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In the framework of cavity QED, we propose a quantum repeater scheme that uses coherent light and atoms
coupled to optical cavities. In contrast to conventional schemes, we exploit solely the cavity QED evolution
for the entire quantum repeater scheme and, thus, avoid any explicit execution of quantum logical gates. The
entanglement distribution between the repeater nodes is realized with the help of pulses of coherent light
interacting with the atom-cavity system in each repeater node. In our previous paper [D. Gonta and P. van Loock,
Phys. Rev. A 86, 052312 (2012)], we already proposed a dynamical protocol to purify a bipartite entangled state
using the evolution of atomic chains coupled to optical cavities. Here, we incorporate parts of this protocol in
our repeater scheme, combining it with dynamical versions of entanglement distribution and swapping.
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I. INTRODUCTION

In classical data transmission, repeaters are used to amplify
the data signals (bits) when they become weaker during their
propagation through the transmission channel. In contrast to
classical information, the above mechanism is impossible to
realize when the transmitted data signals are the carriers of
quantum information (qubits). In optical systems, for instance,
a qubit is typically encoded by means of a single photon which
cannot be amplified or cloned without destroying quantum
information associated with this qubit [1,2]. Therefore, the
photon has to propagate along the entire length of the
transmission channel which, due to photon loss, leads to an
exponentially decreasing probability to receive this photon at
the end of the channel.

To avoid exponential decay of a photon wave packet and
preserve its quantum coherence, the quantum repeater was
proposed [3]. This repeater contains three building blocks
which have to be applied sequentially. With the help of entan-
glement distribution, first, a large set of low-fidelity entangled
qubit pairs is generated between all repeater nodes. Using
entanglement purification, afterwards, high-fidelity entangled
pairs are distilled from this large set of low-fidelity entangled
pairs by means of local operations performed in each repeater
node and classical communication between the nodes [4,5].
Entanglement swapping, finally, combines two entangled pairs
distributed between the neighboring repeater nodes into one
entangled pair, thus, gradually increasing the distance of shared
entanglement [6].

Because of the fragile nature of quantum correlations and
inevitable photon loss in an optical fiber, in practice, it poses
a serious challenge to outperform the direct transmission of
photons along the fiber. Up to now, however, only particular
building blocks of an optical quantum repeater have been
experimentally demonstrated, for instance, bipartite entangle-
ment purification [7,8], entanglement swapping [9,10], and
entanglement distribution [11,12] between two neighboring
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nodes. Motivated both by the impressive experimental progress
and theoretical advances, various revised and improved imple-
mentations of repeaters and their building blocks have been
recently proposed [13–17].

Practical and efficient schemes for implementing a quantum
repeater are not straightforward. The two mentioned protocols,
entanglement purification and entanglement swapping, in
general, require feasible and reliable quantum logic, such
as single- and two-qubit logical gates. Because of the high
complexity and demand of physical resources, entanglement
purification is the most challenging part of a quantum repeater.
The conventional purification protocols [5,18], for instance,
involve multiple applications of controlled-NOT gates which
assume sophisticated pulse sequences posing thus a serious
bottleneck for most physical realizations of qubits [8,19–23].

In our previous papers [24,25], we already suggested a
practical scheme to purify dynamically a bipartite entangled
state by exploiting solely the evolution of short chains of atoms
coupled to high-finesse optical cavities. In the present paper,
we make one step further and propose an entire quantum
repeater scheme that is realized in the framework of cavity
QED and incorporates all three building blocks described
above. In contrast to conventional repeater schemes, we exploit
solely the cavity QED evolution and, thus, avoid completely
quantum logical gates. The entanglement distribution between
the repeater nodes is realized with the help of pulses of coherent
light interacting sequentially with the atom-cavity systems in
each repeater node.

The paper is organized as follows. In the next section, we
describe in detail our dynamical quantum repeater scheme.
We introduce and discuss the entanglement distribution,
purification, and swapping protocols in Secs. II A, II B, and
II C, respectively. In Sec. II D, we discuss a few relevant issues
related to the implementation of our repeater scheme, while a
brief rate analysis together with a summary and outlook are
given in Sec. III.

II. DYNAMICAL QUANTUM REPEATER WITHOUT
QUANTUM GATES

The main physical resources of our dynamical repeater are
(i) three-level atoms, (ii) high-finesse optical cavities, (iii) con-
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FIG. 1. (Color online) (a) Sketch of experimental setup that realizes the two-node repeater scheme. (b) and ( c) Structure of a three-level
atom in the � configuration subjected to the cavity and laser fields. (d) The cat state discrimination (CSD) device. (e) Sequence of steps used
in the purification protocol. See text for description.

tinuous and pulsed laser beams, (iv) balanced beam splitters,
and (v) photon-number resolving detectors. In Fig. 1(a) we
display the sketch of experimental setup that includes two
repeater nodes (B and C) and incorporates the entanglement
distribution, purification, and swapping protocols in one place.

In this setup, each repeater node includes single-mode
cavities C1, C3, and C5 (C2, C4, and C6), a chain of equally
distanced atoms conveyed along the setup with the help of
an vertical optical lattice, a pair of stationary atoms trapped
inside the cavity C3 (C4) by means of a horizontal optical
lattice, source of short coherent-state pulses P3 (P4), detector
D3 (D4) connected to the neighboring node via a classical
communication channel, and a magneto-optical trap (MOT)
that plays the role of source for the conveyed atoms. The
alignment of vertical lattice is such that the conveyed atoms
cross cavities at their anti-nodes ensuring, therefore, a strong
atom-cavity coupling once the atom is inside. In addition,
the node B contains two coherent-state pulse sources P1 and
P2, while the node C contains two cat state discrimination
devices CSD1 and CSD2. As shown in Fig. 1(d), each such
device includes the source PC of single cat states (see below),
a balanced beam splitter, and two photon-number resolving
detectors D1 and D2. Both repeater nodes share two chains
of atoms (1, 2, e.t.c.), which are conveyed with a constant
velocity through all three cavities, and two pairs of stationary
atoms 3, 4 and 5, 6 trapped inside the cavities C3 and C4,
respectively. The atoms 8 and 9 trapped inside the cavities
C5 and C6, respectively, are entangled to the atoms 7 and 10
trapped in the repeater nodes A and D.

The setup in Fig. 1(a) is divided in three (framed by dashed
rectangles) parts corresponding to the main building blocks of
a quantum repeater and mentioned in the introduction. Below,
we relate step-by-step our dynamical repeater scheme with this
experimental setup and clarify the role of each element.

