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We address the issue of dephasing effects in flying polarization qubits propagating through optical fiber by
using the method of dynamical decoupling. The control pulses are implemented with half-wave plates suitably
placed along the realistic lengths of the single-mode optical fiber. The effects of the finite widths of the wave
plates on the polarization rotation are modeled using tailored refractive index profiles inside the wave plates.
We show that dynamical decoupling is effective in preserving the input qubit state with the fidelity close to
unity when the polarization qubit is subject to the random birefringent noise in the fiber, as well the rotational
imperfections (flip-angle errors) due to the finite width of the wave plates.
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I. INTRODUCTION

Quantum-information processing (QIP) has gained huge
interest over the last few decades. This is because it is
potentially able to solve many problems faster than the
classical counterpart as well as provide secure communication
channel. However, the inevitable interaction of the qubits with
a noisy environment causes the loss of coherence leading to
errors in the processing of the quantum information. This effect
is known as decoherence and it limits the time scale over which
quantum information can be retained and the distance over
which it can be transmitted.

Among the various strategies developed to combat the
decoherence effects, we consider the method called dynamical
decoupling (DD) [1–8]. This is a relatively simple but effective
technique, which uses sequences of external control pulses
applied to the system qubits to reduce (or average out) the
interaction of the system with the environment. A significant
advantage of DD techniques is that they do not require any
ancilla qubits or encoding or measurement overheads.

Most of the theoretical works on DD have hitherto consid-
ered only the case of ideal pulses. This means that the pulses
were assumed to be instantaneous and infinitely strong in the
sense of a δ-shaped pulse. In that case, we can ignore the effect
of the noise-inducing environment during the application of
the pulses. However, in any realistic physical implementation,
this is no longer the case as the pulses generally have a
finite duration (τp). The effects of the applied pulses can be
viewed as rotations of the Bloch vector on the unit sphere, and
the physical pulses result in rotational imperfections on the
Bloch sphere. Such imperfections typically have a cumulative
effect, giving rise to accumulation of phase errors in the echo
signal. Such an effect leads to considerable reduction in the
performance of the DD sequences.

Here, we extend the idea of dynamical decoupling with real-
istic pulses to long-distance communication using single pho-
tons. In optical quantum-information processing, information
is usually encoded in the polarization state of photons (which
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is called a polarization qubit) and photons are then typically
routed through optical fibers or waveguides. Transmission
of the photons through such optical fibers can be helpful in
using them as optical quantum memory [9,10], in distributed
quantum computation [11], and in quantum cryptography [12].
For the last few decades, quantum communication using
propagation of the single photons through optical fibers has
therefore emerged as a very active area of research and
commercial development. The initial state of a polarization
qubit can usually be very well prepared, while it is much more
challenging to preserve this state along the communication
channel before it reaches the final detection stage.

As the single photon propagates through the fiber, external
effects such as temperature, stress, etc., within the fiber
randomly affect the polarization state of the photons [13]. This
type of noise is referred to as birefringent noise because these
uncontrollable fluctuating factors cause the birefringence, i.e.,
the refractive index difference �n = |nH − nV | (where nH

and nV denote the refractive indices corresponding to the
horizontal and vertical polarizations, respectively) along the
fiber to change randomly. The effect results in the polarization
state of the single photons to change very rapidly, making it
impractical to correct for it by calibration. In practice, optical
fibers used for communications with light can be several
hundreds of kilometers long and the birefringence in such
long optical fibers can totally destroy the information stored
in the polarization qubits.

It is therefore crucial to protect the flying polarization
qubits against such detrimental dephasing effects induced by
the fiber. Several recent studies have looked at suppression
of these effects on the polarization qubits. Wu and Lidar
[14] showed that dynamical decoupling could be applied for
reducing quantum noise in optical fiber. Massar and Popescu
presented a method to reduce polarization mode dispersion
in optical fibers using controlled polarization rotations [15].
In our previous work [16], we numerically simulated random
birefringent noise along realistic fiber length and showed that
application of DD could well preserve the input polarization
qubit from such noise. We chose the CPMG sequence [17]
of DD because this sequence has been shown to be robust
against a variety of dephasing and control pulse errors [18–20].
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We restricted our analysis to ideal pulses implemented with
zero-width half-wave plates along the fiber.

