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Device-independent certification of the teleportation of a qubit
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We want to certify in a black-box scenario that two parties simulating the teleportation of a qubit are really using
quantum resources. If active compensation is part of the simulation, perfect teleportation can be faked by purely
classical means. If active compensation is not implemented, a classical simulation is necessarily imperfect: In
this case, we provide bounds for the certification of quantumness using only the observed statistics. In particular,
if a uniform shrinking of the Bloch vector is observed on the teleported side, an average teleportation fidelity of
85% guarantees the use of quantum resources. In general, the criterion is not simply related to the fidelity; in an
extreme case, the assessment of quantumness can be positive even for an average fidelity as low as 50%.
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I. INTRODUCTION

Shortly after the milestone paper that introduced quantum
teleportation [1], the question was asked of which deviation
from the ideal case one can tolerate while still claiming that
proper quantum effects were being observed. Popescu proved
that, if Alice and Bob share no entanglement, the average
fidelity for the teleportation of unknown qubit states is bounded
by F̄ = 2

3 [2]. This bound has been widely used as a benchmark
for experiments [3,4], including the most recent ones [5,6]. The
bound at 2/3 holds if one trusts that the quantum systems under
study are qubits. By using larger-dimensional alphabets, the
model of Gisin [7] reaches up to an average fidelity F̄ ≈ 0.87
with only classical resources. The relation between Bell’s the-
orem and teleportation, which inspired already the authors of
[2], has been further studied by Horodecki et al. [8], Zukowski
[9], and eventually by Clifton and Pope [10]. This work states
that F̄ � 0.9 would guarantee that the observed teleportation
phenomenon has not been simulated with local variables.

However, with closer scrutiny, even the treatments based
on Bell inequalities invoke two-qubit algebra at some point
or other to complete the calculation. The fact that it could
be critical to resort to qubits at any stage was noticed
only several years later, in the context of quantum key
distribution [11], where this threatened the security of the
existing protocols. This observation in turn lead to the idea of a
device-independent assessment [12]. The device-independent
framework has since been applied to several quantum infor-
mation tasks (see [13,14] for reviews). It is time to reconsider
the assessment of quantum teleportation in this by now well-
established framework: This is the goal of the present paper.

II. OPERATIONAL BLACK-BOX DESCRIPTION

A vendor is selling two boxes which allegedly perform
quantum teleportation of a qubit state (Fig. 1). The input
of each box consists of a unit vector on the surface of
sphere S2 embedded in R3. Alice’s vector �a represents the
state to be teleported as |ψ〉〈ψ | = 1

2 (I + �a · �σ ).1 Bob’s vector

1Teleportation should work also for mixed states, i.e., |�a| � 1. Since
the most demanding simulation is that of a pure state, in this paper
we focus on |�a| = 1.

represents his choice of performing the measurement along
�b · �σ on the teleported state. Alice and Bob inform the
vendor that they will treat their inputs as defined in the same
reference frame. For every input, Alice’s box outputs two bits
(c0,c1) ∈ {0,1}2, while Bob’s box outputs a bit β ∈ {−1, + 1}.
The two boxes are claimed to be loaded in each run with a
maximally entangled two-qubit state, but there is no direct
a priori evidence for it: In fact, this is what we will aim
to infer a posteriori by observing the statistical behavior of
the boxes. In the ideal teleportation experiment, conditioned
on (c0,c1), Bob’s box contains a qubit in the state ρB =
1
2 [I + (Rc0,c1 �a) · �σ ], where the four SO(3) matrices are the
identity R00 = I and the rotations by π along three orthogonal
directions, R01 = R(x̂,π ), R10 = R(ŷ,π ), and R11 = R(ẑ,π ).

We are going to show that a black-box certification of qubit
teleportation is indeed possible and provide explicit bounds for
its conclusiveness. As a first step, we point out two immediate
consequences of working in a black-box scenario.

