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Smooth optimal control with Floquet theory
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This paper describes an approach to construct temporally shaped control pulses that drive a quantum system
toward desired properties. A parametrization in terms of periodic functions with predefined frequencies permits
us to realize a smooth, typically simple shape of the pulses; their optimization can be performed based on a
variational analysis with Floquet theory. As we show with selected specific examples, this approach permits
us to control the dynamics of interacting spins, such that gate operations and entanglement dynamics can be

implemented with very high accuracy.
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I. INTRODUCTION

Research on quantum-mechanical systems is currently
undergoing a process of substantial changes: whereas in the
last decades the effort was mostly on the observation and
description of quantum-mechanical properties, currently the
option to manipulate and control quantum systems is moving
into focus. On the one hand, this is due to the technological
advances that permit isolating quantum systems, e.g., in ion
traps [1,2] or optical lattices [3], manipulating them coherently
and letting quantum systems of different kinds interact with
each other [4,5]. On the other hand, there is the prospect
to exploit intrinsically quantum-mechanical properties to
engineer devices with performance characteristics far beyond
the classically achievable. Whereas secure communication
[6] or teleportation [7] based on quantum protocols is well
established by now and the possibility to simulate quantum-
mechanical many-body systems with quantum simulators [8,9]
is a growing field, new perspectives to exploit quantum-
mechanical coherence phenomena, for example, in energy
provision [10,11], are just emerging.

Beyond the experimental capability to control quantum
systems, any type of quantum engineering also needs appro-
priate theoretical tools that allow an experimentalist to extract
optimal performance under given limitations of control, as
typically imposed by power or frequency range of driving
fields. Optimal control theory [12-15] provides elaborate
and efficient schemes to identify, e.g., shapes of laser or
microwave pulses that drive a system toward desired prop-
erties. A particularly astonishing property of pulses designed
by optimal control techniques is their robustness against
experimental imperfections [16,17]; for example, inhomoge-
neous broadening in ensembles of quantum systems can be
compensated essentially completely through suitably designed
control pulses [18-20].

A disadvantage of these pulses is that they typically contain
many frequency components; besides potential experimental
challenges to generate such pulses, the complicated structure
of these pulses renders it essentially impossible to understand
why they result in their astonishing performance. In particular,
if we want to push the envelope to large many-body systems,
the answer to the question of why will become more and
more important rather than the observation that one can
identify suitable pulses. The aim here is therefore to strive
for an approach that permits us to limit a pulse to given
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frequency components [21-24], resulting in rather simple
pulse shapes.

The typical scenario of optimal control theory is dynamics
induced by a system Hamiltonian or drift Hamiltonian H,
and an often time-dependent control Hamiltonian H¢(¢). The
system Hamiltonian is assumed to be inaccessible to control,
i.e., it contains no adjustable components, whereas the control
Hamiltonian can be tailored in a time-dependent fashion.
The central question of interest is to determine how the
propagator U induced by the time-dependent Hamiltonian
‘H(t) = Ho + Hc(t) changes if the control Hamiltonian is
varied, since this provides the basis for an iterative improve-
ment of H¢(t) [13,14]. Typically, the time dependence of the
control Hamiltonian stems from the time dependence of an
externally applied control field, like a laser field or microwave
field, so that Hc(r) = ), fi(t)h;, where the time-independent
Hamiltonians h; describe the coupling of the system to the
various control fields, and f;(¢) is the time dependence of the
amplitude of the corresponding field. The objects of interest
thus are the functional derivatives SU[ f;1/5f;.

In frequently employed control algorithms like Krotov [13]
and GRAPE [14,25] the time interval in which control is
exerted is divided into many short subintervals and the time
dependence of control fields is described by steplike pulses that
are constant within each sub-interval. Consequently, the time-
evolution operator I/ becomes a product of propagators for the
individual subintervals that are induced by time-independent
Hamiltonians, and the functional derivatives reduce to ordinary
derivatives with respect to the field amplitudes in the individual
subintervals. These ordinary derivatives can be obtained rather
efficiently, which results in the astonishing performance of
Krotov and GRAPE. This decomposition of the control fields’
time dependence into piecewise constant segments, however,
often results in pulse shapes that contain high-frequency
components [20].