In this paper, we investigate in detail the issue of polar-
ization dephasing by using finite-width wave plates which
are likely to cause some additional errors, apart from the
random birefringent dephasing noise. Finite widths of the
birefringent wave plates directly affect the phase of the photon
transmitted through the wave plates leading to further loss
of coherence. Introducing tailored refractive index profiles
within the wave plates, we show that it is possible to
address such detrimental effects with DD techniques when
implemented with wave plates at the prescribed locations along
the fiber. Estimates of the required inter-wave-plate distance
are provided for each of the refractive index profiles, and this
information will be enough for an experimenter to know for
successfully implementing the faithful long-distance quantum
communication channel in practice.

This paper is organized as follows. In Sec. II, we briefly in-
troduce the basic ideas of DD (with ideal and realistic pulses).
We discuss the nature of birefringent noise in optical fiber and
how the DD techniques can be applied to mitigate such noise
with finite-width wave plates in Sec. III. Section IV contains
our numerical results and comparative analysis for various
tailored refractive index profiles. Finally, we conclude with a
brief summary of the results with accompanying discussions.

II. DYNAMICAL DECOUPLING

A. General idea

Dynamical decoupling is an effective method to time-
reverse the system-bath interaction by applying sequences of
sufficiently fast and strong pulses. As a result of application
of the pulse sequence, the interaction of a qubit system
with the environment is reduced, thus retaining the quantum
information for longer time (or distance). The most general
Hamiltonian describing the evolution of a system coupled to a
bath can be written as

Htot = HS ⊗ IB + IS ⊗ HB + HI, (2.1)

where HS and HB are the system and bath Hamiltonians,
respectively. Since it is difficult to control the states of the
environment, the control pulses need to act on the system,
and the effect of these pulses are described as a refocusing of
the system-environment interaction by a control Hamiltonian
HC(t). When the system is a qubit undergoing dephasing, we
can write the interaction Hamiltonian HI as

HI = σz ⊗ BZ, (2.2)

where σz is the Pauli Z spin operator and BZ is a bath operator
which couples to the photonic qubit, causing dephasing.

Let us now consider a single cycle of a DD sequence having
a period T . The evolution operator describing the evolution of
the system from 0 to T (Fig. 1), in the rotating frame, can be
written as [21]

U (T ) = Uf (τN+1)
N∏

i=1

Ui
C(τp)Uf (τi), (2.3)

where the free evolution operator in Eq. (2.3) is given by

Uf (τ ) = exp[−iHtot(τ )], (2.4)

FIG. 1. (Color online) (a) Schematic representation of a cycle of
general dynamical sequence with pulses of duration τp , (b) CPMG
sequence with two pulses in a cycle, and (c) XY-4 sequence with
alternated X and Y wave plates. Here X, -X, and Y wave plates
implement the π rotations around x, −x, and y axes, respectively.

and the evolution operator acting during the application of
pulses is

Ui
C(τp) = T exp

[
−i

∫ τp

0
dt ′

[
Htot(τ ) + Hi

C(t ′)
]]

. (2.5)

Here T is the standard time-ordering operator, and the
Hamiltonian of the control pulse can be written as

HC(t) = �σ · �f (t), (2.6)

where �f (t) = (fx(t),fy(t),fz(t)) is the vector defining the
shape of the pulse and �σ is the vector of the Pauli matrices.
The axis of rotation due to the applied pulse at the instant t

is given by the unit vector
�f (t)

| �f (t)| which implies that rotation
due to the pulse can be adjusted by tuning the pulse shapes.
The underlying principle of dynamical decoupling is to select
a “pulse sequence” f (t) which causes the integrated time
evolution of the interaction Hamiltonian to coherently average
to zero.

Since the evolution described in Eq. (2.3) is necessarily a
unitary one, it can be written as the exponential of a Hermitian
operator Heff

U (T ) = exp[−iHeffT ], (2.7)

where Heff can be written as a series expansion using the
average Hamiltonian theory [22]

Heff = H (0) + H (1) + · · · =
∞∑

n=0

H (n). (2.8)

An ideal DD sequence, i.e., a DD sequence with instan-
taneous pulses, makes Heff = H (0) = HB by suppressing the
system-bath interaction HI, and better performance of a DD
sequence usually corresponds to progressively eliminating the
higher order terms in such an expansion [2,23,24] (e.g., the
Magnus expansion [25]). Prominent examples of DD schemes
are the periodic DD (PDD) [4], Carr-Purcell DD (CP) [26],
Carr-Purcell-Meiboom-Gill (CPMG) [17], concatenated DD
(CDD) [2], and Uhrig DD (UDD) [3].
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B. Ideal and real pulses

Ideally, DD pulses are assumed to be strong, instantaneous
pulses applied fast enough compared to the internal dynamics
of the environment. Under the assumption of weak coupling
to the environment, the evolution operator in Eq. (2.5) (in the
rotating frame) simplifies to

Ui
C(τp) = exp[−iσαθp/2]. (2.9)

Here α = x,y,z and θp = ωpτp (ωp being the frequency of the
pulses) is the rotation around the α axis. For ideal instantaneous
pulses which implement π rotations, the angle θp will be π .

