
PHYSICAL REVIEW A 88, 052314 (2013)

Criterion for remote clock synchronization with Heisenberg-scaling accuracy
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We propose a quantum method to judge whether two spatially separated clocks have been synchronized within
a specific accuracy σ . If the measurement result of the experiment is clearly a nonzero value, the time difference
between two clocks is smaller than σ ; otherwise, the difference is beyond σ . Upon sharing the 2N -qubit bipartite
maximally entangled state in this scheme, the accuracy of judgment can be enhanced to σ ∼ π/[ω(N + 1)]. This
criterion is consistent with Heisenberg scaling, which can be considered as the beating standard quantum limit;
moreover, the unbiased estimation condition is not necessary. In particular, we demonstrate that this scheme is
still feasible when suffering the loss of qubits.
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I. INTRODUCTION

Clock synchronization with high precision is at the heart
of many modern technologies and researches, such as global
positioning systems (GPSs), long baseline interferometry,
synchronous data transfer, laser interferometer gravitational
wave observation (LIGO), tests of theory of general relativity,
and distributed computation. There are two standard methods
for synchronizing two spatially separated clocks in the frame
of the special theory of relativity. One is based on Einstein’s
synchronization procedure, which uses an operational line-
of-sight exchange of light pulses between two spatially
separated clocks [1]. The other method is based on the internal
time evolution of quantum systems, such as Eddington’s
infinitesimally slow clock transport [2].

The quantum clock synchronization method based on
the strength of sharing prior entanglement has also been
proposed [3] and has been generalized to several multiparty
clock synchronization protocols [4–6]. Independent of the
participants’ knowledge of their relative locations or of
the properties of the intervening media, these procedures
utilize the instantaneity of a wave function collapsing after
the measurement performed on the shared entangled states.
These protocols are tantamount to the Eddington protocol
as the process of distributing entanglement is adiabatic. An
experiment focusing on the quantum clock synchronization
implementation has also been reported [7]. In addition, the
progressive techniques of multiphoton entanglement [8,9] are
basic and promising for the realization of quantum clock
synchronization.

Applying the technique of quantum entanglement-
enhanced parameter estimation in the quantum clock synchro-
nization is a direct and natural idea to enhance the accuracy
of synchronization. It has been shown that standard quantum
limit 1/

√
N , where N is the number of particles used in

the measurement, can be overcome using coherent light with
squeezed vacuum [10]. In the study of quantum metrology,
quantum Fisher information theory and quantum Cramér-Rao
bound based on the statistical distance of states have been
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proposed and developed in [11–16]. The NOON state has been
demonstrated to be able to achieve a phase sensitivity that sat-
urates the Heisenberg limit 1/N [17]. Some related strategies
have been proposed to attain high precision in the quantum
metrology framework [18–20], and many experiments have
also been performed on this topic [21–26]. A high-efficiency
quantum ticking qubits handshake protocol is presented that
allows two remote clocks to be synchronized independent of
the message transport time [27]; a similar protocol has been
proposed to overcome the standard quantum limit [28].

In this article we relate the quantum clock synchronization
protocol to the problem of estimating an unknown parameter.
We investigate the performance of the bipartite maximally
entangled spin-zero singlet in the scheme of two-clock
synchronization and offer a standard to judge whether two
spatially separated clocks have been synchronized to a specific
accuracy. Our scheme may offer the following advantages:
this criterion is practical and consistent with Heisenberg
scaling accuracy (∼1/N), and this scheme does not rely on
the unbiased estimation condition, which is a fundamental
hypothesis in quantum Fisher information theory. We also
demonstrate that this protocol remains workable against loss
of qubits, which is in sharp contrast to other known protocols.
Additionally, our scheme can avoid the 2π periodical problem
in estimating an unknown phase parameter.