In this work, we will follow a parametrization of the
control pulse in terms of Fourier modes [24,26]. By doing this,
high-frequency components can be excluded by construction.
We describe how the desired derivatives with respect to the
control parameters can be obtained with Floquet theory and
demonstrate the performance of this approach for the control
of spin interactions. In particular, the specific examples in
Sec. I1I show that pulses with very few frequency components
(typically less than ten) are sufficient to induce time-optimal
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gates or control entanglement dynamics with very high
accuracy.

II. METHOD

In the following, we employ an expansion of the field
amplitudes

[y = ai g;(t) (1)
Jj

in periodic functions g;(z) with a given periodicity T'. Since
the period T can be chosen to coincide with the duration
over which control is exerted, the assumption of periodicity
does not result in any restriction in practice, but due to
this periodicity Floquet theory [18,21,27] can be invoked to
determine the propagator Y. According to Floquet’s theorem,
the Schrodinger equation with a periodically time-dependent
Hamiltonian with periodicity T has a complete set of solutions:

[Wi(1)) = e~ |D(1)), 2

with the quasienergies &; and periodically time-dependent
state vectors | D, (?)) = | Dy (¢ + T)), which are the eigenvalues
and corresponding eigenstates of the Floquet operator I =
‘H — i9d;, which acts on the extended space composed of the
system’s Hilbert space and the space of T -periodic functions.

Due to their periodicity, the state vectors |®.(¢)) can
be decomposed into a discrete Fourier series |Py(¢)) =
3, |®r)e ¥ with Q = 27/ T. Rather than working with the
explicit functions ¢V it is more convenient to introduce
abstract state vectors |v), such that these functions may be
interpreted as explicit representations of the states |v).

In the description in terms of the abstract state vectors,
the time derivative 9, is expressed through the number
operator N|v) = v|v), and the Floquet operator admits a
matrix representation:

K=) H,@m+10QN, 3)

with raising operators m,|u) = |v 4+ u) and Fourier compo-
nents H, = 1/T fOT dt e H(t) of the Hamiltonian H(z).

K has a 2m/T-periodic spectrum, and the eigenvalues
&r and eigenvectors |y;) within one Brillouin zone, i.e., an
interval of width 27/ T, determine a complete set of solutions
of the Schrodinger equation. To arrive at those, one needs to
revert to the description in terms of time-dependent functions,
such that the solutions read

(W) =D (vlx)e e )

Since the vector |xx) is an element of the extended space, the
object (v|xx) is a vector in the system’s Hilbert space.

Together with the solutions given in Eq. (2) the propagator
reads

U =Y WO TO)] = Y e ™ | D)) (Dr(0)].  (5)
k

k

Since U is determined completely in terms of the eigen-
system of IC via Eqgs. (4) and (5), the desired derivatives of
U with respect to the control parameters a;; are given by
the corresponding derivatives of ¢; and |x); these, in turn,
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are readily obtained from a perturbative analysis of /C. As
KC depends linearly on the control parameters a;;, the linear
expansion

K= ’Co + ZKij (aij - Cli(;-))) (6)
ij
with ICy = ’C|a,»,- _,0 and Kj; = 9, K is exact for any choice of

ai(;)). The dependence of & and | x;) on the control parameters
a;j can therefore be described by a series expansion with the
small parameters a;; — ag?) , and the expansion coefficients in
nth order are given by the nth-order perturbative corrections
with Ky as the unperturbed operator and the perturbations ;.

The explicit form of the derivatives reads

38k 3|Xk>
~. = ’Clm ) = _Z Ti' )
ba; VALY bai; % i | X))
828k
———— = (| (TijZiTapg + Tipg T Tiij) xx) s
Ba;jaa,,q
@)
3% xe)
a L. = (Ikﬂijz-kﬂpq + Ikﬁpqzkﬂij)|)(k>
Baijaa,,q

1
- E(Xkl(ﬁcl/:z.[gﬂpq + ,Tkpq-’[/?ﬂtjﬂxk)')(k)v

where | x;) is the eigenvector of Ky to the eigenvalue &, 7y is
the pseudoinverse of Iy — &, i.e., the inverse restricted to the
subspace orthogonal to | xx), and Tp;; = K;j — gaikjﬂ

These derivatives determine the derivatives of the propaga-
tor U and, in turn, of any target functional [i.e., property of the
final state o(ty) = U(ty)o(0)U UG r) at a given final time
tr] that is to be optimized. Similar to Krotov and GRAPE
[13,14], this information can be used to improve a pulse
sequence as parametrized by a;;, and close-to-optimal pulses
are obtained in an iterative manner.

