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We utilize genetic algorithms aided by simulated annealing to find optimal dynamical decoupling (DD)
sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse
conditions. We focus on the case of sequences with equal pulse intervals and perform the optimization with
respect to pulse type and order. In this manner, we obtain robust DD sequences, first in the limit of ideal pulses,
then when including pulse imperfections such as finite-pulse duration and qubit rotation (flip-angle) errors.
Although our optimization is numerical, we identify a deterministic structure that underlies the top-performing
sequences. We use this structure to devise DD sequences which outperform previously designed concatenated
DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using
time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.
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I. INTRODUCTION

Quantum information processing (QIP) relies on the ability
to implement high-fidelity quantum gate operations and
successfully preserve quantum state coherence [1]. One of the
most challenging obstacles for reliable QIP is overcoming the
inevitable interaction between a quantum system and its envi-
ronment or bath. Unwanted interactions result in decoherence
processes that cause quantum states to deviate from a desired
evolution, consequently leading to computational errors and
loss of coherence. In order for QIP to be realizable in the
setting of open quantum systems, it is necessary to address the
detrimental effects of decoherence.

Dynamical decoupling (DD) is one such method, which
seeks to attenuate the effects of decoherence by applying
strong and expeditious control pulses solely to the system
[2–7]. Provided the pulses are applied over a time duration
sufficiently shorter than the correlation time associated with
the environment dynamics, DD effectively averages out unde-
sirable interactions and preserves quantum states with a low
probability of error, or fidelity loss. One advantage of DD
over quantum error correction (QEC) is that it is an open-loop
technique, i.e., does not require feedback or measurement.
Furthermore, DD has been widely experimentally studied
in a number of systems, including ion traps [8–10], nuclear
magnetic resonance (NMR) [11–13], solid-state quantum dots
[14], and nitrogen vacancy (NV) centers in diamond [15–17].

The earliest known DD sequence constructions built upon
the Hahn spin-echo effect [18], by applying a sequence of
control pulses implementing π rotations, each separated by
a fixed time duration. Two particularly notable sequences
include Carr-Purcell-Meiboom-Gill (CPMG) [19], which uti-
lizes cycles of two identical pulses to preserve spin magne-
tization along a single direction (useful for known quantum
state preservation), and XY 4 [20], a four-pulse multiaxis
DD sequence that can increase coherence times isotropi-
cally (useful for unknown quantum state preservation). Both

sequences were eventually extended to an “XY family” which
incorporates longer pulse sequences to improve coherence
even further and provide robustness against errors generated
by experimental imperfections in the control pulses [21].

In the context of open quantum systems of interest to us
here, the key feature responsible for an increase in coherence
time for CPMG and XY 4 is the suppression of the first-order
term in time-dependent perturbation theory for a system
weakly coupled to a bath and subjected to dephasing or
general decoherence, respectively. Concatenated DD (CDD)
is a deterministic sequence design that exploits this property
by recursively embedding any base DD sequence (e.g., XY 4)
into itself to successively suppress an additional order of
the perturbation expansion at each level of concatenation
[22]. CDD has been extensively studied analytically [23–25],
numerically [26–28], and experimentally [14,29–33] for a
variety of systems, and its predicted ability to achieve high-
order suppression has been largely confirmed.

A CDD sequence of order q using a base sequence of K

pulses uses Kq equally spaced pulses to suppress the first q

orders of the perturbation expansion in the ideal pulses limit
for a single-qubit system subjected to general decoherence
(e.g., K = 4 for XY 4) [22,23]. What distinguishes an XY 4-
based CDD sequence of order q from, e.g., a periodically
repeated XY 4 sequence (referred to as Periodic DD or
PDD) with the same total number of pulses, is just the
pulse order. Yet, (unsymmetrized) PDD achieves at most
first-order suppression, in contrast to qth-order suppression
for CDD. This begs the question of whether there exist other
sequences that achieve even better performance than CDD,
arrived at merely by optimizing the pulse order and type.
This is the main question we address in this work, using
numerical optimization based on genetic algorithms (GAs),
supplemented with simulated annealing. DD optimization fits
naturally within the constructs of GAs and has been previously
utilized to compare the efficacy of optimal DD to randomized
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DD schemes in suppressing interactions between neighboring
system qubits using selective ideal rotations [34]. Furthermore,
GAs have been utilized in optimal control theory to design
continuous control fields which drive the system in such a
way that the effects of decoherence on quantum systems are
essentially mitigated [35–37].