This paper is organized as follows. In Sec. II we present a
general framework of Jozsa’s quantum clock synchronization
scheme. In Sec. III we discuss two synchronization schemes
with Bell state and GHZ state and estimate their accuracy.
The GHZ state is the superposition of all spin up and all
spin down which involves at least three qubits. In Sec. IV we
investigate the scheme by using bipartite maximally entangled
spin-zero singlet in both ideal case and qubits loss case. Finally,
a conclusion is given in Sec. V.

II. GENERAL FRAMEWORK OF QUANTUM CLOCK
SYNCHRONIZATION

In this section we present a review of Jozsa’s quantum
clock synchronization scheme [3] and discuss the sensitivity
of measurements via the Fisher information and Cramér-Rao
inequality.
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Suppose two spatially separated parties, Alice and
Bob, resting on the same reference frame, both possess
high-precision clocks, such as Cs atomic clocks, running at
precisely the same rate. These clocks do not agree on a
common time at the same readout, for example, 12 o’clock.
The difference of time tD between Alice and Bob’s clocks can
be expressed as

tD = tB − tA|Alice and Bob have the same readouts.

In this scheme, to eliminate the relative phase that may
emerge during the transport of qubits to the spatially separated
locations, the entangled states, with a normalized form
|ψ〉 = ∑

i,j cij |iA〉|jB〉, should be distributed to Alice and
Bob adiabatically. |iA〉 and |jB〉 are the orthonormal basis of
measurements, which satisfy the completeness

∑
i,j |iA〉〈iA| ⊗

|jB〉〈jB | = I, where I denotes the identity. Suppose that the
unitary time evolution is UAB(t) = e−iĤAt/h̄ ⊗ e−iĤB t/h̄ and
the entangled states Alice and Bob select should be merely
changed with an overall unobservable phase under this unitary
evolution. After the entanglement distribution, Alice and Bob
perform measurements on all of their qubits “simultaneously”
when their clocks point to the same readout. Suppose Alice
performs the measurement before Bob (tD > 0) and obtains
a result |iA〉 with probability P (iA) = ∑

j |cij |2; then, the
collapsed state evolves as

e−iĤB tD/h̄
∑

j

cij |jB〉 =
∑
k,j

cijUkj |kB〉, (1)

where Ukj = 〈kB |e−iĤB tD/h̄|jB〉. Then, Bob will do the mea-
surement on his qubits and obtain a result |kB〉 with probability
P (kB |iA) = |∑j cijUkj |2/P (iA). Thus, Fisher information
FtD = ∑

ξ P (ξ |tD)[∂tD ln P (ξ |tD)]2 and Cramér-Rao bound
[11–16] δtD � 1/(νFtD )1/2, with ξ the readout of the mea-
surement and ν the number of repetitions of experiment, can
be utilized in this clock synchronization situation when the
estimation is asymptotically unbiased.

Via comparing the ratio of observed measurement outcomes
with the probability distribution that is determined by the
parameter tD , two issues may prevent one from estimating tD
with a high precision. First, the number of experimental trials
is finite; thus, the ratio of measured outcomes may deviate
from the distribution. The Cramér-Rao bound can be reached
only when the number ν is sufficiently large and the estimation
is unbiased. Second, a one-to-one mapping P (ξ |tD) ↔ tD be-
tween the probability distributions and parameter is essential.

III. QUANTUM CLOCK SYNCHRONIZATION
WITH BELL STATE AND GHZ STATE

In this article we assume that Alice and Bob perform
measurements X̂ = |̃0〉〈̃0| − |̃1〉〈̃1| on all of their own qubits
simultaneously when their own clock points to a specific
value, where |̃0〉 = (|0〉 + |1〉)/√2, |̃1〉 = (|0〉 − |1〉)/√2, and
|0〉,|1〉 are the orthogonal eigenstates of each qubit. Each
qubit has the identical Hamiltonian ĤA = ĤB = Ĥ satisfy-
ing Ĥ |0〉 = E0|0〉, Ĥ |1〉 = E1|1〉, and ω = (E1 − E0)/h̄ > 0.
One constructive approach to implement these ticking qubits
in an experiment is to place some spin-1/2 particles into the
magnetic fields with the same field strength.