The main goal of the present approach was to arrive
at control pulses with a potentially narrow spectral range.
However, the above expansion of a control sequence also yields
various additional benefits:

(1) A control pulse is parametrized with comparatively
few parameters; as shown below, pulses with less than ten
frequency components yield very satisfactory results, whereas
conventional methods with piecewise constant functions typi-
cally require the optimization of several hundred or thousand
parameters [16,17].

(2) Also, higher-order derivatives of U/ with respect to
the control fields can be obtained exactly, which improves
convergence as compared to algorithms based on first deriva-
tives only [25,28]. The curvature is described by quadratically
more scalars than the gradient, which makes its evaluation
intrinsically more expensive, but, due to the small number of
control parameters in the present framework, accessing the
exact curvature is certainly practical. If, however, this effort is
to be avoided, the (scalar) curvature along a specific direction
(typically the gradient) is also available in a perturbative analy-
sis with a single perturbation ) _,; b;;K;;, where b;; determines
the direction along which the curvature is to be determined.

(3) Since the complete time-propagation operator is con-
structed, as opposed to its action on a predefined initial state,
accessing nonlinear target functionals [29] hardly requires
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additional effort as compared to typical linear functionals like
fidelity.

(4) Boundary conditions, such as smooth switching on and
off of the pulses, can be realized easily through a suitable
parametrization in Eq. (1).

(5) In order to find pulses which achieve a certain control
goal in minimal time, we can use the duration of the pulse as
a real control parameter, such that the algorithm searches for
optimal solutions in the extended space of field amplitudes a;;
and pulse duration .

(6) Since all dynamics are given by time-dependent
exponential functions, which can be integrated analytically,
time-averaged target functionals can also be implemented
without additional overhead. This permits, for example, the
minimization of the deviation from a desired dynamics over a
finite time interval.

III. EXAMPLES

Having established our method, we will demonstrate its
versatility by applying it to three selected problems from
quantum information theory.

A. Entangling gates in minimal time

A fundamental task in quantum computation is to construct
gates that entangle two spins [30-32]. The unavoidable
presence of decoherence makes it necessary to perform this
operation in the shortest possible time. The easiest way to
obtain time-optimal pulses is to let the algorithm find a solution
with maximal entanglement for an initial pulse durationty = t,
and then repeat for successively smaller times #;, < #; until a
certain threshold of entanglement cannot be reached anymore
[33]. This method can be simplified significantly in the fol-
lowing way: Instead of iterating many times for different pulse
durations, in the framework of our method, the duration ¢ of
the control pulse can be introduced as an additional control
parameter, such that only a single optimization run is needed.

As we want the control field to be switched on at r =0
and switched off at r =t; [f;(0) = fi(t) = 0], we have to
ensure that the zeros of the lowest-frequency component 2
coincide with the beginning and the end of the control interval.
This means that the product Q7 has to be kept fixed, so that
decreasing the pulse duration 7, implies an increase of the
fundamental frequency 2. If one takes trigonometric functions
as the basis g;(t) of the pulse, as we will do in this paper,
one has Q¢ = 7. In order to incorporate this constraint, one
eliminates t; inU(¢ = ty) [see Eq. (5)] by t; = 7/ 2. The fact
that €2 is now used as an additional control parameter entails
the following advantage: Since the Floquet operator Eq. (3) is
linear in €2, the derivatives of the propagator ¢/ with respect
to © can be obtained by using the same perturbation ansatz
Eq. (7) as for the control amplitudes a;;.