Notwithstanding recent progress in pulse sequence opti-
mization using unequal intervals, in particular the Uhrig DD
(UDD) sequence and its generalizations [38–48], we focus our
optimization on the case of equal pulse intervals, as this greatly
simplifies the optimization, and is furthermore often the most
convenient experimental situation. Our first main result is to
show that numerically optimal sequences comprising ideal,
zero-width π pulses can be located which exhibit the same
error suppression characteristics as XY 4-based CDD while
using 2r times fewer pulses, where r is the concatenation level.
Furthermore, we identify in these sequences a deterministic
structure which we use to construct additional, robust high-
order sequences.

As the techniques of DD sequence construction have
become increasingly sophisticated, the issue of robustness to
control pulse imperfections has remained one of the prominent
restrictions of sequence performance in experimental settings.
Systematic errors such as rotation-angle or rotation-axis errors,
and finite-pulse duration errors brought about by bandwidth
constraints, can generate additional decoherence that quickly
destroys the decoupling efficiency of all known DD schemes.
Robustness to such errors has been addressed by the XY

family of sequences and CDD, and in a systematic manner
(for pulse-width errors) by Eulerian DD (EDD) [49] and
its generalization to logic gates, known as dynamically
corrected gates (DCG) [50,51]. A concatenated version of
DCG (CDCG) has been shown to be capable in principle of
achieving arbitrarily accurate gates using finite-width pulses
[52]. Protocols based on pulse-interval optimization have
been shown experimentally to be highly sensitive to pulse
imperfections, thus forfeiting their ideal-pulse decoupling
efficiencies [53]. Certain numerical optimization techniques
such as locally optimized DD (LODD) [54], bandwidth
adapted DD (BADD) [55], optimized noise filtration DD
(OFDD) [56], and Walsh function DD (WDD) [57], exhibit
a degree of robustness to finite-pulse duration, however,
the relationship between sequence performance and rotation
errors is unclear. A more recent approach for combating
pulse imperfections, known as Knill DD (KDD), utilizes a
sequence of variable phase π pulses separated by fixed-pulse
intervals to generate an effective sequence of four π pulses
centered around a specified axis with an additional overall
accumulated phase [58]. In contrast to the XY family and
XY4-based CDD, KDD exhibits robustness to finite-width and
flip-angle errors; however, this robustness is somewhat limited
in the original construction as applying standard concatenation
protocols to generate a hierarchy of KDD sequences does not
appear to offer further improvement in sequence robustness.
One important question which we seek to address here is
whether it is possible to obtain a similar robustness to both
forms of pulse imperfections utilizing π pulses restricted to
perpendicular axes, i.e., only X, Y , and Z pulses, while also
attaining enhanced robustness with an increasing number of
pulses.

To account for such errors, our numerical optimization is
extended to include pulse imperfections, in particular finite-
pulse width, flip-angle errors, or both. We show that robust DD
sequences exist which perform considerably better than the
original CDD sequence and sequences based on unequal pulse
intervals, such as UDD and its variants [38–48]. However,
sequence performance eventually saturates with growing
sequence length. Interestingly, we find that the deterministic
structure identified in the ideal pulse limit provides robustness
against both forms of pulse errors.