However, imperfect pulses can result in errors in the rotation
axis as well as angle of rotation. We can write the resulting
propagator as the product of the ideal pulse propagator and a
rotational error exp[−iσei

θei
/2] [21], due to the ith wave plate,

Ui
C(τp) = exp

[−iσei
θei

/
2
]

exp[−iσαθp/2]. (2.10)

The modified free evolution operator in the presence of the
pulse errors can be written as

Uf (τi,τp) = Uf (τi) exp
[−iσei

θei

/
2
]
. (2.11)

The total evolution operation from Eq. (2.3) then reads

U (T ) = U ′
fN+1

(τN+1,τp)
N∏

i=1

Ui
C(0)U ′

f (τi,τp). (2.12)

The evolution operator in the above expression can then be
written as a series expansion similar to Eq. (2.8), and a good
choice of DD sequence should make U (T ) ≈ exp(−iHBT )I
(where I is the identity) in the presence of the pulse errors
defined above. Note that the initial system is then preserved
against decoherence along with the rotational imperfections,
since the factor exp(−iHBT ) merely acts as a background
noise that does not get coupled with the system.

Khodjasteh and Lidar analyzed the cumulative effects in
pulse sequences and provided an optimum pulse interval
for realistic pulses with a fixed minimal pulse width τp,min

[27]. Uhrig and Pasini showed the optimized performance
of the DD sequences for considering realistic control pulses
of finite duration and amplitude [28,29]. Composite pulse
sequences such as BB1, CORPSE, and SCORPSE have
been shown to correct systematic pulse errors (which might
include pulse amplitude, phase, and frequency errors) [30–34].
Pulse shaping is another method that is used to counteract
environmental noise effects during the finite duration of the
real pulses [33,35–37].

III. SUPPRESSING BIREFRINGENT
DEPHASING WITH DD

A. Effect of birefringent dephasing on the polarization qubits

In a long-distance communication channel (typically of
lengths 10–1000 km), often made with polarization-preserving
birefringent fiber, polarization qubits are likely to experience
random effects due to changes in temperature, stress, etc.,
during propagation. The characteristic length scales for such
changes may be several meters, i.e., lengths smaller than the
fiber beat lengths [15,38]. We approximate the communication
channel as continuously connected fiber elements which have
sections of constant birefringence on the order of this length

scale. In the following, we consider the evolution of a pure
single-photon state through such a channel.

Assuming that single-photon sources are available, we
initialize the qubit in the +45◦ or −45◦ state which can be
written as

|ψ(0)〉 = 1√
2

(|H 〉 ± |V 〉). (3.1)

If we now allow the input photons to propagate through the
optical birefringent fiber for a length L, then the phase acquired
by the orthogonal polarizations |H 〉 and |V 〉 will be different
due to the birefringence. The resulting qubit state can be
written as

|ψ(L)〉 = 1√
2

(eiφH |H 〉 ± eiφV |V 〉), (3.2)

where the birefringent dephasing �φ is given by

�φ = φH − φV = (2π/λ)
∫ L

0
�n(x)dx. (3.3)

Here �φ is caused by the birefringence �n(x) = |nH (x) −
nV (x)|, which changes along the distance x in the fiber. The
off-diagonal density matrix elements (coherence terms) of the
polarization state after propagation can be written as

ρ12(x = L) = ρ12(0)〈exp (−i�φ)〉

≈ ρ12(0)

(
1 − i〈�φ〉 − 〈�φ2〉

2

)

= ρ12(0) exp

(
−〈�φ2〉

2

)
. (3.4)

In the above equation 〈. . .〉 represents the stochastic average,
i.e., with respect to the realizations of the birefringent noise.
The second line in the above equation follows by expanding
the exponential in the first line in series expansion up to the
second order of the dephasing �φ. Considering �φ to be a
zero-mean Gaussian process, i.e., 〈�φ〉 = 0, we obtain the
last line in Eq. (3.4) showing that the off-diagonal terms decay
exponentially leading to the loss of coherence of the qubit. As
a result, the phase of the qubit becomes randomized and the
quantum information stored in it is eventually lost.

