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Tight bounds on the distinguishability of quantum states under separable measurements
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One of the many interesting features of quantum nonlocality is that the states of a multipartite quantum system
cannot always be distinguished as well by local measurements as they can when all quantum measurements are
allowed. In this work, we characterize the distinguishability of sets of multipartite quantum states when restricted
to separable measurements, those which contain the class of local measurements but nevertheless are free of
entanglement between the component systems. We consider two quantities: the separable fidelity, a truly quantum
quantity, which measures how well we can “clone” the input state, and the classical probability of success, which
simply gives the optimal probability of identifying the state correctly. We obtain lower and upper bounds on
the separable fidelity and give several examples in the bipartite and multipartite settings where these bounds are
optimal. Moreover the optimal values in these cases can be attained by local measurements. We further show that
for distinguishing orthogonal states under separable measurements, a strategy that maximizes the probability of
success is also optimal for separable fidelity. We point out that the equality of fidelity and success probability
does not depend on an using the optimal strategy, only on the orthogonality of the states. To illustrate this, we
present an example where two sets (one consisting of orthogonal states and the other nonorthogonal states) are
shown to have the same separable fidelity even though the success probabilities are different.
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I. INTRODUCTION

Suppose a composite quantum system is known to be in
one of many states, not necessarily orthogonal, such that
its parts are distributed among spatially separated observers.
The goal is to learn about the state of the system using
only local quantum operations and classical communication
between the parties (LOCC). This problem, known as local
state discrimination, is of considerable interest [1–11], as
in many instances the information obtainable by LOCC is
strictly less than that achieved with global measurements
[4,12–14]. This gives rise to a new kind of nonlocality [4,6,11],
conceptually different from that captured through the violation
of Bell inequalities [15,16]. Thus the problem of local state
discrimination and the phenomenon of nonlocality serve to
explore fundamental questions related to local access of global
information [3,17,18] and the relationship between entangle-
ment and local distinguishability [4,6,19,20]. Moreover, it has
found novel applications such as data hiding [21–23] and secret
sharing [24].

There are many celebrated results identifying sets of
states for which perfect local discrimination is possible and
sets for which it is not. In particular, any two pure states
can be optimally distinguished with LOCC [1,25], but no
more than d maximally entangled states on Cd ⊗ Cd can
be [7,26]. A complete basis of a composite space which can be
distinguished with separable measurements must be a product
basis, but this condition is not sufficient in general [4,6,12].
Finally, sometimes increasing the average entanglement in a
set can enable state discrimination [6]. More recent studies
include distinguishing states (pure or mixed) when many
copies are provided [11,27–30].
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The class of LOCC measurements does not have a simple
mathematical characterization, and optimization is often ana-
lytically intractable. In this paper, we will focus on the class of
separable measurements, those which are free of entanglement
between the component systems. These comprise a strict
superset of LOCC measurements and are much more amenable
to analytic results (as in [31,32]). It should be noted, however,
that while every LOCC protocol can be realized by a rank-one
separable measurement, the converse is known not to be
true [4,33].

The focus of this paper is on quantifying imperfect local
discrimination, a question which has been settled in the case of
a pair of nonorthogonal pure states [25] but has generally not
been explored as deeply. In [7] bounds on the error probability
in distinguishing bipartite orthogonal states were obtained, and
in [26] upper bounds on the maximum probability of perfect
local discrimination were derived for special sets of maximally
entangled states. In a different approach, a complementary
relation between locally accessible information and final aver-
age entanglement was observed [17,18] which provides upper
bounds on the locally accessible information and is known to
be optimal for some classes of states. Other approaches used
measurements with positive partial transpose [26,30]; the set
of such measurements contains the separable ones as a strict
subset.

We will use two measures of distinguishability, the average
fidelity and the success probability. The notion of average
fidelity was first considered by Fuchs and Sasaki to measure
the “quantumness” of a set of states [34,35]. The authors
imagine a quantum source which emits a quantum state
from S = {pi,|ψi〉}, headed towards a receiver. The state is
intercepted by Eve, who performs a complete measurement
on the state. She sends the results of her measurement to her
partner Yves via a classical channel; he uses this classical
information to construct a state |φa〉 (here, the subscript a
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indicates the measurement outcome of Eve) which is sent
on to the original intended receiver. The average fidelity
measures the probability that the activity of Eve and Yves
will not be detected. (By contrast, the probability of correct
state identification measures Yves’s ability to correctly identify
which state was sent.) If the set of states is “highly quantum,”
then passing through the classical channel is necessarily very
disruptive, the eavesdropping is detectable, and the average
fidelity is low. If the states are less quantum, then the classical
restriction is less disruptive, and the average fidelity is higher.

In our restricted problem of local state discrimination,
the objective is to maximize the average fidelity over all
of Eve’s measurements which are separable, yielding the
separable fidelity [32]. The idea is that once we broadcast
the classical information gleaned from the measurement, any-
one can use it to prepare a “best guess” state so as to maximize
the average fidelity. In particular, we can now assume that
all the components are in the same location, so all global
operations are allowed. We derive lower and upper bounds
on the separable fidelity and provide examples in bipartite and
multipartite settings where the bounds are shown to be optimal.
This is shown by an explicit local strategy for each example.

