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Entangling an optical cavity and a nanomechanical resonator beam by means of a quantum dot
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The stationary continuous-variable entanglement between an optical cavity and a nanomechanical resonator
beam is generated by their common interaction with a quantum dot. To deal with the quantum dot which is
modeled as a two-level system, we do not use the low excitation limit approximation to bosonize the spin
operators, but we keep them in the quantum Langevin equations. We linearize the quantum Langevin equations
reasonably and investigate the stationary continuous-variable entanglement in detail, and finally we show that a
high degree of entanglement can be achieved for experimentally feasible parameters.
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I. INTRODUCTION

Entanglement has been recognized as one of the most
amazing aspects of quantum mechanics. It has been considered
to be an important resource for applications in quantum
communication and information processing, such as quantum
teleportation, quantum cryptography, quantum dense coding,
and telecloning. Recently, a great deal of attention has been
paid to generating entanglement between an optical cavity
field and a movable cavity end-mirror [1], between optical
and microwave cavity modes [2], between two dielectric
membranes suspended inside a cavity [3], between an atomic
ensemble inside an optical cavity and a cavity mirror [4], and
between two mirrors inside a ring cavity [5]. Also, Ref. [6]
considers a two-level atom in a cavity with a thin vibrating
end mirror. The bipartite and tripartite continuous variable
entanglement among the system is investigated in detail.
However, to deal with the two-level atom, the low excitation
limit approximation is used to bosonize the spin operators.
Reference [7] entangles two optomechanical oscillators as well
as two-mode fields via three-level cascade atoms. To deal with
the spin operators in some multiplying terms, a zero-order
approximation is used. Reference [8] designs an ingenious
device to generate multicolor quadripartite entangled beams of
light with continuous variables. The entanglement produced
can still persist for the environment temperature up to about
50 K. Furthermore, Ref. [9] gives a proposal to generate steady-
state optomechanical entanglement at room temperature. It
shows us a system consisting of a high-Qm nanostring
oscillator and a high-Qo microdisk cavity, fabricated by Si3N4.
On the other hand, Ref. [10] investigates the entanglement in
a hybrid optomechanical system comprising an optical cavity
with a mechanical end-mirror and an intracavity Bose-Einstein
condensate (BEC). The cavity gives the action of radiation
pressure both to the mirror and the BEC. However, there
is no direct interaction between the mirror and the BEC.
Due to such indirect second-order interaction, atom-mirror
entanglement is produced. Results show that the entanglement
appears only at extremely low temperatures (T ≈ 10 μK). In
all the quantum systems mentioned above, optomechanical
coupling via radiation pressure or a similar type of coupling
leads to the entanglement among different components.
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Here we propose a scheme for entangling an optical Fabry-
Pérot cavity and a nanomechanical resonator beam (NRB) to
a high degree. A high-frequency NRB that operates in the
GHz range has been reported [11]. For a NRB operating at
the fundamental frequency of GHz and at a temperature of
10–100 mK, some interesting phenomena close to or on the
verge of the quantum limit may be observed. Now a doubly
clamped NRB is placed between two fixed end mirrors of a
laser-driven single-sided Fabry-Pérot cavity. The cavity field
does not interact directly with the NRB, but it interacts with a
quantum dot in the cavity which couples with the NRB. There
are different ways to realize the coupling between a quantum
dot and a NRB. For example, a quantum dot (charge qubit)
is coupled to the motion of a NRB via electrostatic forces.
The NRB also interacts with a toroidal cavity via evanescent
coupling. Then an effective qubit-light interface can be realized
[12,13]. For another example, we can embed a self-assembled
InAs quantum dot in a NRB. Flexion induces extensions and
compressions in the NRB. This longitudinal strain will modify
the energy of the electronic states confined in the quantum dot
through deformation potential coupling [14–16]. The quantum
dot can be modeled as a two-level system consisting of the
ground state |g〉 and the single-exciton state |e〉. By means of
this quantum dot, the entanglement between the optical cavity
and the NRB can be generated.