The structure of this paper is as follows. In Sec. II,
we supply background information and formal mathematical
specifications for DD effectiveness in the context of general
open quantum system dynamics. The particular error model
utilized for this study is then discussed along with the details
regarding the control Hamiltonian, which is responsible for
the DD control fields. The results of our optimal sequence
search are then given in Sec. III, where we identify sequences
that obtain a higher degree of DD efficiency than standard
CDD sequences under the condition of ideal δ-function pulses,
and exhibit robustness to certain forms of pulse imperfections,
namely, over-rotation and under-rotation errors. In Sec. IV, the
search results are supplemented with a comparison between
the GA optimal sequences, CDD, and QDD for each pulse
specification defined in Sec. II. Optimization proves to be
most notably beneficial in the case of pulse imperfections
where the GA sequences convey their superiority over known
deterministic sequences. In Sec. V, using the results of Secs. III
and IV, we discuss the existence of a concatenation-based
deterministic scheme built from optimal sequences that offers
robustness to both finite-width and rotation errors. We present
our conclusions in Sec. VI. Appendix A addresses the possi-
bility of variations in our results due to bath specifications.
Additional information regarding DD performance scaling
and the application of GAs to DD optimization is given in
Appendixes B and C. Appendix D discusses how the effective
error Hamiltonian is extracted numerically. The appendix is
futher supplemented with additional results in Appendix E
which support the main analysis presented in the paper.

II. BACKGROUND, PROBLEM SETUP, AND TOOLS

In this section, we briefly review the pertinent basic back-
ground and mathematical framework for DD. The general error
model is then introduced and its numerical implementation
specified. The DD control Hamiltonian is discussed and
specified for each of the four pulse conditions employed in
this work, differing by the degree and nature of the pulse
imperfections. Finally, we introduce a distance measure with
which DD performance is quantified throughout the paper.

A. Dynamical decoupling

Consider an open quantum system described by the Hamil-
tonian

H (t) = H0 + HC(t). (1)

The time-independent term H0 governs the internal dynamics
of the system and environment, while HC(t) is responsible for
the time-dependent DD control fields. The Hamiltonian H0 is
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resolved further into

H0 ≡ HS ⊗ IB + IS ⊗ HB + HSB, (2)

where HS is the pure system Hamiltonian, HB is the pure envi-
ronment Hamiltonian, HSB represents the system-environment
interaction, and IS(B) is the identity operator on the system
(bath).

For brevity, we denote

Herr ≡ HS ⊗ IB + HSB (3)

as the error Hamiltonian, where the pure system and system-
environment interaction Hamiltonians constitute the sources
of undesired system evolution and decoherence, respectively.
Removal of undesired system evolution is particularly relevant
when DD is utilized for high-fidelity quantum memory
storage [2,23,38] or in a “decouple-then-compute” approach
to quantum gate construction [25,59,60]. Storing quantum
memory requires initial-state preservation, hence the desired
system evolution is trivial action on the system. Any form
of system dynamics present after the DD evolution would
alter the initial state, resulting in storage errors. In a similar
manner, gate errors can be acquired during the application
of a nontrivial quantum gate if undesired system dynamics
remain upon the completion of the gate operation. Undesired
system evolution must also be removed in alternative DD-
protected gate construction strategies, such as “decouple-
while-compute” [59–61], in particular to prevent leakage
errors when a decoherence-free subspace (DFS) or stabilizer
code is used to enable computation while DD pulses are
applied [62,63].

We assume that the control Hamiltonian HC(t) applies
the DD pulses solely to the system. HC(t) consequently acts
trivially on the pure environment Hamiltonian [HC(t),HB] =
0 ∀ t and nontrivially on Herr. The manner in which HC(t)
operates on Herr ultimately determines the effectiveness of
DD in suppressing the contributions of the error Hamiltonian
to the system evolution. Demanding that each pulse operator
anticommute with at least one term comprising Herr, the system
is driven in such a way that Herr can be effectively averaged
out for sufficiently short-time durations. How short can be
elucidated in the interaction (“toggling”) picture with respect
to HC(t) [3,49,59,64], where

H̃0(t) = U
†
C(t)H0UC(t) (4a)

= H̃err(t) + IS ⊗ HB (4b)

with the control unitary

UC(t) = T exp

(
−i

∫ t

0
HC(t)dt

)
, (5)

where T denotes the time-ordering operator. The unitary time-
evolution operator Ũ0(t) satisfies the Schrödinger equation

i
∂

∂t
Ũ0(t) = H̃0(t)Ũ0(t), Ũ0(0) = I, (6)

and Ũ0(t) = U
†
C(t)U (t), where U (t) is the time-evolution

operator generated by Eq. (1).