The second figure of merit that we consider is the probabil-
ity of identifying the state which was prepared. Note that, while
the fidelity is a measure of quantumness, the probability of
success is a classical measure of how well a quantum protocol
encodes and decodes classical information. We show that,
when the states are mutually orthogonal, the separable fidelity
coincides with the maximum success probability, which relates
our results to bounds obtained in [7]. We point out that
this equality between separable fidelity and probability of
success depends crucially on the orthogonality of the states.
To illustrate this, we present an example where two sets (one
consisting of orthogonal states and the other nonorthogonal
states) are shown to have the same separable fidelity even
though the success probabilities are different.

The rest of the paper is organized as follows. Section II
introduces the basic notions and defines the measures of
distinguishability of an ensemble, demonstrating the equality
of the success probability and separable fidelity when the states
are orthogonal. Section III provides upper and lower bounds on
the success probability and the separable fidelity, and Secs. IV
and V contain sets of examples for which these bounds are
tight. We conclude with a discussion of open problems in
Sec. VI.

II. MEASURES OF DISTINGUISHABILITY

A. Perfect distinguishability and rank-one separable
measurements

We consider a k-partite quantum system with k � 2. The
associated Hilbert spaceH takes the formH = ⊗k

i=1Hi , where
the dimension di of each local Hilbert space is finite.

A separable measurement M = {M1,M2, . . . ,Mn} on H
is a positive operator-valued measure (POVM) satisfying∑n

a=1 Ma = IH, and for each a, Ma is a separable, positive
semidefinite operator [8,31]. By definition each Ma is a
positive linear combination of rank-one projections onto
product states, so without loss of generality we will assume

that each Ma is of the form

Ma = ma|χa〉〈χa|
= ma

∣∣χ1
a

〉 〈
χ1

a

∣∣ ⊗ ∣∣χ2
a

〉 〈
χ2

a

∣∣ ⊗ · · · ⊗ ∣∣χk
a

〉 〈
χk

a

∣∣, (1)

where ma ∈ (0,1] and |χa〉 is a normalized product state in
⊗k

i=1Hi .
We then associate each measurement outcome with the

most likely input state to produce it. This defines a decoding
function G with G(a) ∈ H. Combining this with our rank-one
representation of separable POVMs gives us the necessary
and sufficient condition for perfect distinguishability by a
separable measurement.

Proposition 1. The pure quantum states |ψ1〉,|ψ2〉, . . . ,|ψk〉
are perfectly distinguishable by a separable measurement
if and only if there exists a separable POVM M =
{M1,M2, . . . ,Mn} and a decoding function G such that each
Ma is rank one in the form (1) and for all i and j

〈ψj |M(i)|ψj 〉 = δij , (2)

where M(i) = ∑
a:G(a)=i Ma .

B. Separable fidelity

Given a set S = {pi,|ψi〉} of pure multipartite quantum
states |ψi〉 occurring with probabilities pi , we are often unable
to distinguish them perfectly. In particular, even if they are
orthogonal, it is not sufficient to guarantee distinguishability
with separable measurements. In this case, we wish to quantify
how much can be learned about the state of our system.
The average fidelity is one such measure, calculated with
respect to a particular physical protocol and information
processing scheme, defined initially in [34]. Thus, for fixed
set S = {pi,|ψi〉}, a measurement (POVM) M = {Ma}, and a
guessing strategy G : a → |φa〉, the average fidelity is given
by [32,34]

F (M,G) =
∑
i,a

pi〈ψi |Ma|ψi〉|〈ψi |φa〉|2. (3)

This measures our ability to prepare a new quantum system in
a state which is close to the original state |ψi〉. Note that 0 �
F (M,G) � 1, and F (M,G) = 1 if and only if the procedure
(M,G) identifies the given state of our system perfectly.

In our work, we wish to understand the limitations of using
only separable measurements to distinguish the elements of
S = {pi,|ψi〉}. Thus, the primary quantity of interest is the
optimized form of F (M,G), where the optimization is over all
separable measurements and guessing strategies. In Ref. [34]
(see also [35]) the authors introduced the concept of achievable
fidelity for a fixed measurement M, obtained by optimizing
over all guessing strategies G:

F (M) = sup
G

F (M,G). (4)

Thus the achievable fidelity gives the best possible fidelity for
a given measurement M.

The separable fidelity is therefore defined as [32]

FS = sup
M

F (M) = sup
M,G

F (M,G), (5)

where the supremum is taken over all separable measurements
M and decoding schemes G. In Ref. [32] it was shown that
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the separable fidelity can be obtained as the limit of a
sequence of real numbers, that is, FS = limn→∞ F

(n)
S , where

F
(1)
S � F

(2)
S � · · · and each F

(i)
S can be efficiently computed

numerically. While the result in [32] guarantees asymptotic
convergence, it is, however, unclear how many iterations it
might take.

Note that for a measurement M which is separable, achiev-
able fidelity is, by definition, an intermediate quantity between
the average fidelity and separable fidelity. The advantage of
introducing the notion of achievable fidelity is that it can be
computed exactly for any measurement. As we will show, the
achievable fidelity is the key ingredient in our analysis towards
obtaining the desired bounds on the separable fidelity.