If we describe the fluctuations in the fiber to be random,
then stochastic fluctuations of the refractive index difference
�n(x) can be simulated as a Gaussian-distributed zero-mean
random process. In this case, the noise is completely defined
by the first-order correlation function at two points x1 and x2

inside the fiber given by

〈�n(x1)�n(x2)〉 = exp
[ − �n(x)2/2σ 2

�n

]
. (3.5)

The above form of the two-point correlation function
〈�n(x1)�n(x2)〉 follows from the fact that the fluctuating ran-
dom birefringence noise �n(x) is assumed to have Gaussian
statistics with 〈�n〉 = 0 and standard deviation σ�n, leading
to the random dephasing �φ in Eq. (3.3). The separation
|x1 − x2| between the two points x1 and x2 in Eq. (3.5) is
considered to be less than correlation length. (Estimates of
the correlation lengths for a typical optical fiber are given in
Ref. [38].)
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B. Choice of DD to preserve the polarization qubit

The facts that the DD pulses are implemented with wave
plates in our scheme and that the axis of rotation is fixed
by the orientation of the optical axis of the birefringent
wave plates highly restrict our choice of DD methods. It
is a technically formidable task to have precise control of
the varied orientations of the optic axes as required in each
sequence of the composite pulse sequences such as BB1,
CORPSE, SCORPSE, or KDD (although all of them generally
provide robust performance against pulse errors). Moreover,
these sequences typically require a large number of pulses in
each cycle, which in our case of long-distance fibers affects
scalability.

In our case, we have to choose DD sequences which
provide robust performance in the presence of our dephasing
model, which has randomly distributed noise with the Gaussian
spectral density. An optimized sequence such as UDD is also
not a good choice, because UDD works best when the noise
has a sharp high-frequency cutoff [20,39–41]). In the case of
UDD, with single or multiaxis control, pulse errors generally
accumulate with higher orders. A few recent studies also
indicate that high-order UDD or concatenated DD sequences
in general lose their advantage when the pulse intervals are
strongly constrained [28,42].

CPMG and XY-4 sequences. To preserve polarization states
in a fiber, the CPMG sequence has been shown to work best in
such Gaussian-distributed random birefringent noise [16,20,
43]. Another motivation for using CPMG is that this sequence
is extremely robust against all pulse imperfections when used
with the longitudinal states, while giving marginally better
results to preserve the transverse components of polarization
[16,18–21,34,44,45]. It requires π rotations around a fixed axis
which can be easily set by orienting the optical axis within
half-wave plates.

For very similar reasons, we then consider the XY-4
sequence (which requires alternating π rotations around x and
y axes), and is known to provide excellent performance in the
presence of pulse errors by preserving both the longitudinal
and transverse components of polarization [21,34,46,47].
These sequences act as high-pass filters that effectively filter
out the components of the HI which vary slowly compared
to τ . In both sequences, the total evolution operator after one
cycle, defined in Eq. (2.12), is UT ≈ I + O(ω2

cτ
2) (τc = 1/ωc

is the correlation time of the environment). Hence, the errors
(due to both dephasing and pulse imperfections) resulting in
the randomization of the phase of the polarization state coming
out of the fiber at the end can be reduced with CPMG and XY-4
up to the first order in ωcτ for each cycle.

IV. NUMERICAL SIMULATIONS AND RESULTS

We focus only on the dephasing noise (i.e., the noise
represented by the Pauli Z operator), and neglect the errors

due to energy dissipation inside the fiber. This assumption is
justified since we restrict our calculations for the wavelengths
in the telecommunication band (around 1550 nm) where the
optical losses are minimal [48,49].

Simulating birefringent noise. We model birefringent
dephasing by continuously concatenating pieces of fiber with
randomly generated lengths � L. The total propagation length
thus can be split into segments of length �L with constant
birefringence. The phase difference for the ith segment is equal
to the sum of (2π/λ)�Li�ni . These segments constitute a
single phase profile associated with a particular realization of
birefringent noise and corresponding changes in the refractive
index difference �n(x). Ensemble averaging over profiles
gives the density matrix for the output state depicting the
random dephasing in the fiber.