The paper is organized as follows. In Sec. II, the model
Hamiltonian is introduced and the quantum Langevin equa-
tions (QLEs) of the system are derived. We linearize the QLEs
and investigate the steady-state optomechanical entanglement
by using the logarithmic negativity. Numerical results and
discussions are presented in Sec. III. Conclusions are given
in Sec. IV.

II. MODEL AND CALCULATIONS

The model considered is illustrated in Fig. 1, where a doubly
clamped NRB is placed between two fixed end mirrors of an
optical Fabry-Pérot cavity. Because the NRB is geometrically
different from a vibrating dielectric membrane or a movable
mirror in the cavity [17] and light is reflected back inefficiently,
it is not necessary to take the light radiation pressure into
consideration. Also, for the vibration frequency chosen in this
paper, numerical calculations show that little entanglement
can be produced between a dielectric membrane or a movable
mirror with the cavity field via the light radiation pressure.
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FIG. 1. (Color online) A doubly clamped nanomechanical res-
onator beam, oscillating at frequency ωm, interacts via longitudinal
strain with an embedded quantum dot which is coupled to a cavity field
of frequency ωc. The cavity is also driven by a laser of frequency ωl .

Here a quantum dot embedded in the NRB interacts with both
the cavity field and the NRB. The total Hamiltonian of the
system can be written as

H = H0 + Hint + Hdri, (1)

where H0 is the free evolution term, Hint is the interaction
term, and Hdri is the laser-driven term. They can be written
as [14–16]

H0 = h̄ωcc
+c + h̄ωm

2
(p2 + q2) + h̄ωqS

z, (2)

Hint = h̄GSzq + h̄g(S+c + S−c+), (3)

Hdri = ih̄ε(c+e−iωl t − ceiωl t ), (4)

where q and p are the NRB displacement and momentum
operators while ωm is its oscillation frequency. c and c+ are,
respectively, the annihilation and creation operators of the
cavity mode with frequency ωc and damping rate κ . g(G)
is the coupling strength between the cavity field (NRB) and
the quantum dot with exciton frequency ωq . ε = √

2Pκ/h̄ωl

describes the pumping of the cavity, where P is the power of
the input laser with frequency ωl . The two-level exciton can
be characterized by the pseudospin-1/2 operators Sz, S−, and
S+, which satisfy the commutation relations [S+,S−] = 2Sz

and [Sz,S±] = ±S±. In a rotating frame at the laser frequency
ωl , the total Hamiltonian is given by

H = h̄(ωc − ωl)c
+c + h̄ωm

2
(p2 + q2)

+ h̄(ωq − ωl)S
z + h̄GSzq

+ h̄g(S+c + S−c+) + ih̄ε(c+ − c). (5)

Using the Heisenberg equations of motion and including the
effects of damping and noises, the resulting QLEs can be
written as

q̇ = ωmp, (6a)

ṗ = −ωmq − GSz − γmp + ξ, (6b)

ċ = −[κ + i(ωc − ωl)]c − igS− + ε +
√

2κcin, (6c)

Ṡz = ig(c+S− − cS+) − �1
(
Sz + 1

2

)
, (6d)

Ṡ− = 2igcSz − i(ωq − ωl + Gq)S− − �2S
−, (6e)

where ξ (t) is the quantum Brownian noise acting on the NRB;
its correlation function can be written as [18]

〈ξ (t)ξ (t ′)〉 = γm

ωm

∫
dω

2π
e−iω(t−t ′)ω

[
coth

(
h̄ω

2kBT

)
+ 1

]
,

(7)

where kB is the Boltzmann constant and T is the environment
temperature of the NRB. cin(t) is the input vacuum noise
operator, which obeys the following correlation functions in
the time domain [19]:

〈cin(t)c+
in(t ′)〉 = δ(t − t ′), (8)

〈cin(t)cin(t ′)〉 = 〈c+
in(t)c+

in(t ′)〉 = 0. (9)