A. Consequence 1: Impossibility of active compensation

When teleportation is used as a building block in a larger
protocol, one typically wants to recover the input state of Alice
deterministically on Bob’s side. To this effect, Alice is asked
to send (c0,c1) over to Bob’s location, so that he can apply the
unitary transformation corresponding to Rc0,c1 on the Bloch
vector, and ideally recover Alice’s state. Experiments that
include this active compensation [6] are rightly considered
as more advanced than those that do not. If Bob performs
a measurement along �b after the compensation, he expects
to find 〈β〉 = �a · �b. Now, in the black-box scenario, active
compensation translates to allowing two more bits of input
in Bob’s box [Fig. 1(a)], but the way this information is
processed within the box may be very different from applying
a rotation. Thus, the black-box version of teleportation with
active compensation gives more leeway for the vendor to cheat
(too much leeway, as it turns out: with those additional two bits
of input in Bob’s box, the statistics of perfect teleportation can
be simulated with only classical resources). This conclusion
is an immediate corollary of the Toner-Bacon simulation of
the singlet [15]; it supersedes previous, slightly less efficient
simulations of teleportation [16]. As we shall see, black-box
certification of teleportation becomes possible if one collects
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FIG. 1. (Color online) Operational black-box description of the
teleportation of a qubit in two different ways Bob can use the two
bits of communication. In the first scenario, the two bits are input
into Bob’s side to perform a compensation depending on (c0,c1). In
the second scenario, Bob’s box cannot benefit from the two bits of
information since they are sent only after the outcomes are obtained.

(c0,c1) and β separately, then studies the conditional statistics;
in other words, if one presents the data of teleportation in
analogy with a Bell test [9].

B. Consequence 2: Need to assume that the state
to be teleported is known

One of the main features of quantum teleportation is that
the protocol works even when the state to be teleported is
unknown to the person who sets up the Bell-state measurement.
Whether this feature must be requested of simulations has been
debated, and ultimately depends on each author’s choice of
assumptions. For the black-box scenario, the case is clear: The
certification must be done against protocols that simulate the
teleportation of a known state. Indeed, in the two-box scenario
presented here, Alice’s box simulates both the qubit source and
the Bell-state measurement. Since Alice inputs �a as classical
information, this information can be copied and made available
at any of the internal steps that happen in the box. It would not
help to ask the vendor to build the source as a separate box
because this box must send a signal (the alleged qubit) to the
box that allegedly performs the Bell-state measurement: That
signal could carry the classical description of the state.

III. OPERATIONAL DESCRIPTION OF TELEPORTATION

After these considerations, we focus on the scenario
sketched in Fig. 1(b). The available data are a table of
values (c0,c1,β|�a,�b) for each run of the experiment. For each
choice of �a,�b ∈ S2, we assume that infinitely many runs of
the experiment are performed (that is, we neglect statistical
fluctuations). From this table, one can extract the probability
distributions P (c0,c1,β|�a,�b), which will be used to check the
violation of a Bell inequality. The ideal case is represented by
Pideal(c0,c1,β|�a,�b) = 1

8 [1 + β(Rco,c1 �a) · �b] .

The average fidelity of teleportation is the most frequently
used measure of quality of a teleportation protocol. To define it
in this operational scenario, notice first that (Rco,c1

�V ) · �b = �V ·
(Rco,c1

�b). Thus, Bob will sort the data of the table to reconstruct
P (β|c0,c1,�a,Rco,c1

�b) = 1
2 [1 + �V ′

co,c1 (�a) · �b] .