We suppose that Alice and Bob share Nν pairs of
entangled qubits with form |
(−)〉 = (|01〉 − |10〉)/√2, which
is invariant under the unitary evolution e−iĤAt/h̄ ⊗ e−iĤB t/h̄,
as discussed in Ref. [3]. Alice and Bob perform measure-
ments expressed as an operator M̂2 = X̂(tA) ⊗ X̂(tB) in the
Heisenberg picture, which can also be described as a set of
positive operator valued measurements (POVMs) with element
Ê(ξ2) = |̃x〉〈̃x| ⊗ |̃y〉〈ỹ| performed on the state ρ̂(tD). Here
ξ2 = (x,y) is the readout for measuring |̃x〉A |̃y〉B , x,y = 0,1
and ρ̂(tD) is the density matrix of the pure state e−iĤAt/h̄ ⊗
e−iĤB (t+tD )/h̄|
(−)〉. Then, the probability distribution of each
measurement result is

P (ξ2|tD) = Tr[Ê(ξ2)ρ̂(tD)]

= 1

2

(
δx,(y+1)mod2 cos2 β

2
+ δx,y sin2 β

2

)
, (2)

where β = ω|tD|, and δx,y is Kronecker’s delta. The Fisher
information is calculated as FtD = ω2.

In addition, the average of the measurement opera-
tor for the state |
(−)〉 can be calculated as 〈M̂2〉 =∑

ξ2
g2(ξ2)P (ξ2|tD) = − cos β, where g2(ξ2) = (−1)x+y . If

|tD| < π/ω holds, we can obtain the difference of time |test
D |

from the observed expectation value M2 = 1
Nν

∑Nν
i=1 g2(ξ i

2)
after local measurements and classical communication, where
ξ i

2 denotes the result of the measurement on the ith pair of
qubit. The sign of test

D can be determined by the outcomes
of Alice’s and Bob’s measurements because the one who
first performed Nν measurements would obtain dual results
with probabilities P (|̃0〉) = P (|̃1〉) = 1/2. Furthermore, the
uncertainty of the estimation of tD could reach the Cramér-
Rao bound δtest

D = 1/(
√

NνFtD ) = 1/(ω
√

Nν) which is the
standard quantum limit. Therefore, in this scheme, Alice and
Bob can synchronize their clocks with accuracy 1/(ω

√
Nν).

Some studies have also focused on using multiphoton
entanglement strategies and employing NOON states (or
GHZ states) to enhance the precision of parameter estimation
[17–20]. Although GHZ states are not energy eigenstates and
should not be used in quantum clock synchronization [6], N

pairs of qubits can be arranged as a GHZ-type state that indeed
is an energy eigenstate:

|
2N 〉 = (|0〉⊗N
A |1〉⊗N

B + |1〉⊗N
A |0〉⊗N

B

)/√
2, (3)

where Alice and Bob each own N qubits. It is easy to verify
that this type of state is merely changed with an overall phase
under the unitary evolution (e−iĤ t/h̄)⊗N

A ⊗ (e−iĤ t/h̄)⊗N
B and is

suitable for quantum clock synchronization. The probability
distribution in this protocol takes the form P (ξ2N |tD) = [1 +
g2N (ξ2N ) cos(Nβ)]/22N , where g2N (ξ2N ) = (−1)

∑
k(xk+yk ) and

the readout ξ2N = (x1, . . . ,xN ,y1, . . . ,yN ), xi,yj = 0,1; and
M̂2N = X̂(tA)⊗N ⊗ X̂(tB)⊗N is the measurement operator
in the Heisenberg picture. The average of the operator is
calculated as cos(Nβ), and the Fisher information FtD is
N2ω2. Considering that the probability distributions and
expectation value are all functions with periodicity 2π/N , one
can unambiguously obtain |test