Also γm is the mechanical damping rate and �1 (�2) is the
exciton relaxation (dephasing) rate. To deal with the QLEs,
we assume that the dynamics of the system demonstrates fluc-
tuations around a certain classical steady state. Each operator
of the system can be decomposed as the sum of its steady-state
value and a small fluctuation, i.e., q = qs + δq, p = ps + δp,
c = cs + δc, Sz = Sz

s + δSz, and S− = Ss + δS−. By setting
all the time derivatives in Eqs. (6) to zero, we finally have the
steady-state solution of the system as

ps = 0, (10a)

qs = −GSz
s

ωm

, (10b)

Sz
s = − �1�

2
2 + 
2

q�1

2�1�
2
2 + 2
2

q�1 + 8g2�2|cs |2
, (10c)

cs = ε

κ + i
c + igw
, (10d)

Ss = wcs, (10e)

w = −ig�1
�2 − i
q

�1�
2
2 + 
2

q�1 + 4g2�2|cs |2
, (10f)

where 
c = ωc − ωl and 
q = ωq − ωl + Gqs are, respec-
tively, the detuning of the optical cavity and the effective
detuning of the quantum dot. The QLEs for the fluctuations
are

δq̇ = ωmδp, (11a)

δṗ = −ωmδq − GδSz − γmδp + ξ, (11b)

δċ = −i
cδc − igδS− − κδc +
√

2κcin, (11c)

δṠz = ig(c∗
s δS

− − csδS
+ + Ssδc

+ − S∗
s δc)

+ ig(δc+δS− − δcδS+) − �1δS
z, (11d)

δṠ− = 2ig
(
csδS

z + Sz
s δc

) + 2igδcδSz − i
qδS
−

− iGδqδS− − iGSsδq − �2δS
−. (11e)

For the case of |cs | � 1, the terms δc+δS− and δcδS+ in
Eq. (11d) and δcδSz in Eq. (11e) can be neglected. A similar
approximation is used to linearize the corresponding QLEs
in Refs. [1–10,20]. The effective detuning of the quantum
dot (
q) is fixed at ωm. The fluctuation δq is sensitive to
the temperature and resonator oscillation frequency. Here
we chose parameters such that G

√
〈δq2〉/ωm 	 1 (typically,

G/ωm < 0.06). Under those conditions, compared with the
term i
qδS

−, the term iGδqδS− can be neglected in Eq. (11e).
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Later numerical calculations also show the reliability of this
neglect of the term iGδqδS−. Then the linearized QLEs for
the fluctuations become

δq̇ = ωmδp, (12a)

δṗ = −ωmδq − GδSz − γmδp + ξ, (12b)

δċ = −i
cδc − igδS− − κδc +
√

2kcin, (12c)

δṠz = ig(c∗
s δS

− − csδS
+ + Ssδc

+ − S∗
s δc)

−�1δS
z, (12d)

δṠ− = 2ig
(
csδS

z + Sz
s δc

) − i
qδS
−

− iGSsδq − �2δS
−. (12e)

Using the vector of quadrature fluctuations uT =
(δq,δp,δX,δY,δU,δV ), where δX = (δc + δc+)/

√
2, δY =

(δc − δc+)/i
√

2, δU = (δS− + δS+)/
√

2, and δV = (δS− −
δS+)/i

√
2, we can rewrite Eqs. (12) compactly as

u̇(t) = Au(t) + η(t), (13)

where the drift matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0 0

−ωm −γm 0 0 −G 0 0

0 0 −κ 
c 0 0 g

0 0 −
c −κ 0 −g 0

0 0 ig
Ss−S∗

s√
2

g
Ss+S∗

s√
2

−�1 −ig
cs−c∗

s√
2

−g
cs+c∗

s√
2

−iG
Ss−S∗

s√
2

0 0 −2gSz
s 2ig

cs−c∗
s√

2
−�2 
q

−G
Ss+S∗

s√
2

0 2gSz
s 0 2g

cs+c∗
s√

2
−
q �2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The vector of noises η is given by ηT =
(0,ξ,