On the right-hand side, we have made the assumption
(which can be verified a posteriori) that the observed 〈β〉
is linear in �b. If this were not the case, it is manifest that Bob
is not measuring a qubit. If this linear behavior is observed,
Bob can extract a compensated vector �Aco,c1 (�a) which should

ideally be equal to �a. The average teleportation fidelity can
thus be estimated by sampling Alice’s inputs at random

F̄ =
∫

d�a
4π

∑
c0,c1

P (c0c1)
1 + �Aco,c1 (�a) · �a

2
. (1)

IV. DEVICE-INDEPENDENT CERTIFICATION OF
QUANTUM RESOURCES IN TELEPORTATION

Let us move to the constructive description of the certifi-
cation, based on the scenario. Here we present one approach,
not claimed to be optimal that uses, like the authors of [10],
the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. In
the protocol, Alice can choose between two inputs �a0 and �a1;
similarly, Bob can choose between �b0 and �b1. Alice’s outcome
consists of two bits, from which we want to extract one bit
α ∈ {−1, + 1}: we choose the prescription α ≡ 2cj − 1 if
Alice’s input is �aj . Now one can evaluate CHSH = E00 +
E01 + E10 − E11 with

Ejk ≡ P (α = β|j,k) − P (α 	= β|j,k)

= P (cj = 0,β = −1|j,k) + P (cj = 1,β = +1|j,k)

−P (cj = 0,β = +1|j,k) − P (cj = 1,β = −1|j,k),

where P (cj ,β|j,k) ≡ P (cj ,β|�aj ,�bk). If CHSH > 2 in a
loophole-free assessment, the two boxes must have shared
quantum entanglement. This is a very standard device-
independent argument by now. The interesting step consists
in studying its implications for a teleportation setup.

V. A FIRST APPLICATION

For a first assessment, let us consider a pair of boxes
producing the statistics

Pobs(c0,c1,β|�a,�b) = 1
8

[
1 + β �Vco,c1 (�a) · �b]

. (2)

This model captures in particular Alice’s statistics
P (c0,c1|�a) = 1

4 , as well as the fact that Bob’s statistics are
linear in �b (if this were not the case, Alice and Bob would
immediately be suspicious because of a nontrivial departure
from the qubit behavior). Then

CHSH = 1

4

∑
c1

(�b0 + �b1) · [ �V0,c1 (�a0) − �V1,c1 (�a0)
]

+ 1

4

∑
c0

(�b0 − �b1) · [ �Vc0,0(�a1) − �Vc0,1(�a1)
]
. (3)

Assume further that

�Vc0,c1 (�a) = λRc0,c1 �a, λ ∈ [0,1], (4)

that is, in an active-compensation teleportation Bob would
always retrieve λ�a if Alice has input �a, independent of c0

and c1; again, this is the expected behavior when the resource
state is a Werner state, for example, and can be checked on
the observed statistics. This assumption also implies that the
postprocessing fidelity of each vector is the same as the active
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compensation case. Then

CHSH = λ

[∑
c1

(�b0 + �b1) · �a0,x +
∑
c0

(�b0 − �b1) · �a1,y

]
,

(5)

where �a0,x refers to the x component of the vector �a0, and
�a1,y refers to the y component of the vector �a1. Here, the
vectors �Vc0,c1 represent the vector that Bob would have had,
without compensation to obtain �Ac0,c1 . The fact that the spatial
symmetry is broken is just a consequence of our initial choice
of α, as alternative choices could be used to pick up any of
the following pairs of components from Alice’s vector: (ax,ay),
(ax,az), (−ax,ay), and so on. Therefore, if Alice were to choose
�a0 = �x and �a1 = �y, there are settings for Bob such that the
resulting CHSH expression is violated whenever λ � 1√

2
. This

translates to a critical average teleportation fidelity F̄ = 1
2 (1 +

λ) � 1
2 (1 + 1√

2
) ≈ 0.85.2

From our calculation, one may be tempted to draw the
conclusion that F̄ � 0.85 is sufficient to certify quantum
teleportation in a black-box scenario. However, there is a
counterexample to this statement. In 1996, Gisin presented
the simulation of the teleportation of a known state, achieving
F̄ ≈ 0.87 using only classical resources [7]. We are going to
study this model in the next section.