The fluctuating random birefringence noise �n(x) in the
fiber is simulated as a Gaussian zero mean random process with
〈�n〉 = 0 and standard deviation σ�n. Since the magnitude of
the local birefringence at any point along a birefringent optical
fiber is typically of the orders of 10−4 to 10−7 [50,51], the
standard deviation σ�n is chosen to have this range of values
to mimic the realistic fluctuations in the birefringence.

Implementing DD sequences. We investigate two DD
sequences: CPMG and XY-4 applied to the flying polarization
qubits propagating through optical fiber. The basic cycles of
these two sequences are fτXf2τXfτ and fτXfτYfτXfτY ,
respectively, both with the cycle period of 4τ . The free
evolution periods correspond to the phase error accumulated
during free propagation along the fiber for a length fτ , and the
X and Y rotations correspond to the π rotations implemented
with half-wave plates, as shown in Fig. 1. We make a
comparative analysis of these sequences for the following
refractive index profiles that are used to generate the errors
due to the finite widths of the wave plates.

Generating effects of the finite width. We aim to simulate the
effect of finite widths of the wave plates when the polarization
qubits are fed into the fiber. In the presence of errors due
to such wave plates, from Eq. (2.10) the total propagation
operator after one cycle can be written as

Ui
C(τp) = exp

[ − iσei
θei

/2
]

exp[−iσαθp/2]

= exp[−i(θpi
+ �θpi

)σα]. (4.1)

In our model with finite-width wave plates, the angle
error term �θp is the practical deviation from the intended
rotation and is due to the refractive index profile �N (x) within
the wave plates (which have width �l). It can be written
as

�θp = (2π/λ)
∫ �l

0
�N (x)dx. (4.2)

We consider the following refractive index profiles for
simulating realistic pulse effects:

�N (x) =
⎧⎨
⎩

exp
[− (x−x0)2

2σ 2

]
; 0 < x0 < �l (Gaussian)

1; 0 < x < �l and 0 elsewhere (rectangular)
tanh[a(x + 1) + 1] tanh[−a(x − 1) + 1] (hyperbolic tangent)

(4.3)
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FIG. 2. (Color online) Refractive index profiles �N (x) generating the phase error, where x represents the distance within the wave plate:
(a) Gaussian, (b) rectangular, and (c) hyperbolic tangent [as defined in the text and in Eq. (4.2)].

For the Gaussian profile, x0 and σ denote the mean and the
standard deviation of the refractive index distribution within
the wave plate, and for the hyperbolic tangent profile the
parameter a can be used to adjust the slope of the distribution
inside the wave plates. In our simulation, we first consider
the flip-angle error of 5%, which is approximately generated
by using the parameters a = 8, x0 = 1, and σ = 1.8, from
Eqs. (4.2) and (4.3). Refractive index profiles �N (x) for these
parameters are shown in Fig. 2.

To characterize the effectiveness of our scheme, we use the
fidelity F between the input state |ψin〉 and ρout as

F = 〈ψin|ρout|ψin〉, (4.4)

where ρout = 1
n

∑n
i=1 |ψi〉〈ψi |. Here n is the total number

of randomly generated phase profiles, corresponding to the
propagation operator ûi so that |ψi〉 = ûi |ψin〉 represents the
simulated birefringent noise. Therefore, the fidelity being close
to unity implies that the input state is well preserved against
the dephasing.

The π rotations required for CPMG and XY-4 sequences
are implemented with suitably oriented half-wave plates, and
the effects of their finite widths on the relative random phase
are generated from the refractive index profiles of Eq. (4.3).
In Fig. 3, we show how the fidelity varies and improves
with the XY-4 sequence being applied for a realistic fiber
length of 10 km, even for a large variation of the parameters
of the random dephasing �φ for the chosen refractive
index profiles. Figure 4 illustrates the results for the CPMG
sequence for the same length of fiber. In both figures, we
considered 5% flip-angle error to make the numerical results
comparable.

Fidelity decays without the wave plates (free decays) are
also shown in the inset for comparison. In these free decay
plots, we note that the fidelity quickly drops to 0.5 even
for a small distance (such as 20 m). The reason for this is
that the random dephasing in the fiber results in complete
phase randomization, and the initial pure state rapidly decays
to the fully mixed state (fidelity equal to 0.5 [52,53]). In
the main plots of the Figs. 3 and 4, however, the fidelity
increases dramatically when the DD sequences are applied

with wave plates to suppress the random dephasing in the
fiber.