√
2κδXin,

√
2kδYin,0,0,0), where δXin = (δcin +

δc+
in)/

√
2 and δYin = (δcin − δc+

in)/i
√

2.
The system is stable and reaches a steady state only if all the

eigenvalues of the drift matrix A possess negative real parts.
The stability conditions can be explicitly derived by applying
the Routh-Hurwitz criteria [21]. However it is too complex
to give here. Instead we will guarantee the stability of the
system via a numerical method, i.e., for all the parameters
chosen in this paper, all the eigenvalues of the drift matrix A

must possess negative real parts. Since all the noises belong to
quantum Gaussian noises and the dynamics of the fluctuations
is linearized, the steady state of the system is a zero-mean
Gaussian state [2]. Here a 7 × 7 covariance matrix V is used
to extract various correlation information from our system. Its
matrix elements are defined as

Vij = 〈ui(∞)uj (∞) + uj (∞)ui(∞)〉
2

. (15)

For a stable system, we have [1,2]

Vij =
∑
k,l

∫ ∞

0
ds

∫ ∞

0
ds ′Mik(s)Mjl(s

′)�kl(s − s ′), (16)

where M(s) = exp(As) and �(s − s ′) is the diffusion matrix,
defined as �kl(s − s ′) = 〈ηk(s)ηl(s ′) + ηl(s)ηk(s ′)〉/2. Using
the NRB with a large mechanical quality factor (Q =
ωm/γm � 1), we have

�(s − s ′) = Dδ(s − s ′), (17)

where

D = diag[0,γm(2n + 1),κ,κ,0,0,0] (18)

and

n = 1

exp(h̄ωm/kBT ) − 1
(19)

is the thermal mean-occupation number of the mechanical
state. Then we can simplify Eq. (16) as [1,2]

V =
∫ ∞

0
ds M(s)DMT (s). (20)

When the system is stable, Eq. (20) is equivalent to the
following Lyapunov equation:

AV + V AT = −D. (21)

To study the entanglement properties of the steady state of the
optical cavity and the NRB, we extract a reduced correlation
matrix from the covariance matrix V by neglecting the last
three rows and columns. This reduced correlation matrix can
be expressed as

Vbp =
(

B C

CT B ′

)
, (22)

where B, B ′, and C are 2 × 2 matrices. We use the logarithmic
negativity [22,23] to measure the entanglement between the
optical cavity and the NRB, which is given by

EN = max[0, − ln(2η−)], (23)

where η− is the symplectic eigenvalue of the matrix Vbp and it
is given by the equation

η− = 1√
2

[ ∑
(Vbp) −

√∑
(Vbp)2 − 4detVbp

]
, (24)

with
∑

(Vbp) = detB + detB ′ − 2detC.
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FIG. 2. (Color online) Logarithmic negativity of the optical cavity
and the NRB as a function of temperatures for resonator oscillation
frequencies ωm/2π = 300 MHz (dot-dashed curve) and ωm/2π =
150 MHz (solid curve; iteration method, dashed curves). Other
parameters are G/ωm = 0.06, Q = 105, κ = 0.01ωm, 
c = 
q =
ωm, �1 = 0.6 GHz, �2 = 0.3 GHz, P = 30 mW, and g = 0.4 MHz.

III. RESULTS AND DISCUSSION

To illustrate the numerical results, we chose the realistic
system of a Fabry-Pérot cavity and an InAs quantum dot
coupled to a GaAs NRB. All the parameters used here are
accessible in experiment. The logarithmic negativity of the
optical cavity and the NRB as a function of temperature
is shown in Fig. 2. The detuning of the optical cavity and
the effective detuning of the quantum dot are fixed at 
c =