C. Separable fidelity with orthogonal states

In the special case in which the elements of S are mutually
orthogonal, there is an especially straightforward way to
calculate the achievable fidelity:

Lemma 1. For a set S = {pi,|ψi〉}i=N
i=1 of orthogonal pure

quantum states and a measurement M = {Ma}, the achievable
fidelity is given by

F (M) =
∑

a

μa, (6)

where

μa = max
i

{pi〈ψi |Ma|ψi〉}. (7)

Proof. Observe that for any given measurement M and an
associated guessing strategy G, the average fidelity can be
written as

F (M,G) =
∑

a

〈φa|
(

N∑
i=1

pi〈ψi |Ma|ψi〉|ψi〉〈ψi |
)

|φa〉 (8)

�
∑

a

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

pi〈ψi |Ma|ψi〉|ψi〉〈ψi |
∣∣∣∣∣
∣∣∣∣∣
∞

, (9)

where the norm ||·||∞ is simply the largest singular value. By
letting |φa〉 equal the dominant eigenvector, we can achieve the
optimum in Eq. (9), in which case we will have F (M). Noting
that the operator

∑
i, pi〈ψi |Ma|ψi〉|ψi〉〈ψi | is diagonal in the

orthogonal states |ψi〉, the dominant eigenvector is one of the
{|ψi〉}, and the result follows immediately. Thus for every a,
the best guess state |φa〉 is simply the state |ψk〉 such that
pk〈ψk|Ma|ψk〉 = maxi{pi〈ψi |Ma|ψi〉}. �

When the states in S are mutually orthogonal, we sometimes
treat the quantum state |ψi〉 as simply an encoding of the
classical label “i,” and our goal in state discrimination is simply
to recover this value. The most natural measure for this is the
probability of success. If our system is initially in the state |ψ∗〉
taken from S = {pi,|ψi〉}, then the probability of successful
identification using the measurement M is defined as

Ps(M) = P (|ψ̂〉 = |ψ∗〉) (10)

=
∑

i

piP (|ψ̂〉 = |ψi〉||ψ∗〉 = |ψi〉), (11)

where |ψ̂〉 ∈ S is our best guess after performing the measure-
ment M. We will write Ps to indicate the optimal value of
Ps(M) over all measurements M and Ps(S) for the optimal
value of Ps(M) over all separable M.

The authors of [34] showed that for any measurement M,
Ps(M) � F (M). When the elements of S are mutually orthog-
onal, we know that there exists a (not necessarily separable)
measurement protocolM∗ so that Ps(M∗) = F (M∗) = 1. This
good fortune sometimes obscures the fact that the equality of
Ps and F does not depend on using an optimal measurement,
only on the orthogonality of the states. This fact (alluded to
in [32]) allows us to see that the strategy that minimizes the
probability of error is also optimal for separable fidelity.

Theorem 1. Let S = {pi,|ψi〉} be a set of mutually
orthogonal pure multipartite quantum states. Then for any
measurement M,

Ps(M) = F (M). (12)

In particular, if we optimize over all separable measurements
M, we have

Ps(S) = FS, (13)

and these maxima are achieved using the same optimal
measurement.

Proof. The proof follows by noting that, when calculating
Ps(M), our guess should be the state |ψi〉 which has the
maximum likelihood conditioned on the observed outcome
a, which we write as p(i|a). Thus we can rewrite Ps(M) by
conditioning on the measurement outcome to get

Ps(M) =
∑

a

p(a) max
i

p(i|a) (14)

=
∑

a

max
i

pi〈ψi |Ma|ψi〉 =
∑

a

μa, (15)

which is the expression for F (M) from Lemma 1.
To prove that Ps(S) = FS and that these are achieved using

the same separable measurement, we proceed in the following
way. Let M be the set of separable measurements, and find
optimal measurements M1 and M2 in M such that for all
M ∈ M

Ps(M) � Ps(M1),

FS(M) � FS(M2).

Since the states are orthogonal, we know that Ps(Mi) =
FS(Mi) for i = 1,2, which in turn implies that

FS(M2) = Ps(M2) � Ps(M1) = FS(M1) � F (M2).

Thus, the optimal measurement in M for Ps is also optimal for
F and vice versa, and

Ps(S) = FS. (16)

Note that we have not used any specific properties of separable
measurements except the existence of optimal measurements.
This shows that the argument works for any compact set of
measurements M. �

III. BOUNDS ON SEPARABLE FIDELITY

We will first obtain lower and upper bounds on the separable
fidelity. Later, we will give examples where these bounds are
shown to be optimal. It may be noted that an upper bound on
the separable fidelity is also an upper bound on the optimal
local fidelity, that is, the best possible fidelity attainable by
LOCC.

052313-3



SOMSHUBHRO BANDYOPADHYAY AND MICHAEL NATHANSON PHYSICAL REVIEW A 88, 052313 (2013)

A. Lower bounds

For the set S = {pi,|ψi〉}i=N
i=1 , consider the collection of

subsets of S that are perfectly distinguishable by separable
operations. That is,

R = {X ⊂ S : FS(X) = 1}. (17)

If S contains a pair of orthogonal states, then this two-element
set is in R since any two orthogonal pure states can always
be perfectly distinguished by LOCC [1]. Let P (X) be the a
priori probability that a state selected from S is an element of
X; that is, P (X) = ∑

|ψi 〉∈X pi . Note that two such sets X1 and
X2 need not be disjoint.

