎟⎠,

(A3)

where each � denotes an arbitrary entry. Hence, by applying
such congruence transformations to all quadratic residues on
the diagonal, we can make these entries equal to 1. Next, using
a further diagonal matrix for congruence transformation we
can make all nonresidues equal, say q̂. Recall that the number
of quadratic nonresidues is even; i.e., they come in pairs. On
all pairs, say elements (i,i) and (j,j ), we apply the congruence
transformation �i,j , which yields

(
1 b

−b 1

)(
q̂ 0

0 q̂

)(
1 −b

b 1

)
= (1 + b2)

(
q̂ 0

0 q̂

)
. (A4)

If b is chosen such that 1 + b2 is an arbitrary quadratic
nonresidue q̂ ′, then the product (1 + b2)q̂ = q̂ ′q̂ is a quadratic
residue. It is easy to see that this choice is always possible,
and hence the diagonal elements become quadratic residues
q. Subsequently, we can use again a diagonal matrix Eq. (A3)
to make all diagonal elements equal to 1. Thus, overall we
successfully obtain the matrix P for which PBPT = 1n. If this
procedure is applied to the matrix B from Eq. (49), we obtain
P for which the matrix Q = PCP−1 is symmetric, wherein C

is the companion matrix Eq. (43).

APPENDIX B: LIST OF TRIDIAGONAL SOLUTIONS

In this Appendix we give a list of vectors �d = (d1, . . . ,dn)
for the tridiagonal n × n matrix Q [see Eq. (56)] such that
f (x) = char(Q) is a (monic) irreducible polynomial of degree
n. Here, c0, . . . ,cn−1 denote the coefficients of the polynomial
in the form f (x) = xn + cn−1x

n−1 + · · · + c1x + c0. Note
that the shown irreducible polynomials f (x) are also primitive.
Also see Ref. [56] for further solutions of this form for the
special case p = 2 up to n = 300.

Solutions for Qubits p = 2:

n = 2
d1 d2 c1 c0

1 0 1 1

052323-17



CHRISTOPH SPENGLER AND BARBARA KRAUS PHYSICAL REVIEW A 88, 052323 (2013)

n = 3
d1 d2 d3 c2 c1 c0

1 1 0 0 1 1
1 0 0 1 0 1

n = 4
d1 d2 d3 d4 c3 c2 c1 c0

1 0 1 0 0 0 1 1
1 1 0 1 1 0 0 1

n = 5
d1 d2 d3 d4 d5 c4 c3 c2 c1 c0

1 1 1 1 0 0 0 1 0 1
0 1 1 0 0 0 1 0 0 1
1 1 0 0 0 0 1 1 1 1
1 0 0 0 0 1 0 1 1 1

n = 6
d1 d2 d3 d4 d5 d6 c5 c4 c3 c2 c1 c0

0 1 1 0 0 0 0 0 0 0 1 1
1 0 1 1 1 0 0 1 1 0 1 1
0 1 1 0 1 0 1 0 0 0 0 1
1 0 1 0 0 1 1 0 0 1 1 1

n = 7
d1 d2 d3 d4 d5 d6 d7 c6 c5 c4 c3 c2 c1 c0

1 0 1 1 0 0 1 0 0 0 0 0 1 1
0 1 1 1 0 1 0 0 0 0 1 0 0 1
1 1 1 0 0 0 1 0 0 0 1 1 1 1
1 1 1 0 1 0 0 0 0 1 0 0 0 1

n = 8
d1 d2 d3 d4 d5 d6 d7 d8 c7 c6 c5 c4 c3 c2 c1 c0

0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 1
1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1
1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1
0 1 1 0 1 1 0 0 0 1 0 0 1 1 0 1

Solutions for Qutrits p = 3:

n = 2
d1 d2 c1 c0

2 0 1 2
1 0 2 2

n = 3
d1 d2 d3 c2 c1 c0

1 1 0 1 2 1
2 1 1 2 0 1
1 0 0 2 1 1

n = 4
d1 d2 d3 d4 c3 c2 c1 c0

1 1 0 1 0 0 1 2
2 2 0 2 0 0 2 2
1 2 1 1 1 0 0 2
1 2 2 0 1 2 2 2

n = 5
d1 d2 d3 d4 d5 c4 c3 c2 c1 c0

2 1 2 0 1 0 0 0 2 1
2 2 1 1 0 0 0 2 1 1
0 1 2 0 0 0 1 0 1 1
2 1 1 1 1 0 1 2 0 1

n = 6
d1 d2 d3 d4 d5 d6 c5 c4 c3 c2 c1 c0

1 0 2 2 1 0 0 2 1 1 1 2
2 0 1 1 2 0 0 2 2 1 2 2
1 0 2 0 2 0 1 0 0 0 0 2
2 2 0 1 0 0 1 0 1 0 0 2