For the problem of creating time-optimal gates Uy,
the target functional reads F = Fo— F,. Here, Fo=
Re{Tr[U(tf)Tud]} /2 is the fidelity of the implemented gate,
while F, penalizes long pulse durations. For a certain choice
of F,, the algorithm will find a specific balance between a
gate with high-fidelity Fo and a pulse with short duration #y.
However, in practice it is more relevant to find the shortest
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possible gate time for a certain (initially specified) fidelity
Fine- Our choice for a penalty functional that can achieve
this is F, = pty, where p > 0 is a parameter that specifies
how strongly long pulse durations are penalized. To avoid
trapping in local extrema of slow gates, we performed an initial
optimization with a fixed pulse duration ¢ = ¢, that is smaller
than the characteristic time scale 7., on which entanglement
can be created. After this initial optimization, the search of the
time-optimal solution is started with a high penalty of p = 1.
The best results were obtained for a variable choice of p, since
apenalty that puts a too high emphasis on a fast gate (i.e., ahigh
value of p) typically results in a fast gate with very mediocre fi-
delity. For this reason, we decreased the value of p in each iter-
ation step by an amount of Ap = 0.01. As soon as F exceeded
a certain fidelity threshold Fy,,, we instead increased p by Ap.
The above method permits us to create time-optimal gates
for two interacting spins. In the following, we consider the
system Hamiltonian
P, @2
Ho=7Z0475
with xx-yy couplings of the spins and a (possibly small)
splitting in the z direction, chosen at random. We assume
control over the x and y components of both spins by the
control Hamiltonian

Hewy= Y f 0o, ©)
k

x,
1,

2 D@ D@
O’Z( ) 4+ gxa)g )O’; ) 4 gyay( )a; ) (8)

y
j 2

where the control pulse

Nmax

) = Zaffﬂ") sin(nQt) (10)
n=1

contains nn,, frequency components of a fundamental fre-
quency €.

A general unitary gate U, acting on two qubits can be
described up to local unitary transformations by only three
parameters [34]:

U, ay.0) = €XP ( —i Y ao'® 0,52)>. (11)

k=x,y,z

In order to test the performance of our algorithm, we
implemented time-optimal gates that transform a product state
into a maximally entangled state. Such maximally entangling
gates are characterized by the inequalities o, + o, > 7/4 and
ay + o, < /4 [34].

In the example displayed in Fig. 1, we targeted the
of Fir =1 —107*. In order to find an appropriate starting
time #y for our algorithm, we first provide an estimate for
the shortest time scale #.p,, on which entanglement can be
created. This time scale is given by the intrinsic dynamics of
the system and can be estimated by fchor = 7/(48max), Where
Zmax 18 the largest coupling constant in the Hamiltonian Eq. (8).
InFig. 1, we have ¢, & 0.08 s, and we started our algorithm
with a pulse optimized for #y = 0.06 ps, while using ny,,x = 6
Fourier components. Figure 1(a) shows the evolution of the
gate fidelity Fo and the pulse duration ¢y during the algorithm.
As one can see, the fidelity is first maximized by going to
longer pulse durations. After having exceeded the fidelity
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FIG. 1. (Color online) (a) Typical run of the optimization routine
to implement the entangling gate Uy s,0.4,0.3 for g, =5.40 MHz,
gy = 9.95 MHz, w; = 0.13 MHz, and w, = 0.26 MHz in minimal
time. The time ¢, (solid line) is minimized, such that a gate fidelity
(dashed line) of more than 99.99% is reached. (b) Result of the above
optimization: logarithmic infidelity as a function of time with (solid
line) and without (dashed line) control. Without control the gate can
be realized with only modest fidelity.

threshold Fy = 1 — 10~ (here, after about 350 iteration
steps), shorter pulse durations are enforced by increasing the
penalty functional F, again. The pulse duration saturates to
the minimal time #,;, for which the target fidelity Fy, of
the gate can be achieved. Figure 1(b) illustrates the result
of the above optimization by showing the time evolution of
the gate fidelity Fy for the controlled and uncontrolled system.
As one can see, ny,x = 6 Fourier components are sufficient
to achieve a very good result with a fidelity of more than
99.99% and a pulse duration of t; = 0.077 ps. More frequency
components do not yield substantially shorter pulse durations.