Theorem 2. Let S = {pi,|ψi〉} be a set of pure multipartite
quantum states. Then,

FS � max
X∈R

{P (X)}. (18)

The proof is fairly immediate based on two observations.
The first is that the separable fidelity is lower bounded by
the success probability, as shown in [34]. The second is that
once we know we are in the set X, then the probability of
successfully identifying our state is 1. For completeness, we
include the following calculation.

Proof. Let X = {|ψi〉} ∈ R be any set whose elements are
perfectly distinguishable by a separable measurementMX. Let
us denote the elements of MX by MX

q , where each element has
the property that

〈ψr |MX
q |ψr〉 = 〈ψr |ψq〉 = δrq ∀ |ψr〉 ∈ X. (19)

Since the elements of X are distinguishable, they must be
mutually orthogonal, a property which need not be shared by
the entire set S. The rest of (19) follows from Proposition 1.

We shall now bound the average separable fidelity for the
states in S by considering the strategy that consists of the
measurement MX and the guessing map GX : MX

q → |ψq〉 ∈
X. With this the average separable fidelity is given by

F (MX,GX)

=
∑
i,q

pi〈ψi |MX
q |ψi〉|〈ψq |ψi〉|2 : |ψq〉 ∈ X,|ψi〉 ∈ S

�
∑
i,q

pi〈ψi |MX
q |ψi〉|〈ψq |ψi〉|2 : |ψq〉,|ψi〉 ∈ X

=
∑
i,q

pqδiq =
∑
q∈X

pq = P (X), (20)

where to arrive at the last line we have used Eq. (19). The proof
now follows by noting that

FS � max
X∈R

F (MX,GX) = max
X∈R

{P (X)}.

�
We see that the lower bound does not depend upon the

cardinality of the set X, only on the a priori probabilities.
Often, we are interested in the scenario in which the states are
equally likely. Then the cardinality of the sets X matters as
given in the following corollary.

Corollary 1. Let S = {|ψi〉} be a set of N mutually
orthogonal pure multipartite quantum states where all states
are equally likely. Let m be the maximum size of a subset of

S that is perfectly distinguishable by separable measurements.
Then,

FS � m

N
. (21)

B. Upper bounds

We will now derive upper bounds on the separable fidelity
for bipartite systems. We want to emphasize that the bounds
can be applied to multipartite cases as well by taking the
minimum of the upper bounds across all bipartitions. The upper
bounds also have an additional significance in that they can be
used to obtain the conditions when a given set of states cannot
be perfectly distinguished. We begin by noting a useful result
proved in, e.g., [27,36].

Lemma 2. Let |ψ〉 ∈ Cd1 ⊗ Cd2 be a bipartite pure state with
Schmidt coefficients

√
λ1 �

√
λ2 �

√
λ3 � · · · �

√
λd1 . If T

is a measurement operator, 0 � T � I , which has a positive
partial transpose, then

〈ψ |T |ψ〉 � λ1TrT , (22)

and this bound is tight. In particular, letting T be any rank-one
separable projection |φ1〉〈φ1| ⊗ |φ2〉〈φ2|, we have

max
|φ1〉|φ2〉

|〈φ1|〈φ2|ψ〉|2 = λ1. (23)

We note that the positive partial transpose condition is a
weaker one than separability and that the method of [32] uses
the fact that this class has some computational advantages.
However, in this work we will continue to focus on the class
of separable measurements. For starters, Lemma 2 gives us an
immediate upper bound on the separable fidelity.

Theorem 3. Let S = {pi,|ψi〉} be a set of states in Cd1 ⊗
Cd2 , where d1 � d2. Let

√
λi be the largest Schmidt coefficient

of the state |ψi〉. Then,

FS � d1d2||�||∞, (24)

where � = ∑
i piλi |ψi〉〈ψi |.

Proof. For some rank-one separable measurement M =
{Ma = ma|χa〉〈χa|}, where |χa〉 ∈ Cd1 ⊗ Cd2 is a normalized
product vector, and a guessing strategy G : a → |φa〉, the
average fidelity and achievable fidelity are given by

F (M,G) =
∑

a

ma〈φa|
(

N∑
i=1

pi |〈ψi |χa〉|2|ψi〉〈ψi |
)

|φa〉,

(25)

F (M) =
∑

a

ma

∣∣∣∣∣
∣∣∣∣∣

N∑
i=1

pi |〈ψi |χa〉|2|ψi〉〈ψi |
∣∣∣∣∣
∣∣∣∣∣
∞

. (26)

The second line follows since the achievable fidelity max-
imizes over all choices of |φa〉, which will simply be the
maximum eigenvector of the indicated operator. Using Lemma
2, |〈ψi |χa〉|2 � λi , and

F (M) �
∑

a

ma

∣∣∣∣∣
∣∣∣∣∣
∑

i

piλi |ψi〉〈ψi |
∣∣∣∣∣
∣∣∣∣∣
∞

= ||�||∞
∑

a

ma

= d1d2||�||∞,

where we have used
∑

a ma = Tr(
∑

ma|χa〉〈χa|) = d1d2.
Because the above bound on the achievable fidelity holds for
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any measurement, including the optimal one, this completes
the proof. �

So far the bounds obtained are completely general. The
following corollaries concern two special but extensively
studied cases in the literature [5,7,10,12,14,26,37]: equally
likely orthogonal states and maximally entangled states.