Employing time-dependent perturbation theory via the
Magnus expansion [65,66] to solve Eq. (6) we can write

Ũ0(τc) = exp

( ∞∑
n=1

�(n)(τc)

)
, (7)

with the anti-Hermitian operator �(n)(τc) representing the nth
term in the Magnus operator expansion after a total DD cycle
time τc. The leading terms of the expansion are

�(1)(τc) = −i

∫ τc

0
H̃0(t1) dt1, (8)

�(2)(τc) = −1

2

∫ τc

0
dt1

∫ t1

0
dt2[H̃0(t1),H̃0(t2)], (9)

while the nth-order Magnus term is constructed recursively as
a sum of (n − 1)-fold commutators. A sufficient condition for
convergence of the Magnus expansion is [67]∫ τc

0
‖H̃0(t)‖dt < π. (10)

In agreement with average Hamiltonian theory (AHT)
[64,68], the time-dependent evolution generated by H̃0(t) is
formally identical to a time-independent evolution generated
by the effective Hamiltonian

H̄0 = i

τc

∞∑
n=1

�(n)(τc) = H̄B(τc) + H̄err(τc). (11)

AHT applies here since we are only interested in the joint
system-environment dynamics at the end of each stroboscopic
DD period of τc. We can further partition H̄0 into an
effective pure environment term and a sum of effective error
Hamiltonians

H̄err(τc) ≡ i

τc

∞∑
n=1

�(n)
err (τc), (12)

where �(n)
err (τc) is the nth-order Magnus operator containing

nontrivial system operators, while H̄B(τc) contains only terms
with trivial action on the system.

In light of Eq. (12), we find that DD facilitates an effective
suppression of Herr by suppressing H̄err(τc) up to some order in
the Magnus expansion. When the first N terms of the expansion
of H̄err(τc) vanish, we speak of “N th-order decoupling.” As-
suming N th-order decoupling has been achieved, the toggling
frame evolution is given by

Ũ0(τc) = e−iτc[HB (τc)+Herr(τc)] (13a)

= e−iτcH̄B (τc)+O[(‖H̄ ′
err‖τc)N+1], (13b)

where the evolution is predominantly dictated by the effective
pure environment Hamiltonian H̄B(τc) when ‖H̄ ′

err‖τc � π

and N 	 1. Here, H̄ ′
err = i

τc

∑∞
n=N+1 �(n)

err (τc) denotes the
remaining effective error Hamiltonian and ‖A‖ is the sup-
operator norm of A (largest singular value):

‖A‖ = sup
|ψ〉

‖A |ψ〉‖
‖ |ψ〉‖ . (14)

Thus, the effectiveness of DD is dependent upon intrinsic
properties, in particular the strength of the interaction and pure
environment Hamiltonians. In situations where the internal
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dynamics is sufficiently fast, a short DD cycle time is desirable
to maintain Eq. (10). Furthermore, it is also desirable to achieve
high-order error suppression N 	 1, so that the effects of H̄ ′

err
are less consequential. We make use of both conditions to
analyze DD in the presence of various strengths of internal
dynamics, while determining the minimum number of control
pulses required to obtain a given order of error suppression.

As we shall see when we present the analysis of optimal
sequences, starting in Sec. III, the effective error Hamiltonian
(12) has significant explanatory power.