Solutions for Qupits p = 5:

n = 2
d1 d2 c1 c0

3 1 1 2
4 2 4 2

n = 3
d1 d2 d3 c2 c1 c0

2 3 0 0 4 2
3 2 0 0 4 3
3 1 0 1 1 3
4 2 3 1 4 3

n = 4
d1 d2 d3 d4 c3 c2 c1 c0

3 0 1 1 0 4 1 2
1 3 0 1 0 4 4 2
3 1 0 0 1 0 2 3
2 3 2 1 2 0 3 3

n = 5
d1 d2 d3 d4 d5 c4 c3 c2 c1 c0

2 3 0 0 0 0 2 2 1 3
3 2 0 0 0 0 2 3 1 2
3 2 3 0 2 0 3 0 0 2
3 0 2 3 2 0 3 0 0 3

n = 6
d1 d2 d3 d4 d5 d6 c5 c4 c3 c2 c1 c0

4 2 2 4 1 2 0 0 0 1 1 3
3 4 1 3 3 1 0 0 0 1 4 3
1 3 2 0 4 0 0 0 1 2 0 2
3 3 3 0 3 3 0 0 1 2 4 3
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Solutions for Qupits p = 7:

n = 2
d1 d2 c1 c0

4 1 2 3
3 2 2 5
6 3 5 3
5 4 5 5

n = 3
d1 d2 d3 c2 c1 c0

2 4 1 0 5 2
3 3 1 0 6 2
2 3 1 1 2 4
6 3 3 2 1 4

n = 4
d1 d2 d3 d4 c3 c2 c1 c0

5 4 4 1 0 3 3 3
6 3 3 2 0 3 4 3
6 0 5 3 0 4 3 3
4 2 0 1 0 4 4 3

n = 5
d1 d2 d3 d4 d5 c4 c3 c2 c1 c0

5 1 0 1 0 0 0 0 2 2
6 3 4 0 1 0 0 0 5 2
6 4 0 1 3 0 0 2 2 4
6 5 4 4 2 0 0 3 0 2

n = 6
d1 d2 d3 d4 d5 d6 c5 c4 c3 c2 c1 c0

6 6 0 1 0 1 0 0 0 3 1 5
2 4 5 5 5 0 0 0 0 3 3 3
5 3 2 2 2 0 0 0 0 3 4 3
6 0 6 0 1 1 0 0 0 3 6 5

APPENDIX C: EXAMPLE OF MUBS FOR d = 33 = 27 VIA
SYMMETRIZED COMPANION MATRIX

We demonstrate the construction of a complete set of MUBs
by the example of tripartite qutrit system, i.e., a Hilbert space
of dimension d = pn, where p = 3 and n = 3. According to
the table in Appendix B, the polynomial f (x) = x3 + x2 +
2x + 1, having the coefficients c2 = 1, c1 = 2, and c0 = 1, is
irreducible over Z3. The corresponding companion matrix is

C =

⎛
⎜⎝ 0 1 0

0 0 1

−c0 −c1 −c2

⎞
⎟⎠ =

⎛
⎜⎝0 1 0

0 0 1

2 1 2

⎞
⎟⎠ . (C1)

Furthermore, the matrix B0 as defined in Eq. (50) becomes

B0 =

⎛
⎜⎝0 0 1

0 1 2

1 2 2

⎞
⎟⎠ . (C2)

Since det(B0) = 2 is a quadratic nonresidue in Z3, and
(n mod 4) = 3, we can choose g = 2 for which the determinant

FIG. 9. (Color online) Fundamental graph states of a complete
set of MUBs for three qutrits derived in Appendix C. A complete set
is obtained through all possible linear combinations over Z3.