Note that in the special case when the states {|ψi〉} are
orthogonal, ||�||∞ = maxi{piλi}. In this case, we get the
following specific corollary.

Corollary 2. For a set of N equally likely orthogonal states
in Cd1 ⊗ Cd2 , we have

FS � λmaxd1d2

N
, (27)

where λmax = maxi λi .
Corollary 3. Let S = {pi,|ψi〉}i=N

i=1 be a set of maximally
entangled states in Cd1 ⊗ Cd2 , where d1 � d2. Then,

FS � ||ρ||∞d2, (28)

where ρ = ∑
i pi |ψi〉〈ψi | is the mixed state representing our

knowledge of the system prior to any measurement.
Corollary 3 uses the fact that if |ψi〉 is maximally entangled

inCd1 ⊗ Cd2 with d1 � d2, then λi = 1
d1

and ρ = d1�. In [34],
it was observed that ||ρ||∞ is a weak lower bound on the fidelity
when global measurements are allowed.

Remark 1. It is worth noting two interesting consequences
when the above results are applied to orthogonal states. First of
all, any set of maximally entangled states in Cd1 ⊗ Cd2 , each
having Schmidt rank d1, cannot be perfectly distinguished by
LOCC (or by separable measurements) if pmax < 1

d2
. Second,

any set of N equally likely maximally entangled states in
Cd1 ⊗ Cd2 cannot be perfectly distinguished by separable
measurements (and therefore by LOCC) if N > d2. This
generalizes the known result that in Cd ⊗ Cd no more than
d maximally entangled states of Schmidt rank d can be
perfectly distinguished by LOCC [7] and is a consequence
of the less known fact that such a set of maximally entangled
states cannot be distinguished with a positive partial transpose
measurement [10,26].

Remark 2. Note that the bound in Eq. (27) matches the
maximum probability of distinguishing any N equally likely
states in Cd1 ⊗ Cd2 by LOCC [7]. Theorem 1 tells us that the
success probability and the average fidelity will be equal in this
case; Corollary 2 strengthens the result in [7] by extending
it to all separable measurements. However, if we apply
Theorem 3 to a set of nonorthogonal maximally entangled
states, the upper bound on the fidelity increases while bounds
on the probability of success tend to decrease. Note also that if
the states are sufficiently nonorthogonal, the bound in Theorem
3 can be greater than 1 and hence not informative.

Theorem 3 is useful especially in cases when all of
the Schmidt coefficients are the same, as are the a priori
probabilities. The following theorem gives an analogous result
that can be tight in more general settings.

Theorem 4. Let S = {pi,|ψi〉}i=N
i=1 be a set of states in Cd1 ⊗

Cd2 , with d1 � d2 and where state |ψi〉 occurs with probability
pi . Let

√
λi be the maximum Schmidt coefficient of |ψi〉 and

assume that the states are labeled so that p1λ1 � p2λ2 � · · · �
pNλN .

Let r be the positive integer such that
κ := ∑r−1

i=1 λ−1
i � d1d2 <

∑r
i=1 λ−1

i . Then for any separable
measurement M,

Ps(M) �
r−1∑
i=1

pi + prλr (d1d2 − κ). (29)

Proof. For every measurement outcome a, we assign a best
guess G(a) ∈ {|ψi〉} of the identity of our state. This partitions
the set of measurement outcomes, and we write G−1(i) as the
set of measurement outcomes a for which G(a) = |ψi〉. Note
that for any i, ∑

a∈G−1(i)

ma|〈ψi |χa〉|2 � 1. (30)

In addition, Lemma 2 tells us that for any a, |〈ψi |χa〉|2 � λi .
If we write τi = ∑

a∈G−1(i) ma , then∑
a∈G−1(i)

ma|〈ψi |χa〉|2 �
∑

a∈G−1(i)

maλi = λiτi . (31)

Combining the two bounds, (30) and (31), gives us

Ps(M) =
∑

a

ma max
i

pi |〈ψi |χa〉|2

=
∑

i

pi

∑
a∈G−1(i)

ma|〈ψi |χa〉|2 �
∑

i

pi min(1,λiτi)

=
∑

i

piλi min
(
λ−1

i ,τi

)

� max
{τi }

{ ∑
i

piλiτi : τi ∈ [
0,λ−1

i

]
,
∑

i

τi = d1d2

}
.

This constrained optimization problem is solved by making τi

as large as possible for large values of piλi until you reach∑
i τi = d1d2. This gives the bound in (29). �

IV. OPTIMALITY OF THE BOUNDS: EXAMPLES

In this section we will present examples where the bounds
obtained in the previous section are shown to be tight. In
each case the optimality of the bound in question follows by
computing the separable fidelity exactly. We also give explicit
local strategies to achieve these values.