B. Error model

The system of interest is a single-qubit system generically
coupled to its environment. The internal dynamics is governed
by

H0 =
∑

μ∈{I,x,y,z}
σμ ⊗ Bμ, (15)

where σμ and Bμ are the spin- 1
2 Pauli matrices and general

bounded environment operators, respectively. Selecting a four-
qubit spin bath to model the environment for the numerical
search, the environment operators are given by

Bμ =
∑
i �=j

∑
α,β

c
μ
αβ

(
σα

i ⊗ σ
β

j

)
, (16)

where i,j index the bath qubits, α,β,μ ∈ {I,x,y,z}, and
c
μ
αβ ∈ [0,1] are random coefficients chosen from a uniform

probability distribution. The construction of Bμ permits at
most two-body interactions between the environment qubits
and three-body interactions between the system and environ-
ment. Note that Eq. (16) contains terms proportional to the
identity operator σ I

i ⊗ σ I
j , which account for the pure system

Hamiltonian described in Eqs. (2) and (3).
Together, Eqs. (15) and (16) encompass a wide range of

experimentally relevant systems which suffer from system-
environment interactions ranging from dephasing, longitudinal
relaxation, or, more generally, the hyperfine interaction. Such
systems, e.g., those outlined in the Introduction (NMR, solid-
state quantum dots, etc.), obviously contain a substantially
larger number of bath spins than what we are considering in
this study. The fact that we are able to validate our results
using only four spins is based on the following: (1) increasing
the number of bath spins does not appear to directly effect the
convergence of the algorithm, as confirmed in Appendix A for
six bath spins, and (2) the error suppression properties of DD
are well characterized by the scaling of a relevant performance
measure with the norm of the system-environment interaction
and pure bath dynamics [2,22], both of which we specify prior
to the search and vary over a wide range of values.

C. Control Hamiltonian

The general form of a single-qubit control Hamiltonian is

HC(t) = 1

2

∑
μ∈{x,y,z}

Vμ(t)σμ, (17)

where Vμ(t) is the control field associated with the σμ degree
of freedom. All of the essential information regarding the
DD sequence is contained within Vμ(t), i.e., pulse timings

and amplitude profiles. In general, varying either quantity can
result in drastically different optimal sequence constructions.
Considering equal pulse-interval delay times of τd throughout
the DD evolution, we examine how optimal sequence con-
struction varies with amplitude profile. We consider the most
customary pulse profiles: zero width and rectangular, finite
width, and pursue an analysis of each profile with the addition
of qubit rotation errors to model the existence of systematic
errors brought about by faulty control fields.

1. Ideal pulses

The first type of pulse considered is an idealized, zero-width
control field

Vμ(t) =
∑

j

φ0 δ
(
t − t

μ

j

)
, (18)

where the Dirac delta function δ(t) constitutes the pulse profile.
The pulses are applied at times t

μ

j and the angle of rotation
is given by φ0. The control fields are restricted so that they
act uniaxially for all time t . In terms of the single-qubit Bloch
sphere, the condition can be visualized as allowing pulses
solely along one of the three axes. We impose this constraint
on all subsequent definitions of Vμ(t) as well.

2. Finite-width pulses

Since zero-width pulses are experimentally impossible, we
relax the ideal-pulse assumption and consider pulses of finite
duration as well. We model the finite duration by

Vμ(t) =
∑

j

A
[
�

(
t − t

μ

j

) − �
(
t − t

μ

j − τp

)]
, (19)

representing a piecewise continuous control field with a
rectangular profile [2]. The pulse amplitude is denoted by A

and the pulse duration is τp, so that Aτp = φ0. The Heaviside
theta function �(t) dictates the pulse profile where it is
assumed that the time to turn the pulse “on” and “off” is
negligible, therefore, the pulse is well approximated by a
square wave.

3. Flip-angle errors

An additional form of systematic error we consider is that of
an over-rotation or under-rotation in the angle φ0, commonly
referred to as a flip-angle error [64]. This particular type of
error is relevant, e.g., in nuclear magnetic resonance (NMR),
where inhomogeneity of the control field across the sample
results in qubit rotation errors [12]. Flip-angle errors are also
prevalent in other systems such as donor electron spins in Si
systems [31,32].