A. Entanglement distribution

The entanglement distribution protocol is shown in the top
rectangle. In this part of the setup, the atoms are extracted
one-by-one from the MOT, initialized in the ground state |0〉,
and inserted into the conveyor such that the atoms (1 and
2) arrive at the cavities C1 and C2 at the same time. The
state |0〉 together with the state |1〉 encode a qubit by means
of a three-level atom in the � configuration as displayed in
Figs. 1(b) and 1(c). In order to protect this qubit against the
decoherence, the states |0〉 and |1〉 are chosen as the stable
ground and long-living metastable atomic states or as the two
hyperfine levels of the ground state.

Once conveyed into the cavity C1 (C2), the atom 1 (2)
couples simultaneously to the photon field of cavity and two
continuous laser beams as displayed in Fig. 1(b). The laser
beams act vertically along each conveyor axis and are not
depicted in Fig. 1(a) for simplicity. The evolution of the
coupled atom-cavity-laser system in both repeater nodes is
governed by the Hamiltonian,

HACL = h̄ J1

2
(a + a†)σX, (1)

where σX is the respective Pauli operator in the basis {|0〉,|1〉}
and J1 is the atom-field coupling. We show in Appendix A
that the above Hamiltonian is produced deterministically
in our setup assuming a strong driving of atom and large
atom-field detuning for both laser and cavity fields. Moreover,
this Hamiltonian implies that the (fast-decaying) excited state
|e〉 remains almost unpopulated during the evolution. The
evolution governed by HACL yields the operator,

UACL(α) = e(α a†−α∗a) σX = D(α σX), (2)
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where α = −ι̇ J1 t/2. This operation displaces the cavity field
mode by the amount α conditioned on the atomic state. The
complex amplitude α is proportional to the atom-cavity-laser
evolution time t that, in turn, is inverse proportional to the
velocity of the conveyed atom.

It has been suggested in Ref. [26] that the controlled
displacement provides an efficient scheme to distribute the
entanglement between two atoms coupled to remote cavities.
We modify this scheme by considering the feasible atom-
cavity-laster evolution (2) controlled by σX and using an
input (coherent-state) pulse β generated by the source P1 that
heralds the entanglement distribution. Our modified scheme
works as follows. First, the pulse β interacts with the atom-
cavity-laser system in node B, where the cavity is prepared in
the vacuum state, while the atom is initialized in the ground
state. Assuming that β∗ = −β, the evolution (2) leads to the
atom-pulse entangled state,

UB
ACL(α)|01〉|β〉 = 1√

2
(|+1〉|β + α〉 + |−1〉|β − α〉) .

Once the conveyed atom decouples from the cavity, the pulse
in the state |β ± α〉 leaks out of the cavity and is entirely
outputted to the transmission channel between the nodes.
Since we are dealing with a high-finesse cavity and since
the fast-decaying atomic state |e〉 remains almost unpopulated
during the evolution, the dominant photon loss occurs in the
optical fiber that connects the cavities C1 and C2 and that plays
the role of transmission channel in our setup. Apparently, the
photon loss increases with the length of the fiber. To a good
approximation, therefore, this observation suggests that we
describe the loss using the beam splitter model that transmits
only a part of the pulse though the channel,

|vac〉E |β ± α〉F −→ |
√

1 − η (β ± α)〉E |β̃ ± α̃〉F , (3)

where β̃ ± α̃ = √
η (β ± α), while the subscripts E and F

refer to the environmental and fiber light modes, respectively.
Here η = e−�/�◦ describes the attenuation of the transmitted
(coherent-state) pulse through the fiber, where � is the distance
between the repeater nodes, while �◦ is the attenuation length
that (for fused-silica fibers at telecommunication wavelength)
can reach almost 25 km.

Next, the damped pulse interacts with the atom-cavity-laser
system in node C, where (as in the node B) the cavity is
prepared in the vacuum state, while the atom is initialized in
the ground state. By tracing over the environmental degrees of
freedom (modes with the subscript E), the evolution UB

ACL(α)
followed by UC

ACL(α̃) leads to the mixed entangled state
between both atoms and the coherent-state pulse,

ρ = 1 + e−2|α|2(1−η)

2
|p〉〈p| + 1 − e−2|α|2(1−η)

2
|h〉〈h|, (4)

where

|p〉 =
√
N+
2

|φ+
1,2〉|c+〉 +

√
N−
2

|ψ+
1,2〉|c−〉 + 1√

2
|φ−

1,2〉|β̃〉;

|h〉 =
√
N−
2

|φ+
1,2〉|c−〉 +

√
N+
2

|ψ+
1,2〉|c+〉 − 1√

2
|ψ−

1,2〉|β̃〉;

|c±〉 = 1√
2N±

(|β̃ + 2 α̃〉 ± |β̃ − 2 α̃〉), (5)

while N± = 1 ± e−8 η|α|2 . The states |c+〉 and |c−〉 are the
displaced (by the amount β̃) even and odd Schrödinger cat
states, respectively [27].

The resulting (coherent-state) pulse leaks from C2 and
is discriminated in the basis {|β̃〉,|c+〉,|c−〉} using the cat
state discrimination device CSD1 (see Sec. II D). Since |c−〉
is orthogonal to both |c+〉 and |β̃〉,1 we postselect only the
detection events corresponding to this (odd) cat state. With
the probability of success N−/4, therefore, the entanglement
distribution results into the rank 2 mixed state,

ρ
1,2
f = f |ψ+

1,2〉〈ψ+
1,2| + (1 − f )|φ+

1,2〉〈φ+
1,2|, (6)

where the fidelity of entanglement is given by

f = 1
2 {1 + exp [−2|α|2(1 − η)]}. (7)

Once the output of measurements corresponds to the state |β̃〉
or |c+〉, the entanglement distribution is unsuccessful. In this
case, the atoms 1 and 2 should be discarded and the entire
sequence repeated using the next atomic pair conveyed from
MOTs in both repeater nodes. We remark, finally, that the
fidelity (7) is close to the unity only when |α|2(1 − η) � 1.
This observation suggests that we consider the values |α| � 1
through the paper.

B. Entanglement purification

Assuming that the entanglement distribution is successful,
the (low-fidelity) entangled atoms 1 and 2 are conveyed along
the setup to the purification part displayed in the middle
rectangle of Fig. 1(a). In this part of the setup, each of cavities
C3 and C4 share a pair of trapped atoms 3, 4 and 5, 6,
respectively. Both cavities are initially prepared in the vacuum
state, while the atoms are initialized in the state |0〉. The
entanglement purification is performed in three steps which
are displayed in Fig. 1(e) and explained below.