A. Lower bound in Theorem 2 and upper bound in Theorem 4

1. Example 1

Consider the set of four Bell states in C2 ⊗ C2,

|�1〉 = 1√
2

(|00〉 + |11〉), |�2〉 = 1√
2

(|00〉 − |11〉),

|�3〉 = 1√
2

(|01〉 + |10〉), |�4〉 = 1√
2

(|01〉 − |10〉),

with probabilities p1 � p2 � p3 � p4.
The following facts are known: (a) no more than two

Bell states can be perfectly distinguished by LOCC [12] or
by separable measurements (Corollary 3, [26]), and (b) any
two Bell states can be perfectly distinguished by LOCC (this
follows from the result in [1]). Thus the lower bound according
to Theorem 2 is given by FS � p1 + p2.
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On the other hand, Theorem 4 implies that Ps(S) � p1 +
p2, as each of the λi = 1

2 . Since the Bell states are orthogonal,
FS = Ps(S) � p1 + p2. Thus it must be the case that FS =
p1 + p2. This matches the result obtained numerically in [32].

To attain this fidelity by LOCC one can simply do the
measurement in the following product basis: {| + +〉,| +
−〉,| − +〉,| − −〉}, where |±〉 = 1√

2
(|0〉 ± |1〉) followed by

the decoding map, {+ + , − −} → �1; {+ − , − +} → �2.
Note that the measurement perfectly distinguishes the states
|�1〉,|�2〉.

2. Example 2

Consider the set of four Greenberger-Horne-Zeilinger
(GHZ) states in C2 ⊗ C2 ⊗ C2:

|�1〉 = 1√
2

(|000〉 + |111〉), |�2〉 = 1√
2

(|000〉 − |111〉),

|�3〉 = 1√
2

(|011〉 + |100〉), |�4〉 = 1√
2

(|011〉 − |100〉),

with probabilities p1 � p2 � p3 � p4.
Label the qubits as A, B, and C. Observe that the set is

locally indistinguishable across the bipartition A : BC. This is
because in the bipartition A : BC the states look exactly like
the four Bell states embedded in C2 ⊗ C4. By the previous
example, FS(A : BC) = p1 + p2. On the other hand, the set
is perfectly distinguishable across the bipartitions B : AC and
C : AB. This implies that FS(B : CA) = FS(C : AB) = 1.

However, the separable fidelity in a multipartite setting
is bounded by the minimum separable fidelity over all
bipartitions. That is,

FS(A : B : C) � min{FS(A : BC),FS(B : AC),FS(C : AB)}
� FS(A : BC) = p1 + p2.

For a lower bound, we know that any two orthogonal
multipartite states can be locally distinguished [1], so by
Theorem 2, FS(A : B : C) � P ({|�1〉,|�2〉}) = p1 + p2. We
then immediately obtain that FS(A : B : C) = p1 + p2.

B. Upper bound in Corollary 2

1. Example 3

We generalize Example 1 by considering the following
orthogonal basis in C2 ⊗ C2:

|ψ1〉 = α|00〉 + β|11〉, |ψ2〉 = β|00〉 − α|11〉,
|ψ3〉 = α|01〉 + β|10〉, |ψ4〉 = β|01〉 − α|10〉,

where α � β > 0 are real and satisfy α2 + β2 = 1. The basis
is known not to be perfectly distinguished by LOCC [13]
and cannot be distinguished by separable measurements either
(Corollary 2). We consider the situation when the above states
are equally likely. It follows from Corollary 2 that FS � α2. By
measuring in the computational basis and using the decoding
map 00 → |ψ1〉,11 → |ψ2〉,01 → |ψ3〉,10 → |ψ4〉, one can
easily compute the achievable fidelity, which comes out to be
α2. Therefore for the above set of equally likely states FS = α2.

2. Example 4

Consider the following orthogonal basis of three qubits:

|ψ1〉 = α|000〉 + β|111〉, |ψ2〉 = β|000〉 − α|111〉,
|ψ3〉 = α|001〉 + β|110〉, |ψ4〉 = β|110〉 − α|001〉,
|ψ5〉 = α|011〉 + β|100〉, |ψ6〉 = β|011〉 − α|100〉,
|ψ7〉 = α|010〉 + β|101〉, |ψ8〉 = β|010〉 − α|101〉,

where α � β are real and satisfy α2 + β2 = 1. We assume that
all states are equally likely.

Let the qubits be labeled as A, B, and C. The upper bound
in Corollary 2 cannot be directly applied because it holds
for bipartite systems. By inspection we see that across every
bipartition (for example, A : BC) each state has a maximum
Schmidt coefficient of α. Therefore we can apply Corollary 2
to get

FS(i : jk) � α2 : i �= j �= k ∈ {A,B,C}.
Noting that the separable fidelity in a multipartite setting
is bounded by the minimum separable fidelity across all
bipartitions, we have

FS(A : B : C) � min{FS(A : BC),FS(B : AC),FS(C : AB)}
� α2.