D | from the observed expectation
value after local measurements and classical communication
only when the condition |tD| < π/(ωN ) is satisfied. The
sign of test

D can also be determined from the outcomes
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of Alice’s and Bob’s measurements because the one who
first performed Nν times measurement would obtain the
probability P (|̃x1 · · · x̃N 〉) = 1/2N for all his/her qubits and
P (|̃xi〉) = 1/2 for an arbitrary one. When the number of trials ν

is sufficiently large, the uncertainty can reach the Cramér-Rao
bound δtest

D = 1/
√

νFtD = 1/(ωN
√

ν), which is a Heisenberg
scaling accuracy.

Despite this optimal local distinguishability in Hilbert
space, this GHZ-type state is inappropriate to obtain more
advantageous information from any values of the parameter tD
in this single procedure because the condition |tD| < π/(ωN )
is required [29].

IV. QUANTUM CLOCK SYNCHRONIZATION WITH
BIPARTITE MAXIMALLY ENTANGLED STATES

We next consider a scheme that exploits different entan-
glement resources, which is the core content of our article.
The bipartite maximally entangled spin-zero singlet has been
proposed as a resource for quantum-enhanced metrology [30],
with the following form:

|χ〉 = 1√
2J + 1

J∑
M=−J

(−1)J−M |J,M〉z,A|J,−M〉z,B, (4)

where J = N/2, and |J,M〉z is a completely symmetric
normalized state (Dicke state) with (J − M) qubits being |0〉
and (J + M) qubits being |1〉. There is an explicit mapping
between the two-symmetric entangled state and a direct
product of N maximally entangled states, which is presented
in [31]; then, one obtains

|χ〉 = 2N/2

√
N + 1

I⊗N ⊗ Ŝ|
(−)〉⊗N

= 2N/2

N !
√

N + 1

∑
�σ

|
(−)〉A1Bσ1
· · · |
(−)〉ANBσN

, (5)

where I is the identity operator on Hilbert spaceH = {|0〉,|1〉},
Ŝ = ∑J

M=−J |J,M〉z〈J,M| is the symmetric projector that
maps states in H⊗N onto its symmetric subspace H⊗N

+ , and∑
�σ denotes the summation of all permutations of integers 1

to N .
After the adiabatic distribution of Nν entanglement pairs

|
(−)〉, Alice or Bob can perform the symmetric projector
Ŝ to obtain ν pairs |χ〉. Because |
(−)〉 = (|01〉 − |10〉)/√2
changes only with an overall unobservable phase under any
unitary evolution of form e−iĤAt/h̄ ⊗ e−iĤB t/h̄ in two-qubit
space, this singlet exhibits the rotational invariance property
under unitary evolution (e−iĤ t/h̄)⊗N

A ⊗ (e−iĤ t/h̄)⊗N
B and has

identical expression in any spin basis, e.g., z 	→ x 	→ y,
when ignoring the overall phase. Further evidence has been
presented [32], and this invariance property has been tested
experimentally [33].

These bipartite maximally entangled states play an im-
portant role in the quantum information distribution and
concentration [34–36]. Recently, these states used in our
scheme have been generated experimentally using stimulated
parametric down-conversion and have been used in the 1 to 3 +
2 information distribution [33,37,38]. Additional experiments

also produced similar entanglement and realized the quantum
information distribution [39–41].

A. Ideal situation

Next, we will demonstrate that these technologies can
also be utilized to implement our scheme for quantum clock
synchronization.