VI. GISIN’s CLASSICAL SIMULATION REVISITED

In a classical simulation of teleportation, only the two bits of
communication will convey information about �a to Bob’s box.
Gisin’s protocol uses them to tell in which quarter of the Bloch
sphere �a lies. The Bloch sphere is divided in four equal quarters
Sij , each having in its center one of the �tij = Rij �t00 thus de-
fined: �t00 = 1√

3
(+1, + 1, + 1), �t01 = 1√

3
(+1, − 1, − 1), �t10 =

1√
3
(−1, + 1, − 1), and �t11 = 1√

3
(−1, − 1, + 1). Bob’s box

contains �t00 and outputs β distributed according to 〈β〉 =
�b · �t00. Thus the protocol produces

PGisin(c0,c1,β|�a,�b) = δ(�a ∈ Sc0,c1 ) 1
2 (1 + β�t00 · �b) . (6)

Notice how Alice and Bob are completely uncorrelated. These
statistics lead to CHSH = 0. Also, it is easy to see that

PGisin
(
β|c0,c1,�a,Rc0,c1

�b) = 1
2

(
1 + β�tc0,c1 · �b)

(7)

for �tc0,c1 , which is in the same sector as �a. The average
teleportation fidelity is therefore

F̄ = 1

4

∑
c0,c1

d�a
π

∫
Sc0 ,c1

1 + �tc0,c1 · �a
2

=
∫

S00

d�a
π

1 + �t00 · �a
2

= 1

2

[
1 + 3

1

π

∫ π

π/3
dφ

∫ u(φ)

0
dθ cos θ sin θ

]
≈ 0.87

with u ≡ tan−1[
√

2
cos(φ+ π

3 ) ].

2This is precisely the fidelity bound that guarantees nonlocality in
the Werner state with the qubit assumption [10].

The observable statistics (6) are, however, significantly
different from the ones we posited before [Eqs. (2) and (4)].
Notably, Alice’s output (c0,c1) is deterministic for a given �a.
Bob’s box is found to contain always the same vector �t00,
which does not depend on �a at all. One could try to modify the
protocol to erase these obvious shortcomings. For instance,
Alice’s output could be randomized by adding two bits of
shared randomness (r0,r1) to both her and Bob’s box. Alice’s
box would then output (c0,c1) = (c′

0 ⊕ r0,c
′
1 ⊕ r1) when �a ∈

Sc′
0,c

′
1
, while Bob’s box would contain �tr0r1 . Since Rij Ri ′j ′ =

Ri⊕i ′,j⊕j ′ , this hashing leaves Eq. (7) unchanged, thence the
fidelity. As for Eq. (6), it is replaced by PGisin(c0,c1,β|�a,�b) =
1
8 , and gives CHSH = 0. So at least Alice does not detect
anything obviously wrong locally since P (c0,c1) = 1

4 .
One could also randomize Bob’s vectors by randomizing

the frame of the tetrahedron for each run of the protocol, and
for Bob’s box to contain �t00 of the that frame for every run. This
also gives us P (c0,c1|�a) = 1

4 , and nonzero �Vc0,c1 such that one
obtains a nontrivial CHSH value, but also a low fidelity of 0.5.

The point here is that in excluding local protocols, the
local statistics could already indicate if the protocol is truly
close to the ideal case. Furthermore, the local statistics may
be used as verifiable assumptions, to form bounds specific
for a particular experiment. For us, the Gisin model and the
variants we just discussed serve to highlight the fact that
these assumptions should be verified when concluding if the
teleportation protocol utilizes quantum resources, especially
in the fidelity region close to 85%. Also, despite the high
fidelity of the Gisin model in the active case, these simple
modifications do not show a strong relation between the
postprocessing fidelity and CHSH value.