This upper bound is attainable by LOCC simply by measuring
in the computational basis and decoding with the most likely
input, as in Example 2. This succeeds with probability α2;
since our states are orthogonal, this implies that the fidelity
FS = α2. The previous argument shows that this is optimal.

C. Lower bound in Corollary 1 and upper bound in Corollary 3

1. Example 5

We consider distinguishing a set of states chosen from the
canonical maximally entangled basis in Cd ⊗ Cd ,

|�nm〉 = 1√
d

d−1∑
j=0

e
2πijn

d |j 〉 ⊗ |(j + m) mod d〉 (32)

for n,m = 0,1, . . . ,d − 1. The following facts are known: (a)
any set of N orthogonal states chosen from the above set
is not perfectly distinguishable by separable measurements
(therefore by LOCC) when N > d; (b) the above basis can
be grouped into d subsets Sk : k = 0, . . . ,d − 1, where Sk

consists of the states |�0k〉,|�1k〉, . . . ,|�(d−1)k〉 and such a
subset can be perfectly distinguished by LOCC [14].

Now construct any set of N > d orthogonal states such
that it contains all states from at least one subset Sk for some
k. Assume that all states are equally likely. From Corollary
1 it follows that FS � d/N . On the other hand, for any set
of N equally likely orthogonal maximally entangled states
in Cd ⊗ Cd , we have shown that (Corollary 3) FS � d/N .
Putting it all together we have FS = d/N . That this bound is
also achieved by LOCC follows by noting that the set contains
all vectors from a perfectly LOCC-distinguishable subset Sk

(for some k).
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D. Upper bound in Theorem 4

1. Example 6

Consider the following set of states in C3 ⊗ C3. Note that
the first three are orthogonal maximally entangled states in
C3 ⊗ C3, which implies that they are locally distinguishable
[7]. The last three states are also orthogonal and perfectly
distinguishable.

|ψ0〉 = 1√
3

(|00〉 + |11〉 + |22〉),

|ψ1〉 = 1√
3

(|01〉 + |12〉 + |20〉),

|ψ2〉 = 1√
3

(|02〉 + |10〉 + |21〉), |ψ3〉 = |00〉.

Suppose that the three maximally entangled states each
occur with probability p, and the product state |ψ3〉 occurs
with probability q = 1 − 3p. Since the entangled states are
perfectly distinguishable, Theorem 1 says that the probability
of successful identification is at least 3p. On the other hand,
if we measure in the computational basis, then we will always
successfully identify our state unless we get the result 00. In
this case, we see that P (|ψ0〉|00) = p

3q+p
and P (|ψ3〉|00) =

3q

3q+p
. We choose the maximum likelihood answer, which

means that the optimal separable probability of success Ps(S)
is at least 1 − min(p/3,q). We claim that this error probability
is optimal.

Theorem 4 requires us to sort the quantities {piλi} into
decreasing order. If q � p/3, then we begin with the three
entangled states and get λ−1

0 + λ−1
1 + λ−1

2 = 9, which is the
dimension of the space. This implies that Ps � 3p = 1 − q.
On the other hand, if q > p/3, it is the product state which
maximizes piλi , and we see that λ−1

3 + λ−1
1 + λ−1

2 < 9 <

λ−1
3 + λ−1

1 + λ−1
2 + λ−1

0 . In this case, Theorem 4 yields Ps �
q + 2p + p

3 (2) = 1 − p

3 since we need to use a fraction of the
fourth term in our sum. In both cases, we see that the upper
bound from the theorem matches the achievable lower bound
with the computational basis.

It is a little surprising that the bound from Theorem 4 is
tight in this case since it only makes use of the maximal
Schmidt coefficient and does not use the fact that the states
are nonorthogonal. The example from [6] shows that there
is no direct correlation between the entanglement and the
probability of discrimination; thus Theorem 4 will not give
tight bounds in general. The issue of states which are not
orthogonal is raised in the next section.

V. NONORTHOGONAL STATES: PROBABILITY OF
SUCCESS VS SEPARABLE FIDELITY

When we attempt to distinguish quantum states which are
not all orthogonal, we face two challenges: the overlap between
the states and the restriction to separable measurements. As
an illustration of this phenomenon, we examine the following
sets in C2 ⊗ C2:

S1 = {|φi〉,i = 0,1,2,3}
=

{
|01〉,|10〉, 1√

2
(|00〉 + |11〉), 1√

2
(|00〉 − |11〉)

}
,

S2 = {|ψi〉,i = 0,1,2,3}
=

{
|00〉,|11〉, 1√

2
(|00〉 + |11〉), 1√

2
(|00〉 − |11〉)

}
.

Note that S1 is a complete orthonormal basis which can be
perfectly distinguished in the full space, while the span of
S2 is only two-dimensional, which severely limits the mutual
information between the identity of our state and the outcome
of our measurement. In each case, we assume the four states
are equally probable.

In S1, the Schmidt coefficients are 1,1, 1√
2
, 1√

2
. Since 1 +

1 + 1
1/2 = 4, Theorem 4 tells us that Ps(S) � 3

4 , and this is
achieved by measuring in the computational basis. According
to Theorem 1, the separable fidelity is also equal to 3

4 since the
states are orthogonal.