The pure state evolved as

(e−iĤAtA/h̄)⊗N ⊗ (e−iĤB tB/h̄)⊗N |χ〉
= (

H⊗N
A ⊗ H⊗N

B

)[
I⊗N
A ⊗ (e−itDHBĤBHB/h̄)⊗N

]|χ〉
= (

H⊗N
A ⊗ H⊗N

B

)[
I⊗N
A ⊗ UB(π/2,β,−π/2)⊗N

]|χ〉,
(6)

where the overall phase is ignored; HA,B = (1
1

1
−1)/

√
2 is

the Hadmard matrix; and the unitary operator U (α,β,γ ) is
expressed by three Euler angles in the basis {|0〉,|1〉} as
follows:

U (α,β,γ ) =
(

cos β

2 ei(α+γ )/2 sin β

2 e−i(α−γ )/2

− sin β

2 ei(α−γ )/2 cos β

2 e−i(α+γ )/2

)
. (7)

Moreover, according to group theory of the irreducible rep-
resentation, we obtain an analytical expression of the unitary
operator in N -qubit space [42]

U (α,β,γ )⊗N |JM〉 =
∑
M ′

e−i(Mα+M ′γ )dJ
M ′,M (β)|JM ′〉, (8)

where dJ
M ′,M (β) = 〈JM ′| exp(−iβJy)|JM〉. Thus we can ob-

tain the probability distribution of measurement outcomes
ξ2N = (x1, . . . ,xN ,y1, . . . ,yN ), with xi,yj = 0,1:

P (ξ2N |tD) =
[
dJ

M ′,−M (β)
]2

(2J + 1)CJ−M
2J CJ−M ′

2J

, (9)

where (J − M) is the number of 0s in {x1, . . . ,xN } and
(J − M ′) is the number of 0s in {y1, . . . ,yN }. As before,
the expectation value of measurement operator M̂2N =
X̂(tA)⊗N ⊗ X̂(tB)⊗N is calculated as

M(β) := 〈M̂2N 〉 =
J∑

M,M ′=−J

(−1)N+M+M ′
[
dJ

M ′,−M (β)
]2

2J + 1

= (−1)N

N + 1

sin(N + 1)β

sin β
. (10)

The function M(β) against its argument β = ω|tD| is presented
in Fig. 1 for various numbers of qubits.

Furthermore, Fisher information reads [30]

FtD =
J∑

M,M ′=−J

4
[
∂tDdJ

M ′,−M (β)
]2

2J + 1
= 4J (J + 1)ω2

3
, (11)

with which it is straightforward to determine that the lower
bound δtest

D = √
3/[ω

√
N (N + 2)ν] clearly breaks the quan-

tum standard limit and attains Heisenberg scaling accuracy for
large N .

Nevertheless, this scheme has some special properties that
differ from the previous schemes. We can observe that M(β)
clearly “peaks” around β = 0 with width ∼π/(N + 1) (see
Fig. 1). This property can avoid the periodical phase 2π
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M

(rad)

FIG. 1. (Color online) The functional relationship between the
expectation value M(β) and parameter β. The dashed blue line, dash-
dotted red line, and solid black line denote the cases N = 3, N = 10,
and N = 100, respectively. When N is an odd number, M(β) is
negative with β near 0. The peak narrows as N grows.

problem in identifying an unknown phase parameter. We
then can confirm that the uncertainty of test

D could reach the
Cramér-Rao bound 1/(ω

√
νFtD ) for a large number ν when

the condition |tD| < π/[(N + 1)ω] is satisfied. Although the
bipartite maximally entangled spin-zero singlet fails to gain
more advantageous information about the parameter tD from
the observed expectation value against the GHZ-type state
(3). More importantly, we will acquire a quantum enhanced
criterion to judge whether two remote clocks have been
synchronized with the accuracy π/[ω(N + 1)] even when
the number ν is not sufficiently large, i.e., the unbiased
estimation hypothesis is not fulfilled. When the expectation
value M2N = 1

ν

∑ν
i=1 g(ξ i

2N ) obtained from the outcomes of
experiments after classical communication satisfies |M2N −
(−1)N | � 1 − 1/

√
2, one obtains

Pr

(
|tD| � π

(N + 1)ω

)
� Pr

(∣∣M2N − 〈M̂2N 〉tD
∣∣ � 1√

2

)
� 1 − 2e− ν

4 , (12)

which is the Hoeffding’s inequality [43,44]. For example,
suppose that |M2N − (−1)N | � 1 − 1/

√
2 and ν = 10, we

can infer that the inequality |tD| � π/[(N + 1)ω] holds with
fiducial probability larger than 84%.