of B = gB0 becomes a quadratic residue. Applying the
elimination procedure from Appendix A 2 to the matrix B

to achieve PBPT = 13, one finds the matrix

P =

⎛
⎜⎝0 0 1

0 1 2

1 2 2

⎞
⎟⎠ , P −1 =

⎛
⎜⎝2 1 1

1 1 0

1 0 0

⎞
⎟⎠ . (C3)

Hence, a symmetric matrix Q which is similar to the
companion matrix C is given by

Q = PCP−1 =

⎛
⎜⎝1 0 2

0 0 1

2 1 1

⎞
⎟⎠ . (C4)

Therefore, a basis in the symmetric matrix representation of
the finite field F33 is given by the matrices {Q0,Q1,Q2}, which
are of the form

Q0 =

⎛
⎜⎝ 1 0 0

0 1 0

0 0 1

⎞
⎟⎠ , Q1 =

⎛
⎜⎝1 0 2

0 0 1

2 1 1

⎞
⎟⎠ , Q2 =

⎛
⎜⎝2 2 1

2 1 1

1 1 0

⎞
⎟⎠.

(C5)

Thus, the three fundamental adjacency matrices are A0 =
Q0 = 13, A1 = Q1, and A2 = Q2. These are illustrated in
Fig. 9. Consequently, a complete set of graphs is given by the
27 different adjacency matrices Ar from the set

S = {a2A2 + a1A1 + a0A0}a0,a1,a2∈Z3
. (C6)

Since the used polynomial f (x) is also primitive, this set
may equivalently be obtained via S = {Qi}25

i=0 ∪ {O3}. Sub-
sequently, the bases {|Gr (m1,m2,m3)〉} with the elements

|Gr (m1,m2,m3)〉 = Zm1 ⊗ Zm2 ⊗ Zm3 |Gr〉 , (C7)

where m1,m2,m3 ∈ Z3, with

|Gr〉 =
∏
i�j

U
(Ar )i,j
i,j |+〉⊗n , (C8)

defined by the adjacency matrix Ar ∈ S, are mutually
unbiased. Together with the computational basis BC =
{|0〉 , |1〉 , |2〉}⊗3, these bases form a complete set of 28 MUBs.

APPENDIX D: EXAMPLE OF MUBS FOR d = 23 = 8 VIA
A TRIDIAGONAL MATRIX

The construction of a complete set of MUBs is illustrated
by the example of a tripartite qubit system, i.e., the Hilbert
space of dimension d = pn with p = 2 and n = 3. Here let us
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use the vector �d = (1,0,0), from the table in Appendix B, for
which the tridiagonal matrix from Eq. (56) becomes

Q =

⎛
⎜⎝1 1 0

1 0 1

0 1 0

⎞
⎟⎠ . (D1)

The characteristic polynomial of this matrix is f (x) = x3 +
x2 + x + 1, which is irreducible (in addition, also primitive)
over Z2. Therefore, we obtain the matrices

Q0 =

⎛
⎜⎝1 0 0

0 1 0

0 0 1

⎞
⎟⎠ , Q1 =

⎛
⎜⎝1 1 0

1 0 1

0 1 0

⎞
⎟⎠ , Q2 =

⎛
⎜⎝ 0 1 1

1 0 0

1 0 1

⎞
⎟⎠,

(D2)

as a basis of the symmetric matrix representation of the finite
field F23 . Therefore, the matrix powers 0,1,2 of Q are the

fundamental adjacency matrices, i.e., A0 = Q0, A1 = Q1, and
A2 = Q2. Thus, a complete set of graphs is given by the eight
different adjacency matrices Ar from the set

S = {a2A2 + a1A1 + a0A0}a0,a1,a2∈Z2
. (D3)

As the utilized polynomial f (x) is also primitive, this set can
equivalently be obtained via S = {Qi}6

i=0 ∪ {O3}. Now, the
eight bases {|Gr (m1,m2,m3)〉} with the elements

|Gr (m1,m2,m3)〉 = Zm1 ⊗ Zm2 ⊗ Zm3 |Gr〉 , (D4)

where m1,m2,m3 ∈ Z2, and

|Gr〉 =
∏
i�j

U
(Ar )i,j
i,j |+〉⊗n , (D5)

defined via the adjacency matrices Ar ∈ S, are mutually
unbiased. This set of bases is illustrated in Fig. 3. Together
with the computational basis BC = {|0〉 , |1〉}⊗3, we have a
complete set of nine MUBs.
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