q = ωm, which turns out to be the most convenient choice.
The exciton relaxation (dephasing) rate is �1 = 0.6 GHz
(�2 = 0.3 GHz). The quality factor of the NRB is Q = 105,
while the cavity damping rate is κ = 0.01ωm. The coupling
strength between the quantum dot and the cavity field (NRB)
is taken as g = 0.4 MHz (G/ωm = 0.06). Also the cavity is
driven by a laser with wavelength λ = 810 nm and power
P = 30 mW. It is reasonable that the logarithmic negativity
increases with decreasing temperature. At temperatures near
absolute zero, the value of EN increases to 4.3 for ωm/2π =
300 MHz and 3.8 for ωm/2π = 150 MHz. The entanglement
disappears at a critical temperature Tc which increases with
increasing frequency ωm. It is interesting to notice that the
entanglement produced via radiation pressure in Ref. [1]
is more robust against temperature than that in our model.
The entanglement is shown to persist above a temperature
of 20 K, which is several orders of magnitude larger than
the ground-state temperature of the mechanical oscillator.
However, the entanglement we get is an order of magnitude
larger than that in Ref. [1] at extremely low temperatures.

The mechanical frequency we chose is almost two orders
of magnitude larger than that presented in Refs. [1,10]. This
gives the advantage of reaching the ground state at relatively
high temperatures. For ωm/2π = 300 MHz and T = 0.05 K
in Fig. 2, the value of EN is 2.34. In such a case, we have
h̄ωm = 2.0 × 10−25 J and kBT = 6.9 × 10−25 J. It is obvious
that they are in the same order of magnitude. At extremely

low temperatures, the elements of the drift matrix A can be
used to provide some information about the entanglement
of corresponding systems. Though the radiation-pressure
coupling strength G0 is not strong enough (∼103 Hz), what is
relevant is the effective optomechanical coupling strength G =√

2G0|cs |, which is an important element in the drift matrix
A. When the optical cavity is intensely driven, G can reach up
to 107 Hz for experimental parameters, so that the generation
of significant optomechanical entanglement becomes possible
[1,4]. In our proposal, the cavity gets entangled with the
NRB through their interactions with the quantum dot. The
coupling strength G between the quantum dot and the NRB
can reach up to 107–108 Hz in experiment. Furthermore, the
coupling strength g between the quantum dot and the cavity
field is dressed as −g(cs + c∗

s )/
√

2, −ig(cs − c∗
s )/

√
2, etc.,

which are some elements of the drift matrix A. This will
be propitious to generate significant entanglement. Therefore,
the indirect coupling mediated by the quantum dot is useful
to enhance the entanglement in our system at extremely low
temperatures (kBT < h̄ωm). However, one gets quite different
results with the increase of the environment temperature. In
our proposal, the quantum dot is embedded in the NRB.
The thermal fluctuations of the NRB exert great influence
on the dynamics of the quantum dot [see Eq. (12e)]. Then
the interaction between the quantum dot and the cavity field
makes a great contribution to the decoherence of the cavity
field, apart from the cavity input vacuum noise cin(t) [see
Eq. (12c)]. Consequently, the entanglement generated in our
system is fragile with respect to the temperature.

To show the reliability of neglecting the term iGδqδS− in
Eq. (11e), we first replace δq in Eq. (11e) by ±

√
〈δq2〉 =

±√
V11, where V11 is calculated from the linear QLEs in

Eqs. (12). Then Eqs. (11) become a set of new linear QLEs
(the terms δc+δS−, δcδS+, and δcδSz have been neglected).
We get two new values of V11 from the new linear QLEs
and take a second replacement. We find the results converge
quickly, i.e., the so called iteration method is used here.
The two dashed curves in Fig. 2 are results of using the
iteration method for ωm/2π = 150 MHz. As expected, at
low temperature the two dashed curves overlap closely with
the solid curve, which is obtained from the linear QLEs in
Eqs. (12). With the increase of the temperature, two dashed
curves gradually move away from the solid curve. However,
results show that our approximation works well for the chosen
parameters. For G/ωm = 0.06 and T = 0.02 K,

√
〈δq2〉 =√

V11 = 0.18. If T = 0.2 K,
√

〈δq2〉 = √
V11 = 0.56. We see

that G
√

〈δq2〉/ωm 	 1. It is therefore reasonable to neglect
the term iGδqδS− and linearize the QLEs.