In the case of zero-width pulses, the control field takes the
form

Vμ(t) =
∑

j

φ0(1 ± ε) δ
(
t − t

μ

j

)
, (20)

where ε denotes the error in the rotation angle and the + (−)
refers to an over- (under-) rotation. By modeling the control
field in this manner, it is assumed that the pulses are applied
along their respective axes with zero or negligible error. The
inclusion of rotation-axis errors has been previously studied
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for some common deterministic DD schemes [69], but is not
included in our present study.

4. Finite-width flip-angle errors

As a worst case scenario, we also consider the combined
effect of flip-angle errors for finite-width pulses. Assuming
that the error in the pulse duration is negligible, a flip-angle
error can be thought of as an error in the pulse amplitude. We
model the combined error control field by

Vμ(t) =
∑

j

A(1 ± ε)
[
�

(
t − t

μ

j

) − �
(
t − t

μ

j − τp

)]
(21)

and note that this particular form is one of the most prevalent
pulse profiles encountered in experimental settings [13,31,53,
58,69].

D. Distance measure and scaling

Rather than the standard Uhlmann fidelity or trace-norm
distance [1], we use a state-independent distance measure,
which significantly reduces the computational overhead.
Namely, we quantify DD performance using

D(U,G) = 1√
2dSdB

min
�

‖U − G ⊗ �‖F , (22)

where U represents the full evolution operator of the sequence
[i.e., U satisfies the Schrödinger equation (6) with the Hamilto-
nian (1)], G is the desired evolution of the system, the norm is
the Frobenius norm ‖X‖F =

√
Tr(X†X), and dS and dB are the

dimensions of the system and the environment Hilbert spaces
HS and HB , respectively [70]. The minimization problem can
be solved analytically to obtain the closed-form expression
[70]

D(U,G) =
√

1 − 1

dSdB

‖�‖Tr, (23)

where ‖�‖Tr = Tr(
√

�†�) represents the trace-norm and

� = TrS[U (G† ⊗ IB)], (24)

where TrS denotes a partial trace over the system degrees of
freedom. In the subsequent analysis, G ≡ IS for the desired
DD evolution and we denote D ≡ D(U,I ).

We characterize optimal sequence performance with re-
spect to two parameters associated with the internal dynamics:
the “strength” of the error Hamiltonian and pure environment
dynamics given by

J = ‖Herr‖, β = ‖HB‖, (25)

respectively, and three parameters whose relevance depends
on the control Hamiltonian specifications: the pulse interval
τd , the pulse duration τp, and the rotation angle error ε. Each
of these parameters can be utilized to extract the scaling of the
dominant term in the effective Hamiltonian by analyzing D as
a function of the parameter of interest.

In the case of ideal pulses, the distance can be shown to be
upper bounded as

D � O
[
(J + β)N+1τN+1

c

]
, (26)

where N is the order of error suppression. See Appendix B for
a proof. Analyzing D as a function of τd , J , and β, the order of
error suppression and essentially the structure of the dominant
effective error Hamiltonian operator can be determined for
the relevant situations where the dynamics are dominated
by system-environment interactions (J 	 β) or the bath
dynamics (J � β). Similar studies can be performed for finite-
width or flip-angle errors as well. We ultimately utilize this
method in conjunction with AHT to characterize each optimal
sequence and determine robustness to various pulse errors.

III. OPTIMAL SEQUENCES

In this section, we present numerically optimal π -pulse
sequences obtained for the single-qubit system described by
Eqs. (15) and (16). Initially, we consider the case of ideal zero-
width pulses, then account for finite-width rectangular profiles,
flip-angle errors, and finally the culmination of both types of
errors. For all pulse profiles, the number of pulses is varied
from K = 1,2, . . . ,256 with a pulse interval τd = 0.1 ns.1

Due to the piecewise continuous form of HC(t), the general
structure of the sequences is described by