VII. LOW FIDELITY, HIGH CHSH

Now we consider whether it is possible to observe a low
teleportation fidelity, and yet a high CHSH violation. For this
situation, consider a teleportation protocol that maps �a to the
�Vc0,c1 (�a) that we expect in a perfect teleportation experiment,
but only for two vectors to maximize CHSH:

�a �→ �Vc0,c1 (�a) =
{

Rc0,c1 �a for �a ∈ {�x,�y}
0 otherwise.

In this case, the average fidelity across the entire sphere is
essentially 0.5. However, one can obtain CHSH = 2

√
2 by

using the settings that were previously chosen. This maximal
violation indicates that a low average fidelity might be weakly
related to the performance of the protocol with respect to a
finite number of input choices and does not necessarily mean
that the protocol is local. While it is not clear that something
close to this extreme case can happen in practice, the tools we
use here do not allow us to put a tighter bound on the lowest
fidelity for which a Bell violation can be observed.

VIII. HIGHEST FIDELITY WITHOUT CHSH VIOLATION

To complete our study, we also describe a possible protocol
Pcrit that has the highest average fidelity without yielding a
violation. Here we will not impose the condition in Eq. (4), but
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FIG. 2. (Color online) Schematic of the region of the sphere with
z component larger than 1√

2
. For each input vector (higher arrow

in red), the optimal output vector with the highest fidelity (lower
arrow in blue) would be a vector with the same phase φ, but with z

component limited to prevent any possible violation.

only that the compensated �Vc0,c1 form a consistent description,
i.e., ∀ �ax,∃ �aB

x s.t. Rc0,c1
�Vc0,c1 ( �ax) = �aB

x ; along with Eq. (2).
To construct such a protocol, we recall that the CHSH

function we derived earlier (in particular, the specific coarse
graining to determine α) picks out a particular component of
each of the teleported �aB

x . This means that to limit CHSH � 2
for all choices of settings, the resultant vectors �aB

x must have
their individual components limited to 1√

2
.

To see how this limitation works, we note that if the
teleported vector �aB

0 is such that �aB
0,z = ± 1√

2
, then �aB

1,x and

�aB
1,y for any input �a1 must be limited to 1√

2
as well. We could

also limit the maximal z component of any teleported vector to
be an arbitrary Wz, meaning that the x and y components of any
other vector should be at most

√
2 − Wz to obtain CHSH = 2.

However, we checked that the protocol with the highest overall
fidelity is for Wz = 1√

2
.

There are two distinct classes of optimal assignments �aB
x

for every �a. Some vectors could be teleported with perfect
fidelity without having any component larger than 1√

2
.3 For

such inputs, we have
�a �→ �aB

x = �a.

The second class of assignment �aB
x is for vectors that would

allow for a violation when perfectly teleported. To avoid this,
we deterministically assign �aB

x in such a way as to maximise
the fidelity while keeping the largest component at ± 1√

2
.

As an example, consider inputs in the upper cap of the
Bloch sphere, with the z component larger than 1√

2
(see Fig. 2).

Our protocol teleports these vectors with a reduced fidelity as
follows:

Upper cap : �a =

⎛
⎜⎝

sin θ cos φ

sin θ sin φ

cos θ

⎞
⎟⎠ �→ �aB

x =

⎛
⎜⎝

1√
2

cos φ

1√
2

sin φ
1√
2

⎞
⎟⎠ .

The other five regions are mapped in a similar fashion.

3One such example of Alice’s input is the vector �a = 1√
3
(+1, +

1, + 1).