Figure 3 illustrates the logarithmic negativity of the optical
cavity and the NRB as a function of the coupling strength
between the quantum dot and the NRB for different tem-
peratures. If the coupling strength is small enough (G �
Gc), there is no entanglement between the optical cavity
and the NRB. For G > Gc, the entanglement appears and
increases with the increase of the coupling strength. The
critical point Gc is a special value of the coupling strength,
which separates two states of the system, i.e., nonentanglement
and entanglement. The entanglement between the cavity and
the NRB is generated by their common interaction with the
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FIG. 3. (Color online) Logarithmic negativity of the optical cavity
and the NRB as a function of the coupling strength between the NRB
and the quantum dot for temperatures T = 0.01 K (solid curve) and
T = 0.02 K (dashed curve). The resonator oscillation frequency is
fixed at ωm/2π = 200 MHz, while the other parameters are those of
Fig. 2.

quantum dot. Therefore, the strong-coupling strength between
the quantum dot and the NRB is favorable for generating
high cavity-NRB entanglement. This is not the case for the
coupling strength g. Numerical calculations show that there
is an optimal coupling strength g which depends on other
experimental parameters. From the steady-state solution in
Eqs. (10), we get the relation between qs and |cs |2 as

qs = G
(
�1�

2
2 + 
2

q�1
)

2ωm

(
�1�

2
2 + 
2

q�1 + 4g2�2|cs |2
) , (25)

which demonstrates indirect correlation between the cavity
field and the NRB. It is obvious that the correlation becomes
weak as the coupling strength g approaches two extreme
(very small or very large) values. Therefore, there exists
an optimal coupling strength g as a result of the tradeoff
between various parameters. In Fig. 4, we investigate the
dependence the entanglement of the optical cavity and the
NRB versus the detuning of the optical cavity for different
temperatures. As expected, the entanglement decreases at
increasing temperatures. A maximal entanglement is reached
near 
c = 0.8ωm. However, this extreme value point depends
on many factors, such as the power of the input laser P , the
NRB oscillation frequency ωm, and the coupling strength g.
For example, the detuning 
c corresponding to the extreme
value point decreases with the decrease of the coupling strength
g. The entanglement is present only within a finite interval of
values of 
c, which shrinks with the decrease of the coupling
strength g. When g becomes extremely small, the extreme
value point moves to a region near 
c = 0. One can provide an
intuitive explanation of the above behavior. When the coupling
strength g decreases from its optimal value (all parameters are
fixed except g), the elements of the drift matrix A, which
contain g, also decrease. The entanglement between the cavity
field and the NRB decreases at the same time. However, if
the detuning of the optical cavity 
c also decreases, things

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

E
N

Δ
c
/ω

m

FIG. 4. (Color online) Logarithmic negativity of the optical cavity
and the NRB as a function of the detuning of the optical cavity.
ωm/2π = 400 MHz, g = 0.4 MHz, T = 0.05 K (solid curve), and
T = 0.1 K (dashed curve). The dot-dashed curve corresponds to T =
0.1 K and g = 0.1 MHz. The other parameters are those of Fig. 2.

will be different. According to Eq. (10d), i.e., cs = ε/(κ +
i
c + igw), where κ 	 ωm, g 	 ωm, |w| < 1, and ε � ωm

for the parameters chosen, it is obvious that |cs | becomes
extremely large for 
c −→ 0. Though the coupling strength
g may be small, the elements of the drift matrix A which
play an important role in generating the entanglement, such as
|−g(cs + c∗

s )/
√

2|, |ig(cs − c∗
s )/

√
2|, etc., may still be large.