1. Four-qubit entanglement generation

Right before atoms 1 and 2 are conveyed and coupled to
the cavities C3 and C4, we generate the four-qubit entangled
state,

ρ3−6 = 1
4 (1 − e−8|α|2(1−η))|φ+

3,4,φ
−
5,6〉〈φ+

3,4,φ
−
5,6|

+ 1
4 (1 + e−8|α|2(1−η))|ψ+

3,4,φ
−
5,6〉〈ψ+

3,4,φ
−
5,6|

+ 1
2 e−8|α|2(1−η)|φ−

3,4,ψ
+
5,6〉〈ψ+

3,4,φ
−
5,6|

+ 1
2 e−8|α|2(1−η)|ψ+

3,4,φ
−
5,6〉〈φ−

3,4,ψ
+
5,6|

+ 1
2 |φ−

3,4,ψ
+
5,6〉〈φ−

3,4,ψ
+
5,6|, (8)

associated with the atoms 3, 4, 5, and 6. This state is generated
using the similar mechanism as utilized in the previous section.
Namely, we employ sequentially the evolutions U2ACL(α) and
U2ACL(α̃) in repeater nodes B and C, respectively, where (i =
3,4 or 5,6)

U2ACL(α) = e(α a†−α∗a)
∑

σX
i = D

(
α

∑
σX

i

)
, (9)

1To demonstrate this, one has to take into account the properties
α∗ = −α and β∗ = −β.
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governed by the Hamiltonian,

H2ACL = h̄ J1

2
(a + a†)

∑
σX

i . (10)

This Hamiltonian is produced deterministically in our setup
(see Appendix A) and it describes the coupled system of
atoms 3, 4 (5, 6), photon field of C3 (C4), and two continuous
laser beams which act vertically along each conveyor axis [not
depicted in Fig. 1(a) for simplicity].

Similar to the previous section, the pulse β (source P2)
interacts sequentially with the atoms-cavity-laser systems
in each repeater node and is discriminated in the basis
{|β̃〉,|c+〉,|c−〉,|d+〉,|d−〉} by the CSD2 (see Sec. II D), where

|d±〉 = 1√
2(1 ± e−16 η|α|2 )

(|β̃ + 4 α̃〉 ± |β̃ − 4 α̃〉).

Only the events corresponding to the output state |c−〉 are
postselected which, with the probability of success N−/4,
result into the four-partite entangled state (8).

2. Evolution for purification

In the previous steps, we have successfully generated the
entangled states ρ

1,2
f and ρ3−6 [see the first rectangle of

Fig. 1(e)]. In the next step, the atoms 1 and 2 are conveyed
and coupled to the cavities C3 and C4, respectively. Since the
coherent-state pulse (P2) has already left the cavities, they
are both in the vacuum state. The conveyed atoms together
with the trapped atoms form two atomic triplets 1, 3, 4 and
2, 5, 6. Each of these triplets evolves now due to the periodic
Heisenberg XY Hamiltonian [28] (i = 1,3,4 or 2,5,6):

HXY = h̄ J2

2

∑
i

(
σX

i σX
i+1 + σY

i σ Y
i+1

)
, (11)

over the time period T2 = 2 J−1
2 , where σX

i and σY
i are the

Pauli operators and J2 is the coupling between the atoms of
a given triplet. We show in Appendix B that this Hamiltonian
is produced deterministically in our scheme by coupling
simultaneously three atoms to the same cavity mode and a
laser beam in the limit of large detuning.

The evolution governed by the above Hamiltonian,

e− ι̇
h̄
HXY t =

8∑
j=1

e− ι̇
h̄
Ej t |kj 〉〈kj |, (12)

is completely determined by the energies Ei and vectors |ki〉,
which satisfy the equality HXY |ki〉 = Ei |ki〉 along with the
orthogonality 〈ki |kj 〉 = δij and completeness

∑ |ki〉〈ki | = I
relations. With the help of Jordan-Wigner transformation
[29], this eigenvalue problem can be solved exactly (see, for
instance, Ref. [30]). Since the evolution operator (12) acts on
the atomic triplet in node B that is entangled with the atomic
triplet in the node C, we consider the evolution operator,

UXY =
8∑

i,j=1

e− ι̇
h̄ (Ei+Ej ) T2

∣∣kB
i

〉〈
kB

i

∣∣ ⊗ ∣∣kC
j

〉〈
kC

j

∣∣, (13)

referred to below as the purification and indicated by the
ellipses in Fig. 1(e).

According to this evolution, the state of both atomic triplets
is described by the six-qubit density operator:

ρ1−6 = UXY

(
ρ

1,2
f ⊗ ρ3−6

)
U

†
XY =

64∑
i,j=1

ρ1−6
i,j |vi〉〈vj |, (14)

where 26 composite states |vi〉, satisfying the orthogonality
and completeness relations 〈vi |vj 〉 = δij and

∑ |vi〉〈vi | = I,
respectively, have been introduced.2

3. Finalization of the protocol

Once the purification is performed and the conveyed atoms
leave the respective cavities, the atoms 3, 4 and 5, 6 are
projected in the computational basis {|0〉,|1〉}. Entanglement
purification is successful when the outcome of projections
coincides with one of the combinations,

{03,14,05,16}, {03,14,15,06}; (15a)

{13,04,05,16}, {13,04,15,06}. (15b)

With the constant probability of success 1/4, therefore, the
conveyed atoms are described by the density operator,

ρ
1,2
F = 1

N1

4∑
α,β=1

ρ1−6
α,β |uα〉〈uα| = F |φ−

1,2〉〈φ−
1,2| + (1 − F )|ψ−

1,2〉〈ψ−
1,2|, (16)

where N1 is the respective normalization factor. In this expression, moreover, the purified fidelity is given by

F =
(
0.000 548 294 + 0.001 625 3 e 8|α|2(1−η) + 0.002 173 59 e 6|α|2(1−η)

)
f

0.000 538 502 + 0.001 635 09 e 8|α|2(1−η) + (0.004 347 18 f − 0.002 173 59) e 6|α|2(1−η)
, (17)

while |uα〉 are determined by the one of the inequalities,
|uα〉 ≡ 〈03,14,05,16|vα〉 �= 0; (18a)

|uα〉 ≡ 〈03,14,15,06|vα〉 �= 0; (18b)

|uα〉 ≡ 〈13,04,05,16|vα〉 �= 0; (18c)

|uα〉 ≡ 〈13,04,15,06|vα〉 �= 0, (18d)

and correspond to the outcomes of the projections (15).