U (τc) = PK fτd
PK−1 fτd

. . . P2 fτd
P1 fτd

, (27)

where Pj is the unitary evolution operator achieved by the
j th pulse and fτd

= e−iH0τd designates the “free-evolution”
propagator between successive pulses with pulse interval τd .
The pulse operators are defined such that Pj ∈ G, where
G denotes a discrete set of allowable control pulses that
depends upon the choice of Vμ(t). The total sequence time
τc is also dictated by the choice of Vμ(t) since the finite
duration of the pulse contributes when applicable, e.g., for
a sequence of md pulse delays and mp nontrivial pulses
τc = mdτd + mpτp. While Eq. (27) is not the most general
DD evolution operator for fixed-pulse intervals since it does
not permit consecutive pulses without free-evolution periods, it
still captures a majority of the known sequences and additional
highly robust sequence constructions. Further details regarding
the algorithm can be found in Appendix C.

The value of K was varied over a significant range in our
simulations, however, we found that only specific values of
K are relevant for successive error suppression. In particular,
Kopt = 4,8,16,32,64,256 correspond to the minimum number
of pulses required to observe an increase in error suppression or
significant improvement in performance. All of the remaining
values of K result in a sequence performance upper bounded
by the performance of the previous Kopt. For example, the op-
timal sequences for K = 17,18, . . . ,31 exhibit a performance
proportional to that of K = 16, if not worse.

The values of Kopt were obtained by analyzing the scaling
of the performance of the optimal sequences identified at
each value of K in the ideal-pulse limit. For K � 12, optimal
sequences were located by an exhaustive search, while K > 12
demands the use of the GA algorithm discussed in Appendix C.
Upon locating the optimal sequences, the performance mea-
sure D is analyzed as a function of τc. The order of error

1Our choice of units is arbitrary but is meant to be commensurate
with electron spin qubits in, e.g., quantum dots.
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suppression N is then determined from Eq. (26) by

N = log10(D)

log10[(J + β)τc]
− 1. (28)

Values of K where N is found to increase ultimately
correspond to those identified as values of Kopt.

We find that the scaling method described above is a
convenient numerical method for determining the structure
of the dominant term in the effective error Hamiltonian for
each of the optimal sequences obtained for a given Kopt. In
order to fully characterize the scaling of H̄err, it is necessary to
analyze the distance measure D as a function of each relevant
parameter. In the case of ideal pulses, this would correspond
to analyzing the performance as a function of {J,β,τd} in
the regimes of interaction-dominated dynamics (J 	 β) and
environment-dominated dynamics (J � β) since each regime
may exhibit different scalings. When finite-pulse duration
and flip-angle errors are included, the number of parameters
increases to either a subset of {J,β,τd,τp,ε} or the entire
set if both forms of pulse errors are present. Further details
regarding this procedure can be found in Appendix D. It is
then necessary to analyze the scaling of D in each of the
various parameter regimes in addition to the interaction- or
environment-dominated regimes, e.g., pulse-width dominated
(τp 	 τd ), free-evolution dominated (τp � τd ), flip-angle
error dominated (ε 	 Jτd ), etc. In the subsequent analysis,
we make use of this technique in conjunction with direct cal-
culation of the effective error Hamiltonian to fully characterize
sequence performance for each pulse profile. The effective
Hamiltonian calculation is utilized to provide additional
insight into the structure of H̄err that can not be observed from
the scaling method, most notably in situations where multiple
sequences exhibit identical performance scalings.

A. Ideal pulses

Here, we examine the optimal sequence structure of
ideal, zero-width pulses with respect to the strengths of the
internal dynamics, J and β, in the regime where Jτd,βτd ∈
[10−10,102]. Under the condition of uniaxial pulses, the set of
possible control pulses G = {I,X,Y,Z}, where I is the identity
operator and

X(Y,Z) = −i σ x(y,z), (29)

describe π -pulse unitary operators generated by Eq. (17)
when HC(t) is nonzero. Neither the error Hamiltonian, nor
the pure environment Hamiltonian, is present during the
pulse evolution in the limit of zero-width (infinite-amplitude)
pulses.