Average fidelity over inputs with the z component larger
than 1√

2
are as follows:

F̄cap = 1

2
+ 1

2

∫ 2π

φ=0

∫ π/4
θ=0 �aB

x · �a sin θ dφ dθ∫ 2π

φ=0

∫ π/4
θ=0 sin θ dφ dθ

= 1

2

[
1 + π

8(
√

2 − 1)

]
. (8)

Assigning a fidelity of 1 to the remaining regions, the fidelity
of the protocol Pcrit is then

F̄Pcrit =
[
(12π )

(
1 − 1√

2

)]
F̄cap + [

4π − (12π )
(
1 − 1√

2

)]
4π

≈ 0.97718. (9)

IX. CONCLUSION

In the first section, we lay out the framework of quantum
teleportation in the device-independent scenario and propose
the use of the postprocessing fidelity instead of the active
compensation fidelity as an indicator of nonlocality. This, with
verifiable assumptions on the local probability distributions,
allows us to construct a CHSH-type expression for the
outcomes of our teleportation experiment. Here we find that
an average fidelity of 85% and 97.7% in the postprocessing
scenario is sufficient to quantify nonlocality for different
assumptions.

We also explore some local models to see how they perform
with respect to our assumptions and the use of the average fi-
delity. For Gisin’s model and its variants, we do not observe any
strong relation between fidelity and CHSH. We also give an ex-
ample with high CHSH and low fidelity to illustrate a possible
limitation in using the average fidelity to obtain bounds on the
system.

In this work, we have focused on defining the tele-
portation fidelity in a useful way, and not in finding the
most general criterion for certification; in particular, it may
be possible to find better bounds using other inequali-
ties than CHSH. For instance, an alternative choice could
be to study an inequality whose optimal settings span
the three-dimensional nature of the Bloch sphere, instead
of only six settings per party in the CHSH case. One
such example would be the so-called elegant inequality in
Ref. [17].
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Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895
(1993).

[2] S. Popescu, Phys. Rev. Lett. 72, 797 (1994).
[3] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter,

and A. Zeilinger, Nature (London) 390, 575 (1997).
[4] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N.

Gisin, Nature (London) 421, 509 (2003).
[5] J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu,

S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J.
Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng,
and J.-W. Pan, Nature (London) 488, 185 (2012).

[6] X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek,
W. Naylor, A. Mech, B. Wittmann, J. Kofler, E. Anisimova,
V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, Nature
(London) 489, 269 (2012).

[7] N. Gisin, Phys. Lett. A 210, 157 (1996).
[8] R. Horodecki, M. Horodecki, and P. Horodecki, Phys. Lett. A

222, 21 (1996).
[9] M. Zukowski, Phys. Rev. A 62, 032101 (2000).

[10] R. Clifton and D. Pope, Phys. Lett. A 292, 1 (2001).
[11] A. Acin, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97, 120405

(2006).
[12] A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V.

Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[13] V. Scarani, Acta Physica Slovaca 62, 347 (2012).
[14] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner,

arXiv:1303.2849.
[15] B. F. Toner and D. Bacon, Phys. Rev. Lett. 91, 187904 (2003).
[16] N. J. Cerf, N. Gisin, and S. Massar, Phys. Rev. Lett. 84, 2521

(2000).
[17] N. Gisin, arXiv:quant-ph/0702021.

052318-5

http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.72.797
http://dx.doi.org/10.1038/37539
http://dx.doi.org/10.1038/nature01376
http://dx.doi.org/10.1038/nature11332
http://dx.doi.org/10.1038/nature11472
http://dx.doi.org/10.1038/nature11472
http://dx.doi.org/10.1016/S0375-9601(96)80002-8
http://dx.doi.org/10.1016/0375-9601(96)00639-1
http://dx.doi.org/10.1016/0375-9601(96)00639-1
http://dx.doi.org/10.1103/PhysRevA.62.032101
http://dx.doi.org/10.1016/S0375-9601(01)00743-5
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://arXiv.org/abs/1303.2849
http://dx.doi.org/10.1103/PhysRevLett.91.187904
http://dx.doi.org/10.1103/PhysRevLett.84.2521
http://dx.doi.org/10.1103/PhysRevLett.84.2521
http://arXiv.org/abs/arXiv:quant-ph/0702021