The operator (16) implies that the entangled state associated
with the conveyed atoms 1 and 2 preserves its rank 2 form
after the purification. Unlike the conventional purification

2Using the six-qubit density operator ρ1−6, we have routinely
computed the matrix elements ρ1−6

i,j (T2) from (14) which, however,
are rather bulky to be displayed here.

052308-4



DYNAMICAL QUANTUM REPEATER USING CAVITY QED . . . PHYSICAL REVIEW A 88, 052308 (2013)

FIG. 2. (Color online) For the values (a) |α| = 1, (b) |α| = 0.75,
and (c) |α| = 0.5, the solid and dotted curves display the distribution
and purification fidelities (7) and (17), respectively. The dot-dashed
curves display the swapping fidelity S1, while the dashed curves show
the fidelity (21) obtained in the conventional swapping protocol.

protocol, therefore, the purified state is completely character-
ized by the fidelity (17). We stress that once the outcome of
atomic projections associated with the trapped atoms disagree
with (15), the entanglement purification is unsuccessful. In
this case, the atoms 1 and 2 should be discarded and the
entire (repeater) sequence restarted using one fresh atomic
pair conveyed from MOTs in each repeater node.

By considering |α| = 1, 0.75, and 0.5, in Fig. 2, we compare
the purification fidelity (solid curve) with the fidelity (7)
obtained by means of entanglement distribution only (dotted
curve). We see that purification yields a significant growth of
(input) distribution fidelity. In agreement with Eqs. (7) and
(17), moreover, these plots confirm that the smaller values
of |α| are chosen, the higher values of both distribution and

purification fidelities are obtained. In addition, we infer that
both fidelities saturate around � ≈ 100 km and they exhibit an
almost constant behavior for � > 100 km.

We remark that the described purification protocol is based
on the effect of entanglement transfer between the networks
of evolving spin chains that was introduced and investigated
in Ref. [31]. In the same reference, it was suggested that
this effect plays the key role in the entanglement distillation
once a part of spins from two such networks are projectively
measured. One similar entanglement purification protocol,
moreover, has been proposed in Ref. [32]. In Refs. [24,25],
furthermore, we adapted this mechanism to the cavity QED
framework, where the role of (spin-chain) networks was
played by the atomic triplets coupled to the cavities located
in two repeater nodes, while the cavity-mediated interaction
(11) reproduced the spin-chain dynamics within a spin
network. Using several improvements, in the latter paper, we
obtained an almost-unit output fidelity after a few successful
purification rounds. In contrast to Ref. [25], however, in
this paper we consider a notably modified approach to the
purification protocol and employ one single purification round.

C. Entanglement swapping

Assuming that both the entanglement distribution and
purification were successful, the (high-fidelity) entangled
atoms 1 and 2 are conveyed along the setup to the swapping
part displayed in the bottom rectangle of Fig. 1(a). In this part,
the atoms 1 and 2 couple the cavities C5 and C6, both prepared
initially in the vacuum state. The conveyed atoms together
with the trapped atoms form two atomic pairs 1, 8, and 2, 9.
We recall that atoms 8 and 9 are entangled with atoms 7 and
10, respectively, where each pair is described by the rank 2
mixed states ρ

7,8
F and ρ

9,10
F given both by (16).

According to the conventional entanglement swapping
protocol [6], the atomic pairs 1, 8 and 2, 9 are projectively
measured in the Bell bases |bi

1,8〉 and |bi
2,9〉, respectively, where

(i = 1, . . . ,4)∣∣bi
a,b

〉 = {|φ+
a,b〉,|φ−

a,b〉,|ψ+
a,b〉,|ψ−

a,b〉}. (19)

This projective measurement results unconditionally into the
entangled state between the (initially uncorrelated) atoms 7 and
10 increasing, thus, the overall distance of shared entanglement
from � to 3 �. In other words, the swapped state is given by the
density operator,

ρ
7,10
S = 1

N2

〈
bi

1,8,b
j

2,9

∣∣ρ1,2
F ⊗ ρ

7,8
F ⊗ ρ

9,10
F

∣∣bi
1,8,b

j

2,9

〉
= S

∣∣s1
ij

〉〈
s1
ij

∣∣ + (1 − S)
∣∣s2

ij

〉〈
s2
ij

∣∣, (20)

where N2 is the respective normalization factor. In this
expression, moreover, the resulting (swapped) fidelity takes
the form,

S = F (3 − 6 F + 4 F 2), (21)

while s1
ij is displayed in Table I. Similar to the states ρ

7,8
F , ρ9,10

F ,

and ρ
1,2
F , this swapped state ρ

7,10
S preserves its rank 2 form and

is completely characterized by the fidelity (21) displayed in
Fig. 2 by dashed curves.
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TABLE I. Bell states corresponding to s1
ij for given i and j .

�
��j

i
1 2 3 4

1 φ−
7,10 φ+

7,10 ψ−
7,10 ψ+

7,10

2 φ+
7,10 φ−

7,10 ψ+
7,10 ψ−

7,10

3 ψ−
7,10 ψ+

7,10 φ−
7,10 φ+

7,10

4 ψ+
7,10 ψ−

7,10 φ+
7,10 φ−

7,10

In our setup, each of the atomic pairs evolves in cavity
C5 or C6 due to the periodic Heisenberg XX Hamiltonian
(i = 1,8 or 2,9) :

HXX = h̄ J2

2

∑
i

σX
i σX

i+1, (22)

over the time period T3 = π J−1
2 /2. We show in Appendix A

that this Hamiltonian is produced deterministically in our
setup by coupling simultaneously two atoms to the same
cavity mode and laser beams as displayed in Fig. 1(b). The
evolution of an atomic pair governed by this Hamiltonian over
the period T3 implies

|1a,1b〉 −→ −ι̇√
2

(|0a,0b〉 + ι̇ |1a,1b〉) ; (23a)

|0a,0b〉 −→ 1√
2

(|0a,0b〉 − ι̇ |1a,1b〉) ; (23b)

|1a,0b〉 −→ −ι̇√
2

(|0a,1b〉 + ι̇ |1a,0b〉) ; (23c)

|0a,1b〉 −→ 1√
2

(|0a,1b〉 − ι̇ |1a,0b〉) , (23d)

where the resulting states form the modified Bell basis,∣∣mi
a,b

〉 = e− ι̇
h̄
HXX T3{|1a,1b〉,|0a,0b〉,|1a,0b〉,|0a,1b〉}.