In order to show that the final duration t; = 0.077 us of our
pulse is really the optimal one, we maximized the gate fidelity
Fo for fixed times ¢y < fcnar. The results of these optimization
runs are shown in Fig. 2. The fact that the pulse obtained by our
algorithm lies on the graph F(zy) strongly suggests that it is
time optimal. Furthermore, one can say that the gate time is the
longer the better fidelities one wishes to achieve. However, the
need for longer pulse durations scales only moderately with
the desired fidelity. As one can see in Fig. 2, the logarithmic
infidelity drops down fast as f., iS approached; e.g., an
increase of the fidelity from 7y = 1 — 107*to 1 — 107 only
requires less than 2% more time.

B. Creating and maintaining entanglement

While itis relatively easy to transfer a system from a product
state |W(0)) = |¥1)|¥») to a maximally entangled state |Wg)
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FIG. 2. (Color online) Logarithmic gate infidelity log,,(1 — F)
as a function of the pulse duration 7, (“x”) for nm. = 6 frequency
components. The symbol “+” depicts the time-optimal pulses for a
required gate fidelity of 7o = 1 — 107* and 1 — 107°, respectively.
They both lie on the graph Fo(#,).

at a given moment ¢ in time by using suitably tailored control
pulses, it is often difficult to maintain high entanglement over
a long time, since the intrinsic dynamics necessarily induce a
decline of entanglement.

In order to avoid a sharp peak in entanglement and thus
to maintain it over a longer time interval, one can minimize
the curvature |82& /912, ;| of an entanglement measure £ at
the moment 7, in time when entanglement is needed. In this
work, we used the tangle C? = |(lll(tf)lay|\ll*(tf))|2 [35] to
measure entanglement. With our method, there is no need to
approximate the derivatives of the propagator U with respect
to time (needed to calculate the curvature of C?) using a
method of finite differences, since Floquet theory permits us
to compute it analytically as

a"U __:n n i(VQ—gp)t

g = 1 ;(vﬂ — &1)" (Wx) (Pi(0)]e . (12)
v

Similar to the problem in Sec. III A, one can set up a
target functional F = Fy — F, with the tangle Fy = C>
as a measure of entanglement and a penalty functional
Fp = p(d>C?/01*|,—;,)* with a non-negative parameter p that
penalizes a sharp peak of the tangle at r = ¢,. It turned out
that choosing a small value of p (below, we used p = 107%)
for the whole iteration is sufficient to decrease the curvature
by several orders of magnitude (practically to zero), while
maintaining the maximal value of the tangle at t = 1.

In the following, we consider the system Hamiltonian
Eq. (8) with control Eq. (9) and parametrization Eq. (10);
the initial product state | (0)) is chosen at random. In the case
displayed in Fig. 3, we used the state

N

1W(0)) = (X) (cos(6k/2)|0) + e'* sin(B/2)|1),  (13)

k=1

with 6, = 1.59, 6, = 2.10, ¢; = 5.23, and ¢, = 0.57 as the
initial state. As one can see, the curvature of the tangle at the
end of the control can be reduced significantly, in the present
example from 102 to 10~7 (us)~2, by using a control pulse
with only n,x = 6 frequency components. In the example for
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FIG. 3. (Color online) Time evolution of the tangle C? for
two interacting spins with g, =2.7MHz, g, =6.2MHz, w, =
0.3 MHz, and w, = 0.2 MHz. Without control (solid line) maximal
entanglement can never be reached. The gray curves are obtained by
maximizing the tangle at £, = 0.2 us (dotted curve) and ¢t; = 0.4 us
(dashed curve), respectively (these moments in time are emphasized
by fat vertical lines), by using a control pulse with 7, =6
frequency components and fundamental frequency Q2 = 7 /t;. The
curves obtained with an additional minimization of the curvature are
depicted in black. The time interval for which the spins are highly
entangled is considerably longer in these cases.