From these figures, we find that while both the sequences
work reasonably well to preserve the input polarization states
for both the Gaussian and hyperbolic tangent refractive index
profiles, the rectangular refractive index profile gives the worst
fidelity in both cases. In fact, this profile never gives perfect
fidelity with the CPMG sequence. In general, the fidelity is
preserved better in the XY-4 sequence (Fig. 3) than the CPMG
(Fig. 4). This is because the phase errors due to the finite width
of the wave plates get partially canceled due to the alternating
π rotations around two orthogonal optic axes (x and y) in a
XY-4 sequence. It is also interesting to note that the fidelity in
general improves with the increasing number of pulses (wave
plates) in both cases showing the robustness of these schemes
in the sense that the pulse errors tend to cancel each other
instead of getting added up.

FIG. 3. (Color online) Fidelity obtained with XY-4 wave plates
is shown with variation of the number of wave plates for different
refractive index profiles. Total length of the optical fiber is 10 km, and
number of randomly generated phase profiles to obtain the average
fidelity is 500. Inset: Fidelity decay (free decay) without the wave
plates in the fiber.
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FIG. 4. (Color online) Fidelity obtained with CPMG wave plates
shown with variation of the number of wave plates for different
refractive index profiles. Total length of the optical fiber is 10 km, and
number of randomly generated phase profiles to obtain the average
fidelity is 500. Inset: Fidelity decay (free decay) without the wave
plates in the fiber.

The required number of wave plates to achieve a given
fidelity can also be easily estimated from the above figures. For
instance, for the hyperbolic tangent refractive index profiles,
the required number of wave plates to achieve a 99.9%
fidelity are 840 and 860 for the CPMG and XY-4 sequences,
respectively. We also find that fewer wave plates are required
for hyperbolic tangent refractive index profiles (for both the
sequences) to achieve the same high fidelity, implying that our
DD sequences perform best when the finite-width effects are
simulated with this particular profile.

Due to the finite widths of the wave plates, the actual angle
of rotation deviates from π and this constitutes the flip-angle
error in the polarization state of the photon. In Fig. 5, we plot
the variations of fidelity with respect to the standard deviation
of the birefringent dephasing �φ and flip-angle errors for
both sequences. Here large flip-angle errors up to 50% are

considered, and the contour plot shows that the input state is
preserved up to fidelity close to unity for a wide variation of
the dephasing angle as well as the flip-angle errors.

V. DISCUSSION AND CONCLUSION

For polarization qubits propagating through optical fibers,
we demonstrate that the dephasing errors, contributed by
both the fiber birefringence and the finite widths of the
wave plates, could be suppressed by suitable dynamical
decoupling methods. Regardless of the amplitude of the
rotational error and random birefringent dephasing, our
scheme provides a practical way to tackle them as long
as the appropriate wave-plate separations are maintained.
As we have dealt with noises due to random fluctuations
caused by any possible source such as temperature, stress,
etc., the prescribed DD methods can be applied without an
experimentalist having a detailed, quantitative knowledge of
the decohering environment. To experimentally implement our
proposed method to preserve the polarization qubits, several
familiar techniques could be suitable depending on the range
of fiber lengths one wishes to use. The wave plates may be
directly incorporated into the fiber during the manufacturing
process. Other methods include writing a Bragg transmission
grating periodically into the fiber [54,55], or twisting the fiber
in controlled ways causing suitable mechanical stress [13].
Periodic modulations or perturbations in the refractive index
in the graded index optical fiber, implementing the desired
profiles, can be generated by the techniques described in the
Refs. [56–58].

We have successfully shown that it is possible to combat
the random birefringent noise in an optical fiber with DD
wave plates which have finite widths. Our approach provides
a practical approach to minimize errors due to both random
dephasing noise in the fiber and the rotational errors due to
implementation of real finite-width wave plates. This will be
helpful in improving the range of quantum communication
channels without requiring expensive resources such as ancilla
or measurements and hence it leads to immediate commercial

FIG. 5. (Color online) Contour plots of the fidelity with the variations of the standard deviations of the random birefringent dephasing �φ

and the flip angle error for CPMG (left) and XY-4 (right). The simulations are done with fixed number of wave plates (1000) and total length
of the fiber L = 10 km, and the average fidelity is obtained by taking 500 randomly generated phase profiles.
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applications for quantum telecommunication with light. The
control overhead in the proposed application of the DD
sequences being reasonably small, our scheme will reduce
the dephasing error while implementing a scalable quantum
computing scheme with photonic qubits.
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