This evolution suggests an efficient and deterministic realiza-
tion of entanglement swapping in the framework of cavity
QED. Namely, the atomic pairs 1, 8 and 2, 9 are subjected to
the evolution e− ι̇

h̄
HXX T3 followed by projection in the computa-

tional basis {|0〉,|1〉}. Obviously, these two steps are equivalent
with the projective measurement in the modified Bell basis
(23), where the swapped state is given by the expression,

ρ
7,10
S = 1

N3

〈
mi

1,8,m
j

2,9

∣∣ρ1,2
F ⊗ ρ

7,8
F ⊗ ρ

9,10
F

∣∣mi
1,8,m

j

2,9

〉
= S1

∣∣n1
ij

〉〈
n1

ij

∣∣ +
4∑

k=2

Sk

∣∣nk
ij

〉〈
nk

ij

∣∣, (24)

where N3 is the respective normalization factor, n1
ij is

displayed in Table II, while the functions,

S1 = F (1 − 2 F + 2 F 2), S2 = 2(1 − F )F 2, (25a)

S3 = 1 − 3 F + 4 F 2 − 2 F 3, S4 = 2(F − 1)2F, (25b)

fulfill the inequality S1  S2 > S3 > S4. The swapped state
ρ

7,10
S is diagonal in the standard Bell basis (19), where the

function S1 is identified with the swapping fidelity Ffinal and
displayed in Fig. 2 by dot-dashed curves. We see that for
|α| > 0.5 and � < 20 km, this final fidelity almost coincides

TABLE II. Bell states corresponding to n1
ij for given i and j .

�
��j

i
1 2 3 4

1 φ+
7,10 φ−

7,10 ψ−
7,10 ψ+

7,10

2 φ−
7,10 φ+

7,10 ψ+
7,10 ψ−

7,10

3 ψ+
7,10 ψ−

7,10 φ−
7,10 φ+

7,10

4 ψ−
7,10 ψ+

7,10 φ+
7,10 φ−

7,10

with the fidelity (21) obtained by means of the conventional
swapping protocol (see dashed curve).

The total probability of success associated with the entan-
glement distribution, purification, and two swappings is given
by the expression,

Psucc = P sw
succ N 2

−/64 = P sw
succ

(
1 − e−8|α|2η)2

/64, (26)

where P sw
succ is the probability of success of two entanglement

swappings and is determined mainly by the detection efficiency
of atomic projective measurements (see below). For |α| =
0.5, 0.75, and 1, in Fig. 4, we display the ratio Psucc/P

sw
succ

as a function of segment distance �. It is seen that the total
probability of success is sensitive to the choice of |α| and
it drops dramatically with increasing �. This plot reveals the
tradeoff between the length of a repeater segment and the total
probability of success.

D. Remarks on the implementation of our scheme

For simplicity, in the setup displayed in Fig. 1(a), we
considered just two repeater nodes (B and C), where the atomic
pairs 7, 8 and 9, 10 have been initially entangled and given both
by (16). After we explain our repeater scheme, we are ready
to introduce the experimental setup that includes explicitly
nodes A, B, C, and D. This setup is displayed in Fig. 3 and,
in contrast to Fig. 1(a), includes entanglement distribution and
purification protocols associated with the atomic pairs 7, 8 and
9, 10, which are initially disentangled. Simultaneously with the
atomic pair 1, 2, these pairs are conveyed along the setup (but
in the opposite direction) and follow the same sequence of
cavity QED evolutions and atomic projective measurements.

We recall that in the framework of entanglement dis-
tribution and purification protocols, the pulses P1 and
P2 are discriminated in the bases {|β̃〉,|c−〉,|c+〉} and
{|β̃〉,|c−〉,|c+〉,|d−〉,|d+〉} once they leave the cavities C2 and
C4, respectively. In our setup, this discrimination is performed
using the cat state discrimination devices CSD1 and CSD2.
As shown in Fig. 1(d), each such device includes a source PC

of single cat states |c±〉, a balanced beam splitter, and two
photon-number resolving detectors D1 and D2.

We recall the property of cat states to interfere on a balanced
beam splitter by producing an (amplitude) amplified cat state in
one output mode and no photons in another output mode [33].
This property suggests the following discrimination procedure.
Once the leaked pulse leaves the respective cavity, it interferes
on the beam splitter with |c+〉 or |c−〉 generated by PC . If both
detectors D1 and D2 produce clicks, then the leaked pulse is
either |β̃〉 or |d±〉. However, if one of the detectors produces no
clicks, then the state (leaving the other mode of beam splitter)
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FIG. 3. (Color online) Sketch of experimental setup that realizes the four-node repeater scheme.

is either an even or odd (amplified) cat state. In contrast to
an even cat state, the odd cat state contains an odd number of
photons on the top of |√2 β̃|2. This feature plays a decisive role
in the discrimination between these cat states by means of the
photon-number resolving detector. We remark, finally, that the
generation of |c±〉 by the source PC can be deterministically
realized using the cavity QED evolution UACL(2 α̃) [see (2)]
with an input pulse |β̃〉, such that β̃∗ = −β̃. Assuming that the
atom was initialized in the ground state |0〉 and the cavity in
the vacuum state, this evolution results into the states |c+〉 or
|c−〉 conditioned upon the detection of atom in the state |0〉 or
|1〉, respectively.

We recall that all three building blocks of our repeater
require an efficient technique for projective measurements of
atoms which are trapped in (or conveyed through) a cavity. The
method of atomic nondestructive measurements demonstrated
in Refs. [34,35] enables projective measurements of single
atoms coupled (strongly) to a cavity field and fits perfectly in
our experimental setup. The physical mechanism behind these
measurements exploits the suppression of cavity transmission
that arises due to the strong atom-cavity coupling. Recall
that each atom in our scheme is a three-level atom in the �

configuration [see Figs. 1(b) and 1(c)], where only the states
|0〉 and |e〉 are coupled to the cavity field. If one such atom
couples the cavity and is prepared in the |0〉 state, such that
the cavity resonance is sufficiently detuned from the atomic
|0〉 ↔ |e〉 transition frequency, then the cavity transmission
drops according to the atom-cavity detuning and atom-cavity
coupling. On the other hand, the cavity transmission remains
unaffected if the atom was prepared in the state |1〉.