Then the entanglement still persists in a small interval of values
of 
c near 
c = 0. In such case, as shown in Fig. 5, where we
chose the coupling strength g = 0.01 MHz, the resonance con-
dition for entanglement is 
q ≈ ωm (also 
q ≈ −ωm). This
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FIG. 5. (Color online) Logarithmic negativity of the optical
cavity and the NRB as a function of the effective detuning of
the quantum dot. ωm/2π = 400 MHz, g = 0.01 MHz, T = 0.01 K,

c = 1/14ωm (solid curve), 
c = 1/10ωm (dashed curve), and

c = 1/5ωm (dot-dashed curve). The other parameters are those of
Fig. 2.
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FIG. 6. (Color online) The energy level diagram of the quantum
dot with exciton frequency ωq . The laser frequency ωl (ωl = ωc) is
put into resonance with the red sideband, i.e., ωl = ωq − ωm (a) or
the blue sideband, i.e., ωl = ωq + ωm (b) via the coupling between
the quantum dot and the NRB.

means that for the case of weak-coupling strength between the
cavity and the quantum dot, the entanglement is maximized
when the cavity is driven resonantly by a laser of frequency
around the red sideband or the blue sideband, i.e., ωc = ωl and
ωl ≈ ωq ± ωm + Gqs (Gqs 	 ωm) (see Fig. 6). This can be
explained by solving the dynamics of the pseudospin operators
in Eqs. (12) and inserting the solution into Eq. (12c). Then
one finds that igδS− includes an important interaction term
of gGSs

∫ t

−∞ e−�2(t−s)e−i
q (t−s)δq(s)ds, which demonstrates
fluctuation correlation between the cavity field and the NRB
(other terms containing g are too complex to give here). It is
reasonable to write δq(t) as a product of slow variable δq0(t)
and fast variable sin ωmt , i.e., δq(t) = δq0(t) sin ωmt . When

q ≈ ±ωm, this interaction term is resonantly large. If this
condition is not satisfied, the time-dependent kernel ei(
q±ωm)t

rapidly oscillates and the interaction term tends to average to
zero [2]. The resonant condition shown in Fig. 6 makes the
indirect coupling of the mechanical oscillation to the cavity
mode more effective. As a result, the entanglement between
the cavity field and the NRB is maximized on both sides of
the resonance. In the model where radiation pressure is used
to entangle the cavity and mirror, the entanglement is also
enhanced when the cavity is put into resonance with the blue

sideband, i.e., the effective cavity detuning 
 ≈ ωm [1,4]. This
can be explained by the results of Refs. [24,25], where the
entanglement between a vibrating mirror and two scattered
optical sidebands is investigated.

Finally, we briefly discuss the experimental detection of
the generated optomechanical entanglement. To obtain the
correlations between the cavity field and the NRB, we should
measure quadratures of them. For the optical cavity field,
quadratures can be directly measured by homodyning the
cavity output using a local oscillator with an appropriate
phase [1]. For the mechanical quadratures, Ref. [1] considers
a second Fabry-Pérot cavity to measure both the position and
the momentum of the mirror. However, the NRB is not coupled
to the light field directly in my proposal. Therefore, we use a
microwave cavity instead, which is capacitively coupled with
the NRB [20]. The presence of the microwave cavity affects
the dynamics of the NRB. If it is driven by a much weaker
intracavity field, its backaction on the mechanical mode can
be neglected.

IV. CONCLUSIONS

In summary, we have investigated in detail the stationary
continuous-variable entanglement between an optical cavity
and a NRB. Thanks to the mediating action of the quantum
dot, a high degree of stationary entanglement is established
for experimentally feasible parameters. To deal with our
system, we adopt a QLE treatment and focus on the stationary
quantum fluctuations. We do not use the low excitation limit
approximation to bosonize the spin operators, but keep them
in the QLEs, which are then linearized reasonably. Increasing
the resonator oscillation frequency or decreasing temperature
enhances the entanglement between the optical cavity and the
NRB. There is a critical point of the coupling strength between
the NRB and the quantum dot. The entanglement appears and
increases with the increase of the coupling strength only after
the coupling strength exceeds this critical point.
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