ty = 0.4 s, the pulse without minimization of the curvature
keeps the tangle above 99.9% for 4.6 ns, whereas the pulse with
minimal curvature guarantees 98 ns of high entanglement, i.e.,
more than twenty times longer. The price to pay for this is
a moderate increase in the maximal control amplitude from
3.0 to 5.4 MHz. The time interval for which the second
derivative vanishes (approximately)—and one has a plateau
of high entanglement—is the broader the longer the duration
of the control pulse is. The maximal width 7;,.x of the plateau
of high entanglement is set by the minimal time #y,;, that is
required to generate maximal entanglement. Since a plateau
at t =t cannot be extended beyond #y;,, the maximal width
can be estimated by Tinax = 2(f5 — tmin)-

Itis surprising that the approximation of the tangle to second
order in time is valid over such a large interval. Nevertheless,
if one increases the pulse duration even further, at some point
the time interval for which the evolution of entanglement
around ¢ = t; can be described by the second derivative only
reaches its limit. However, in this case one can still enlarge
the plateau of high entanglement by maximizing the tangle
(and minimizing its curvature) at several moments 7y, ... ,fy
in time. This corresponds to merging several intervals, for
each of which the approximation to second order in time
is valid. Technically, one has to use the new fidelity F =
L3N | F(t,). In the example of Fig. 3, the width of the
plateau ceases to increase for #; 2> 0.6 us, but, e.g., by using
%[F(rl) + F(t;)] with t;, =0.6 us and 7, = 0.5us as the
target, the width of the plateau (C? > 0.999) at t; = 0.6 uus
can be increased by almost a factor of 3.

Interestingly, driving the system from a separable state
[ (0)) to a fixed entangled state |Wg) and then minimiz-
ing the curvature has proven very difficult. In this case, the
curvature of the fidelity |(W(¢)|WE) | at ¢  seems to be fixed

PHYSICAL REVIEW A 88, 052315 (2013)

by the internal dynamics of the system and the attempt to
reduce this curvature always results in a loss of fidelity. This
fixed curvature can be explained by the restricted region in
Hilbert space that the control can use in order to get from the
state |W(0)) to the state |Wg). The constraint of arriving at
a precise target state is simply too strong in order to vary a
second quantity, in this case the curvature. The use of the tangle
as the target functional, on the other hand, allows the control
to explore a larger region of the Hilbert space, as there exists
a large set of equally entangled states, which can be obtained
from the target state |Wg) by local unitary operations.

C. Mediated interaction with inhomogeneous couplings

In solid-state systems the coupling between two spins
is often too weak to entangle them, e.g., if dipole-dipole
interaction is suppressed because of a large spatial separation
of the spins [36]. Nevertheless, an interaction can still be
possible by using the indirect coupling via neighboring spins,
as proposed for nitrogen-vacancy centers [37,38]. With our
method we can create entanglement between the end spins
of a spin chain, even if the coupling strengths between the
spins are only known up to a certain extent. Before discussing
pulses that are robust against such variations in the coupling
constants, we will first look at the creation of entanglement in
the case that all couplings are known exactly:

We assume the Hamiltonian

N N-1

_ Dk (k) (k) (k) _(k+1) (k) (k) (k+1)

Ho = Z?UZ +Z (gx Oy 0y 18y 0,70y )
k=1 k=1

(14)

to describe the spin chain and only control the end spins by
the same Hamiltonian as in Eq. (9). The goal of entangling
the end spins of the chain suggests the use of an entanglement
measure as the target functional. Unfortunately, the reduced
state of the end spins is mixed and most entanglement measures
(e.g., entanglement of formation) are nonanalytic for mixed
states. This nonanalyticity would make the computation of
the gradient of the target functional extremely expensive and
unreliable. Therefore, we use as the target functional the lower
bound [29,39,40]

F =2Tr(piy) — Tr(p7) — Tr(py) (15)

of the tangle of the end spins. Here, p;y is the reduced density
matrix with respect to the end spins, and p; and py are the
reduced single spin-density matrices of the end spins. This
target functional is only quadratic in the states and permits us
to compute all derivatives analytically.