Once sufficiently many readouts of the cavity transmission
are recorded, the mechanism described above enables us
to determine the state of a single atom with a reasonably
high efficiency [34]. Since the atom-cavity coupling increases
proportionally with the number of loaded atoms, the same
mechanism enables us to distinguish the following three

composite states of two trapped atoms: (i) |0a,0b〉, (ii) |0a,1b〉
or |1a,0b〉, and (iii) |1a,1b〉 (see [35]). We remark, however, that
this technique cannot distinguish between the states |0a,1b〉
and |1a,0b〉 leading to an incomplete knowledge about the
swapped state (24) (see Table II). In order to avoid this
drawback, one of the atoms in C5 (C6) should decouple the
cavity right after the indecisive detection occurs and the entire
measurement sequence should be repeated with a single atom
in the cavity. The decoupling of an atom from the cavity, for
instance, can be realized by conveying one from the atoms
further along the setup.

In addition, the projective measurements of atomic pairs 3,
4 and 5, 6 in cavities C3 and C4 are realized using a probe
beam (tuned to the cavity resonance frequency) produced by
the source P2 and one of the photon detectors in CSD2 that
monitors the transmission on the other end point of the fiber.
During these projective measurements, the cat state source
PC in the upper input mode of beams splitter is switched
off. In this case, the probe beam includes the contributions
from transmission of both cavities. Recall that a successful
purification event is conditioned upon the combinations (15)
of atomic projective measurements. These combinations imply
that only one atom in each cavity is excited. However, the
combinations {03,04,15,16} and {13,14,05,06} lead to the same
output of signal transmission and have to be distinguished
from the combinations (15). In order to discriminate this out-
come that implies a successful purification, the transmission
characteristics (i.e., the atom-cavity detuning and coupling)
associated with C3 and C4 should reasonably deviate.

Finally, the approach presented in this section requires
that atoms are transported with a constant velocity along the
experimental setup and coupled to the cavity and laser fields
in a controllable fashion. For this purpose, we introduced
in our setup magneto-optical traps (MOTs) which play the
role of atomic source and optical lattices (conveyors) which
transport atoms with a position and velocity control over the
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atomic motion. The proposed setup is compatible with the
existing experimental setups [36–38], in which both MOTs and
conveyors are integrated into the same experimental frame-
work with a high-finesse optical cavity. The number-locked
insertion technique [39], moreover, enables one to extract
atoms from MOT and insert a predefined pattern of them into
an optical lattice with a single-site precision. By encoding
a qubit with the help of hyperfine atomic levels, finally, it
has been demonstrated that an optical lattice preserves the
coherence of this qubit over seconds [40,41].

III. SUMMARY AND OUTLOOK

In the previous sections, we introduced our repeater
scheme with three segments (four nodes) corresponding to
the overall distance 3 �. The final fidelity Ffinal was identified
with the swapping fidelity S1 [see (25a)], while the total
probability of success was given by (26). The probability
of success P sw

succ associated with this entanglement swapping
is determined mainly by the detection efficiency of atomic
projective measurements [34].

The extension to an arbitrary amount of segments N of the
(three-segment) repeater shown in Fig. 3 is straightforward.
For convenience, we consider odd values of N corresponding
to N + 1 repeater nodes (or N − 1 swapping operations). For
|α| = 1, 0.75, and 0.5, we display in Fig. 5 the dependence of
the overall distance on the amount of repeater segments taken
for the final fidelities Ffinal = 0.8, 0.85, 0.9, and 0.95. The thin
solid lines reveal the maximally achievable overall distances
along with the required amount of swappings corresponding
to the segment distances � = 5 km and 10 km [in Fig. 5(a)]
or � = 10 km, 15 km, and 20 km [in Figs. 5(b) and 5(c)]. As
expected, in all three figures the segment length � decreases
with the growing of N . This happens due to the lack of a
(re)purification mechanism in our scheme that has to act each
time after the execution of several swappings.

Since small segment lengths lead to a rather dense distri-
bution of repeater nodes implying unreasonably high demand
of physical resources and since large segment lengths imply
small probabilities of success (see Fig. 4), we intentionally
bounded N by the range 5 km � � � 10 km for |α| = 1 and
10 km � � � 20 km for |α| = 0.75 and |α| = 0.5. We observe,

FIG. 4. (Color online) The ratio Psucc/P
sw
succ as a function of

repeater segment distance � for |α| = 1 (solid line), |α| = 0.75 (dotted
line), and |α| = 0.5 (dashed line).

TABLE III. Various repeater characteristics for |α| = 1.

Ffinal � N R L

0.95 5.4 km 3 39 pps 16.3 km
0.9 5.1 km 7 25 pps 36 km
0.85 5.1 km 11 19.2 pps 56.4 km
0.8 5.2 km 15 15.8 pps 77.7 km

furthermore, that small values of |α| along with small values of
final fidelities Ffinal lead both to high overall distances L ≡ N�

of repeater. For |α| = 0.5 and � = 10 km, for instance, our
repeater distributes one entangled pair over the distance of
almost 1115 km with Ffinal = 0.8 and Psucc/P

sw
succ ≈ 0.0085.

For |α| = 1, the same segment length, and the same final
fidelity, in contrast, the entanglement is distributed over the
distance of almost 34 km with Psucc/P

sw
succ ≈ 0.015.

Besides the analysis of the final fidelities and probabilities
of success, we compute the repeater rates which provide
together the main characteristics of a quantum repeater. Since
the atomic (fast-decaying) excited state remains unpopulated
and the qubit is encoded by means of long-living atomic states,
we assume that the coherence of atoms and cavities exceeds the
overall time required to complete the entanglement distribu-
tion, purification, and swapping protocols in all repeater nodes.
This assumption corresponds to a repeater with ideal memory
and implies that the main source of decoherence is the photon
loss in the optical fiber [42]. Since the probability of success is
rather small in our scheme (see Fig. 4), we compute the repeater
rates (in units of pairs per second) using the expression [16],

R =
(

2

3

)n
Psucc

T◦
, (27)

where T◦ is the time required to distribute and purify an
entangled state over a single repeater segment being followed
by two swappings, Psucc is the probability of success (26),
while n is given by the equality 2 n = N .