On the other hand, S2 is highly dependent. We write
Q = |00〉〈00| + |11〉〈11| as the projection onto the two-
dimensional span of S2 and note that Q = |ψ0〉〈ψ0| +
|ψ1〉〈ψ1| = |ψ2〉〈ψ2| + |ψ3〉〈ψ3|. As a result, for any matrix
M , 〈ψ0|M|ψ0〉 + 〈ψ1|M|ψ1〉 = 〈ψ2|M|ψ2〉 + 〈ψ3|M|ψ3〉 =
TrQM . This implies that it is impossible to gain any infor-
mation about whether our state comes from {|ψ0〉,|ψ1〉} or
from {|ψ2〉,|ψ3〉}, even if we are allowed to measure across the
full space:

Ps(M) = 1

4

∑
j

max
i

〈ψi |Mj |ψi〉 � 1

4

∑
j

TrQMj

= 1

4
TrQ = 1

2
.

This upper bound is attained by simply assuming that the state
is either |ψ0〉 or |ψ1〉 and optimally distinguishing them. This
can also be accomplished with one-way LOCC, so in this case
our separable probability is equal to the global probability:

Ps(S) = Ps = 1
2 .

To calculate the fidelity, we introduce the following lemma,
which applies to any measurement M (separable or not) and is
useful when there is a linear dependence among the possible
states.

Lemma 3. Given an ensemble of states {pi,|ψi〉} such that
the linear span of the states |ψi〉 has dimension r , the average
fidelity of a protocol (M,G) is bounded by

F (M,G) � ‖ρ ′‖KF
r ,

where ρ ′ = ∑
i pi |ψi〉〈ψi | ⊗ |ψi〉〈ψi | and || · ||KF

r is the Ky
Fan norm and is simply the sum of the first r singular values.

Note that if |ψi〉 are linearly independent, then ||ρ ′||KF
r =

Trρ ′ = 1, but if they are dependent, this can give a nice bound.
Proof. Let M = {ma|χa〉〈χa|} and G(a) = |Ka〉 and let Q

be the projection onto the span of {|ψi〉}.
Define the matrix M = ∑

a maQ|χa〉〈χa|Q ⊗ |Ka〉〈Ka|
and write

F (M,G) =
∑

a

∑
i

pima|〈ψi |χa〉|2|〈ψi |Ka〉|2 = Trρ ′M.

Noting that TrM = TrQ = r and ||M||∞ � 1, we see that
the maximal value of Trρ ′M is the sum of the r maximum
eigenvalues of the positive semidefinite matrix ρ ′. This proves
the lemma. �
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We can apply this lemma to our set S2, whose span has di-
mension 2. While the matrix ρ = 1

4

∑
i |ψi〉〈ψi | has an eigen-

value 1
2 with multiplicity 2, ρ ′ = 1

4

∑
i |ψi〉〈ψi | ⊗ |ψi〉〈ψi | has

eigenvalues { 1
2 , 1

4 , 1
4 ,0}, which means that ||ρ ′||KF

2 = 3
4 and the

average fidelity F is at most three quarters.
This bound can be achieved by projecting S2 onto the

computational basis, which can be implemented locally. Thus,
for the set S2,

F = FS = 3
4 .

Thus, there is no difference between global and local mea-
surements for Ps and F with respect to the linearly dependent
set S2.

Note that the separable fidelity is the same for S1 and S2 even
though the success probabilities are different. Although S1

consists of four mutually orthogonal states while the four states
of S2 are coplanar, the separable fidelity sees the problems as
equally challenging. This highlights the fact that having states
close together makes approximate cloning easier, increasing
the fidelity, but makes state identification harder, decreasing
the success probability. For both measures, in the shift from S1

to S2, as the overlap between the states {|ψi〉} grows, the gap
between separable and global measurements shrinks, which is
consistent with previously known results (such as [27]).

VI. CONCLUSIONS

Local distinguishability of orthogonal states has been the
subject of intensive research in the last decade as it allows us to
explore foundational concepts of quantum theory and quantum
information. These include entanglement and nonlocality as
well as the potentials and limitations of LOCC protocols.

In this paper we have addressed a basic question, which
is how much can be discovered about a given quantum
system using a separable measurement. We have obtained
lower and upper bounds on the separable fidelity, the optimal
average fidelity based on information obtained by a separable
measurement, and have given examples in both bipartite and
multipartite settings where these bounds are optimal. We have
also shown that, if our initial states are orthogonal, a strategy
that minimizes the error probability is necessarily optimal for
separable fidelity. These general bounds are useful, as explicit
expressions for fidelity and success probability are hard to find
even in specific cases.

There remain many open problems in the area of local
discrimination and the relationship between separable and
local operations. We have established that if our set of possible
states is orthogonal, then Ps(S) and FS are equal but that,
in general, they diverge with nonorthogonal states. It would
be useful to quantify this complementarity relation in the
separable realm. A direct analog of Theorem 4 applying to
separable fidelity would help in this direction. There also
remains much work in understanding the gap between optimal
global measurements and optimal separable measurements
in the presence of nonorthogonality, which seems to affect
global bounds faster than separable ones. Finally, we look
forward to understanding the implications of these bounds
in the asymptotic context of many copies of our multipartite
systems.
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