This strategy can therefore yield a determinate criterion
on remote clock synchronization within a Heisenberg scaling
accuracy if the measurement results M2N are clearly nonzero.
Furthermore, as only one high peak exists with β near zero
and M(β) has a large periodicity 2π (π for N being an even
number), this criterion does yield a certain judgment, unlike
the strategy using GHZ-type states, which is only valid under
the prior condition |tD| < π/(ωN ).

B. Qubits loss

In practical analysis we must consider relevant decoherence
in particular, for example, loss qubits. Here we consider the
loss of qubits during the clock synchronization procedure.

After the adiabatical distribution of entangled state |χ〉,
Alice and Bob obtain N1 = 2j1 and N2 = 2j2 ticking qubits,

respectively; here N1 and N2 are not necessarily the same
because of different loss numbers. The model of qubits loss we
demonstrated is different from the photon loss using two-mode
entangled number states of light in the interferometer, which is
modeled by placing a beam splitter with partial transmission
η < 1 [30,45]. Then, Alice and Bob perform measurements
on all of their qubits simultaneously when their clocks point
to the same readout. This measurement can be expressed as
an operator M̂ loss = X̂(tA)⊗N1 ⊗ X̂(tB)⊗N2 performed on the
reduced density matrix ρ̂N1,N2 in the Heisenberg picture; then,
one obtains the expectation

M loss(β) := Tr
[
M̂ lossρ̂N1,N2

]
= 〈χ |X̂(tA)⊗N1 ⊗ IN−N1

A ⊗ X̂(tB)⊗N2 ⊗ IN−N2
B |χ〉.

(13)

The symmetric state |J,M〉 of N = 2J qubits can be divided
into two parts with N1 = 2j1 qubits and 2(J − j1) qubits as
follows [42]:

|J,M〉 =
∑
m1

√√√√C
j1+m1
J+M C

j1−m1
J−M

C
2j1
2J

|j1,m1〉|J − j1,M − m1〉,

(14)

where the summation is assumed to run over all possible values
with the constraint that all of the numbers appearing inside the
expression as (· · ·)! are nonnegative integers.

After some calculations we obtain

M loss(β) = (−1)2j1 + (−1)2j2

2(2J + 1)C2j1
2J C

2j2
2J

a∑
m1=−a

ei2m1β

J−b+m1∑
M=−J+b+m1

×C
j1+m1
J+M C

j1−m1
J−M C

j2+m1
J+M C

j2−m1
J−M , (15)

where a = min{j1,j2} and b = max{j1,j2}. It is apparent from
the above discussion that M loss(β) is an even function for
parameter β.

Considering the particular circumstances, it is convenient
to verify that

M loss(β) = (−1)2J

2J + 1

J∑
m1=−J

ei2m1β = M(β) (16)

when j1 = j2 = J . Furthermore, if j1 = 0, then m1 can only
be 0 in the summation, and we have

M loss(β) = 1 + (−1)2j2

2(2J + 1)C2j2
2J

J−j2∑
M=−J+j2

C
j2
J+MC

j2
J−M

= 1 + (−1)N2

2(N2 + 1)
, (17)

where we have used the identity on combinatorics [42]. Thus, it
is consistent with the assumption that M loss(β) is independent
of the difference of time tD when j1 = 0 or j2 = 0.