Since the cavity-based atomic measurements operate with
a high efficiency [34], to a good approximation, we set P sw

succ =
0.9. In accordance with the experimental setup shown in
Fig. 1(a), moreover, we set T◦ = 7 �/c̃, where c̃ = 2 × 108 m/s
is the speed of light in the optical fiber. The rate (27) is
determined by the triplet {|α|,�,N} that we extract from Fig. 5
for a given value of the final fidelity Ffinal. For instance, for
L = 33 km, |α| = 1, and Ffinal = 0.8, we find that � = 11 km,
N = 3 and Psucc = 0.014. Being inserted in Eq. (27), these
values imply R ≈ 18 pairs per second (pps). In a similar
fashion, we display in Tables III–V the rates calculated for
various values of �, Ffinal, and |α|.

In this paper, a fully cavity QED-based quantum repeater in-
cluding entanglement distribution, purification, and swapping
protocols was proposed. In contrast to conventional repeater
schemes, we completely avoid the explicit use of quantum
logical gates by exploiting solely cavity QED evolution. Our
repeater scheme has a conveyor structure design, in which
a chain of initialized single atoms is inserted into an optical
lattice and conveyed along the entire repeater node. At the same
time, another chain of initialized atoms is conveyed along the
neighboring repeater node in a synchronous fashion. These
two nodes form together a repeater segment, while the entire
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FIG. 5. (Color online) For the values (a) |α| = 1, (b) |α| = 0.75,
and (c) |α| = 0.5, we display the overall repeater length L ≡ N� as
a function of number of segments N plotted for the final fidelities
Ffinal = 0.95 (thick solid curve), Ffinal = 0.9 (dotted curve), Ffinal =
0.85 (dashed curve), and Ffinal = 0.8 (dot-dashed curve). The thin
solid lines reveal the maximally achievable length of repeater for a
given final fidelity corresponding to a constant segment distance of
5 km, 10 km, 15 km, or 20 km. See text for details.

set of segments form the quantum repeater itself. Each atomic
chain is conveyed through the entanglement distribution and
purification blocks, such that each synchronized atomic pair
becomes entangled and (afterwards) purified in a probabilistic
fashion. Finally, the purified atomic pair is conveyed into the
entanglement swapping block, where two entangled atomic
pairs distributed between the neighboring repeater nodes are
deterministically combined into one entangled pair distributed
over a longer distance.

A detailed experimental setup was proposed in Figs. 1(a)
and 3, and a complete description of all necessary steps and
manipulations was provided. A comprehensive analysis of the

TABLE IV. Various repeater characteristics for |α| = 0.75.

Ffinal � N R L

0.95 5 km 15 15.7 pps 74.8 km
0.9 5 km 31 10.2 pps 155.2 km
0.85 5 km 47 7.9 pps 239 km
0.8 5 km 67 6.5 pps 337.6 km

0.95 10.6 km 3 17.9 pps 31.8 km
0.9 10 km 7 11.6 pps 70 km
0.85 10 km 11 8.9 pps 110 km
0.8 10.1 km 15 7.4 pps 151.8 km

final fidelities obtained after multiple swapping operations was
performed and the correlation between the overall and the seg-
ment distances was determined by means of Fig. 5. Moreover, a
rate analysis has been performed and the main repeater charac-
teristics have been revealed in Tables III–V. Following recent
developments in cavity QED, moreover, we briefly pointed to
and discussed a few practical issues related to the implementa-
tion of our purification scheme, including the main limitation
that arises due to the lack of a (re)purification mechanism. We
stress that although the proposed quantum repeater is exper-
imentally feasible, its explicit realization for a long-distance
quantum communication still poses a serious challenge.

Finally, we would like to mention Ref. [26] by Munro
and co-authors in which an entanglement distribution scheme
was proposed. In contrast to our approach based on the
displacement operator (2) and controlled by σX, the approach
of Munro and co-authors is based on the displacement
controlled by σZ which appears less feasible in the framework
of cavity QED. A practical consequence of using the σX

displacement instead of σZ is that the remote atoms have to be
initialized in the ground state and not in an equal superposition
of both basis states as in the approach of Munro and co-authors.
In our scheme, moreover, we used an input (coherent-state)
pulse β generated by the source P1 that heralds the generation
of state (4).
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TABLE V. Various repeater characteristics for |α| = 0.5.

Ffinal � N R L

0.95 10 km 25 3.4 pps 247.5 km
0.9 10 km 51 2.2 pps 510.7 km
0.85 10 km 79 1.7 pps 796 km
0.8 10 km 111 1.4 pps 1115.3 km

0.95 15.5 km 11 2.7 pps 170.8 km
0.9 15.5 km 23 1.8 pps 356.4 km
0.85 15.3 km 37 1.4 pps 565 km
0.8 15 km 53 1.2 pps 798 km

0.95 20.2 km 7 2.2 pps 141.7 km
0.9 20 km 15 1.5 pps 298.4 km
0.85 20.2 km 23 1.1 pps 463.7 km
0.8 20.6 km 31 0.9 pps 639.1 km
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APPENDIX A: DERIVATION OF THE HAMILTONIANS
(1), (10), AND (22)

In this Appendix, we show that the Hamiltonians (1), (10),
and (22) are produced deterministically in our setup. Specif-
ically, N (three-level) atoms are subjected simultaneously to
the field of (initially empty) cavity and fields of two laser
beams as displayed in Fig. 1(b). The evolution of this coupled
atoms-cavity-laser system is governed by the Hamiltonian
(k = 1,2, . . . ,N ),

H1 = h̄ ωC a† a − ι̇ h̄
∑

k

[
g

2
a |e〉k〈0|

+ �

2
(e−iωL t |e〉k〈1| + e−iωP t |e〉k〈0|) − H.c.

]
+ h̄

∑
k

[ω1|1〉k〈1| + ωE|e〉k〈e| + ω0|0〉k〈0|] , (A1)

where g denotes the coupling strength of atoms to the cavity
mode, while � denotes the coupling strengths of atoms to both
laser fields.

We switch to the interaction picture using the unitary
transformation,

U1 = e−ι̇ t[
∑

(ω1|1〉k〈1|+(ω̃+�L)|e〉k〈e|+ω0|0〉k〈0|)+(ω̃−ω0) a†a],

where ω̃ ≡ ω1 + ωL. In this picture, the Hamiltonian (A1)
takes the form,

H2 = h̄ � a†a − ι̇ h̄
∑

k

[
g

2
e−i�L ta |e〉k〈0|

+ �

2
e−i�L t (|e〉k〈1| + |e〉k〈0|) − H.c.

]
, (A2)

where the notation �L ≡ (ωE − ω1) − ωL, �C ≡ (ωE −
ω0) − ωC , and � ≡ �L − �C has been introduced.