We tested our algorithm on chains of N = 3 and 4 spins with
random couplings g%, and splittings ;. [see Fig. 4(a)], and the
separable initial states were also chosen at random [0; = 1.39,
0, =1.28, 03 =0.71, ¢; = 6.03, ¢ = 0.95, and ¢3 = 5.30
for N =3 and 6, = 1.60, 6, = 1.31, 63 = 0.94, 64 = 0.44,
¢1 =524, ¢ =6.21, ¢3 =5.85, and ¢4 = 6.07 for N =
4, according to the notation Eq. (13)]. In these cases, a
pulse with ny,x = 6 frequency components is sufficient to
entangle the end spins with a fidelity of at least 1 — 1073,
whereas only very little entanglement is generated without
control.
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FIG. 4. (Color online) (a) Time evolution of the entanglement of
formation E of the end spins in two random configurations of a chain
with N =3 (solid line, gV =0.78 MHz, g =1.48 MHyz,
¢V =127 MHz, ¢P =265 MHz, o =091 MHz,
wy; = 0.97 MHz, and w; = 0.40 MHz) and N =4 spins (dotted
line, g{" = 4.36 MHz, g’ = 1.61 MHz, g’ =5.33 MHz, ¢\ =
1.02 MHz, ¢ = 8.82 MHz, ¢!’ = 1.29 MHz, », = 0.57 MHz,
w, = 0.55 MHz, w3 = 0.81 MHz, and w, = 0.42 MHz). In both
cases the intrinsic dynamics of the chain (gray) are not able
to entangle the end spins, whereas a control pulse with 7,,x = 6
frequency components (black) can generate maximal entanglement at
ty = 1 us (see the fat vertical line). (b) Entanglement of formation of
the controlled system of N = 3 spins (circles) if the pulse optimized
for the above coupling configuration is applied to a system where
the coupling constants are only known up to a certain error. The
maximization of the averaged entanglement for a test ensemble of ten
coupling configurations (crosses) significantly increases the amount
of entanglement (for 5%, 94.2%— 99.3%; for 10%, 78.1%— 96.7%).

In contrast to the above case, where the coupling constants
were known exactly, experimentally they can only be measured
with finite precision [41]. In order to estimate the loss
of entanglement that results from an uncertainty in the
coupling constants g}, we applied the above pulses on
spin chains whose coupling constants deviate by a certain
error € from the original coupling configuration, and we
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calculated the resulting entanglement. The result for N =3
is shown in Fig. 4(b); the error bars come from a test
ensemble of 100 different coupling configurations. As one
can see, entanglement is deteriorated significantly (by more
than 20%) if the coupling constants are only known up to
10%. A way to avoid this problem is to maximize the target
functional not only for one precise coupling configuration
but to use as the target functional the averaged fidelity
(F)g for an ensemble of different coupling configurations
g= {gi’f)y}kzlw.,N_l. This ensemble needs not to be large in
order to yield very satisfactory results. As an example, we have
optimized the averaged fidelity for an ensemble of only ten
coupling configurations in the case of N = 3 and then tested it
on a larger ensemble of 100 configurations. This method leads
to a big increase in entanglement, e.g., in the case of 10%
error from 78 to 96%. Furthermore, the increase in control
amplitude necessary to achieve this robustness is moderate: a
factor of 2 for 10% error, while for 5% even a control amplitude
comparable to the one without errors is sufficient.

IV. CONCLUSIONS

Pulse shaping based on variational calculus with Floquet
theory yields various advantages that promise to improve our
capabilities to control quantum systems. Beyond the compara-
tively few parameters to be optimized and the resulting simple,
smooth control pulses, in particular, the analytic dependence
of the time-evolution operator on the variable “time” has
proven very useful. As exemplified in Secs. IIl A and III B,
this property easily permits us to minimize the duration of gate
operations and to extend control targets from single points in
time to finite time windows. This feature can, for example, also
be employed to improve the decoupling of a system from its
environment. In practice, system-environment interaction with
resulting loss of coherence cannot be eliminated completely,
but a realistically targetable goal is a close-to-optimal revival
of coherence after some finite time. The points in time when
revivals occur, however, are changed through the application
of control, so that targeting a revival at the point in time when
it would have occurred without control may be unnecessarily
difficult. Our framework, on the other hand, permits us to
leave this point in time a dynamical variable that is free
to optimization. Since features like robustness against static
noise, which are common to typically employed control
algorithms [42,43], can also easily be obtained, the present
framework promises to be an attractive option to control
quantum systems.
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