Then we demonstrate that our strategy is also workable
when considering that some qubits are lost during the distri-
bution process. The function M loss(β) is plotted against the
parameter β for different numbers N = 3, 10, and 100 in
Fig. 2. We study two types of loss cases: equally bilateral
loss and unilateral loss. It is demonstrated that for both cases,
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FIG. 2. (Color online) Function M loss(β) against the parameter β.
The first column presents the case of equally bilateral loss: N1 = N2;
and the second column presents the case of unilateral loss: N1 = N

and N2 � N1. The first, second, and third line illustrate cases N = 3,
N = 10, and N = 100, respectively.

the criterion for the synchronization of two remote clocks
is still available by adjusting the confidence interval of the
measurement results. As the loss is enhanced, the peak widens,
decreasing the precision of the estimation. Moreover, even
if twice as many qubits are missing in the equally bilateral
loss case, the height of the peak is higher than that in the
unilateral loss case because it maintains higher symmetry. We
then conclude that to a large extent the clock synchronization
criterion presented in this article is still feasible when suffering
the loss of qubits although it may not always maintain the
Heisenberg scaling accuracy.

V. CONCLUSION

In many cases of quantum metrology, the quantum Cramér-
Rao bound can merely be achieved asymptotically, i.e., it
holds for an unbiased estimation with an infinite number ν

and zero error δtest
D → 0 [46,47]; unfortunately, this problem

also exists in certain quantum clock synchronization strategies.
However, by applying the bipartite maximally entangled spin-
zero singlet, one can obtain a standard to judge whether two
spatially separated clocks have been synchronized within a
specific uncertainty even when the number ν is not sufficiently
large. Thus we can step further to obtain the difference between
two clocks with a Heisenberg scaling accuracy in accordance
with the expectation of the measurement results by increasing
the number ν.

In conclusion, we propose a quantum scheme for remote
clock synchronization within a specific accuracy. This bound
of accuracy scales with the Heisenberg limit, which is the
ultimate limit of precision measurements under all condi-
tions. Although the accuracy may be worse, this scheme
is still workable against qubit loss, which is one of the
main obstacles for long-distance state transferring. With
developments in experimentally creating entanglement re-
sources, this quantum scheme of remote clocks synchroniza-
tion may be implemented and may possess unprecedented
precision.
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[37] M. Rådmark, M. Zukowski, and M. Bourennane, New J. Phys.

11, 103016 (2009).
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[45] J. Kołodyński and R. Demkowicz-Dobrzański, Phys. Rev. A 82,
053804 (2010).

[46] M. Tsang, Phys. Rev. Lett. 108, 230401 (2012).
[47] D. W. Berry, M. J. W. Hall, M. Zwierz, and H. M. Wiseman,

Phys. Rev. A 86, 053813 (2012).

052314-6

http://dx.doi.org/10.1103/PhysRevA.72.012307
http://dx.doi.org/10.1103/PhysRevLett.103.150501
http://dx.doi.org/10.1103/PhysRevLett.103.150501
http://dx.doi.org/10.1103/PhysRevA.59.156
http://dx.doi.org/10.1103/PhysRevA.59.156
http://dx.doi.org/10.1103/PhysRevA.61.032311
http://dx.doi.org/10.1103/PhysRevA.61.032311
http://dx.doi.org/10.1103/PhysRevA.87.022302
http://dx.doi.org/10.1088/1367-2630/11/10/103016
http://dx.doi.org/10.1088/1367-2630/11/10/103016
http://dx.doi.org/10.1103/PhysRevA.80.040302
http://dx.doi.org/10.1038/35091014
http://dx.doi.org/10.1038/35091014
http://dx.doi.org/10.1103/PhysRevA.82.030302
http://dx.doi.org/10.1103/PhysRevLett.109.173604
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1103/PhysRevA.82.053804
http://dx.doi.org/10.1103/PhysRevA.82.053804
http://dx.doi.org/10.1103/PhysRevLett.108.230401
http://dx.doi.org/10.1103/PhysRevA.86.053813