We require that �L and �C are sufficiently far detuned,
such that no atomic |e〉 ↔ |0〉 or |e〉 ↔ |1〉 transitions can
occur. We expand the evolution governed by the Hamiltonian
(A2) in series and keep the terms up to the second order,

U2
∼= I − ι̇

h̄

∫ t

0
H2 dt ′ − 1

h̄2

∫ t

0

(
H2

∫ t ′

0
H2 dt ′′

)
dt ′.

By performing integration and retaining only linear-in-time
contributions, we express this evolution in the form,

U2
∼= I − ι̇

h̄
H3 t ∼= exp

[
− ι̇

h̄
H3 t

]
, (A3)

where the effective Hamiltonian is given by

H3 = h̄ � a†a + h̄ �

4�L

∑
k

[� |1〉k〈0| + g |1〉k〈0| a + H.c.] ,

after removing constant contributions. We switch to the
interaction picture with respect to the first term of H3. In this
picture, we obtain

H4 = h̄ �

4�L

∑
k

[� |1〉k〈0| + g e−i� t |1〉k〈0| a + H.c.]. (A4)

We switch now from the atomic basis {|0〉,|1〉} to the basis
{|+〉,|−〉}, where

|+〉 = 1√
2

(|0〉 + |1〉) ; |−〉 = 1√
2

(|0〉 − |1〉) . (A5)

In this basis, the Hamiltonian (A4) takes the form,

H5 = h̄ �

8�L

∑
k

[
2 �SZ

k + g
(
SZ

k (e−i� ta + ei� ta†)

+(S†
k − Sk)(e−i� ta − ei� ta†)

)]
, (A6)

where Sk ≡ |−〉k〈+| and SZ
k ≡ |+〉k〈+| − |−〉k〈−|, and where

we removed all the constant contributions. We switch again to
the interaction picture with respect to the first term of (A6). In
this picture, we obtain

H6 = h̄
g �

8�L

∑
k

[
SZ

k (e−i� ta + ei� ta†)

+(
S
†
k e

ι̇ �2

2�L
t − Sk e

−ι̇ �2

2�L
t)(e−i� ta − ei� ta†)

]
. (A7)

In the strong driving regime, i.e., for �2/(2 �L) 
{�, g �/(8�L)}, we eliminate the last (fast oscillating) term
using the same arguments as for the rotating wave approx-
imation. Using the identity SZ

k = σX
k , the Hamiltonian (A7)

reduces to

H7 = h̄
g �

8�L

(e−i� ta + ei� ta†)
∑

k

σX
k . (A8)

In the case of vanishing � (equivalently �L = �C), the above
Hamiltonian takes the simplified form,

H8 = h̄
g �

8�L

(a + a†)
∑

k

σX
k , (A9)

which, under the notation J1 ≡ g �/(4 �L), coincides with
the Hamiltonian (1) for N = 1 and with the Hamiltonian (10)
for N = 2.

In the case �L �= �C , furthermore, we require that � is
sufficiently far detuned and expand the evolution governed by
(A8) in series up to the second order. By performing integration
and retaining only linear-in-time contributions, we express
this evolution in the form (A3), where the resulting (effective)
Hamiltonian,

H9 = h̄ g2�2

64 �2
L �

i �=j∑
i,j

[σ †
i σ

†
j + σ

†
i σj + σi σ

†
j + σi σj ], (A10)

coincides with the Hamiltonian (22) under the notation J2 ≡
g2�2/(16 �2

L �), where σi ≡ |0〉k〈1|.

APPENDIX B: DERIVATION OF THE HAMILTONIAN (11)

In this Appendix, we show that the Hamiltonian (11) is
produced deterministically in our setup. Specifically, three
(three-level) atoms are subjected simultaneously to the field of
(initially empty) cavity and field of a laser beam as displayed
in Fig. 1(c). The evolution of this coupled atoms-cavity-laser
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system is governed by the Hamiltonian (k = 1,2,3),

H10 = h̄ ωC a† a

− ι̇ h̄
∑

k

[
g

2
a |e〉k〈0| + �

2
e−iωL t |e〉k〈1| − H.c.

]
+ h̄

∑
k

[ω1|1〉k〈1| + ωE |e〉k〈e| + ω0|0〉k〈0|] , (B1)

where g denotes the coupling strength of atoms to the cavity
mode, while � denotes the coupling strength of atoms to the
laser field.

We switch to the interaction picture using the unitary
transformation,

U3 = e−ι̇ t[
∑

(ω1|1〉k〈1|+ωE |e〉k〈e|+ω0|0〉k〈0|)+(ω1+ωL−ω0)a†a].

In this picture, the Hamiltonian (B1) takes the form,

H11 = h̄ � a† a

− ι̇ h̄
∑

k

[
g

2
a ei�L t |e〉k〈0| + �

2
ei�L t |e〉k〈1| − H.c.

]
,

(B2)

where the notation �L ≡ (ωE − ω1) − ωL, �C ≡ (ωE −
ω0) − ωC , and � ≡ �L − �C has been introduced.

We require that �L and �C are sufficiently far detuned,
such that no atomic |e〉 ↔ |0〉 and |e〉 ↔ |1〉 transitions can
occur. We expand the evolution governed by the Hamiltonian
(B2) in series up to the second order. By performing integration

and retaining only linear-in-time contributions, we express this
evolution in the form (A3), where the effective Hamiltonian
is given by (we assume that the cavity field is initially in the
vacuum state)

H12 = h̄ � a† a + h̄
g �

4 �L

∑
k

[a |1〉k〈0| + H.c.] . (B3)

We switch one more time to the interaction picture with respect
to the first term of (B3). In this interaction picture, the resulting
Hamiltonian takes the form,

H13 = h̄
g �

4 �L

∑
k

[a e−i� t |1〉k〈0| + H.c.]. (B4)

We require, finally, that � is sufficiently far detuned.
As above, we expand again the evolution governed by the
Hamiltonian (B4) in series up to the second order and retain
only linear-in-time contributions after the integration. This
leads to the effective Hamiltonian,

H14 = h̄ g2�2

16 �2
L �

⎡⎣ i �=j∑
i,j

|0i ,1j 〉〈1i ,0j | +
∑

k

|1〉k〈1|
⎤⎦ . (B5)

Since the second term in this Hamiltonian commutes with
the first term, we eliminate the second term by means of an
appropriate interaction picture. The resulting Hamiltonian, i.e.,
the first term of (B5), coincides with the Hamiltonian (11)
under the notation J2 ≡ g2�2/(16 �2

L �).
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