Characteristics such as the dimension of the reduced
search space NR(K) are determined by the number of
elements in the pulse set G. Under the conditions of ideal
δ-function pulses, NR(K) = 4K−1 at l = lmax. Consequently,
the initial search space only contains 16 possible sequence
configurations for all K using the complexity-increase pro-
cedure described in Appendix A 5a. All 16 are chosen to
represent the initial population at the commencement of the
algorithm and the size of the population is kept constant
throughout.

1. Summary of numerical search

Initially, the algorithm is benchmarked at K = 4, where it is
confirmed that the well-known universal decoupling sequence
[20]

XY4 = Yfτd
Xfτd

Yfτd
Xfτd

, (30)

along with its obvious generalization

GA4 := P2fτd
P1fτd

P2fτd
P1fτd

, (31)

where P1 �= P2 ∈ {X,Y,Z}, is indeed optimal over the range
of J,β specified above. The optimality of this particular
sequence is attributed to its achievement of first-order error
suppression for general single-qubit decoherence [3], which
can be confirmed numerically by analyzing the scaling of
Eq. (26) with respect to {J,β,τd}, where

D ∼
{

O
(
Jβτ 2

d

)
: J � β,

O
(
J 2τ 2

d

)
: J 	 β.

(32)

Alternatively, first-order error suppression can be validated by
calculating the effective error Hamiltonian for a specific choice
of Pj , e.g.,

H̄XY4
err ≈ −iτdσ

x ⊗ [B0,Bx]

+ i

2
τdσ

z ⊗ ([B0,Bz] − i{Bx,By}). (33)

As mentioned above, the next interesting result occurs at
K = 8 where second-order decoupling is first observed. The
optimal sequences located at this particular value of K can be
partitioned into two general structures denoted as a-type and
b-type sequences such that

GA8a := IP1P2P1IP1P2P1, (34)

GA8b := (P3P2)P1P2P1(P3P2)P1P2P1. (35)

Note that we have dropped the free-evolution periods for
convenience of notation and highlighted the pulses which
are not separated by free-evolution periods with parentheses.
In addition to the obvious structural differences between the
two sequences, essentially described by whether P3 = P2 is
satisfied, a contrast is also observed from the standpoint of the
effective error Hamiltonian. Since it is possible to effectively
extract the dominant terms of the effective error Hamiltonian
by examining the scaling of the performance measure, we turn
to our numerical method and determine

D8a ∼
{

O
(
Jβ2τ 3

d

)
: J � β,

O
(
J 3τ 3

d

)
: J 	 β,

(36)

D8b ∼ O
(
Jβ2τ 3

d

) ∀ J,β. (37)

Clearly, the difference occurs in the regime of interaction-
dominated dynamics, where terms in the effective error
Hamiltonian that solely comprise products of the interaction
Hamiltonian begin to govern the scaling of GA8a’s perfor-
mance.

In addition to providing insight into the general structure
of optimal sequences for K = 8, the results also show an
immediate correspondence with known eight-pulse sequences,
namely,

XY8 = IXYXIXYX. (38)
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Known for providing second-order error suppression for gen-
eral single-qubit decoherence [21], XY8 gains its decoupling
attributes from its structure: the XY4 sequence followed by a
time-reversed copy. An alternative perspective of XY8 is that
of a concatenated sequence composed of XY4 (GA4 = XY4)
and CPMG = Pfτd

Pfτd
(P = X). In general, depending on

the choice of the CPMG pulses, two different variations arise:
GA8a or GA8b. Interestingly, the latter viewpoint is perhaps the
most useful for sequence characterization since all remaining
optimal sequences from K = 16 to 256 can be interpreted
as concatenations of various combinations of CPMG, XY4,
and both K = 8 optimal sequences. This result not only
conveys the importance of these sequences as fundamental
building blocks for arbitrary K optimal sequences, but also the
significance of concatenation in achieving high, perhaps even
arbitrary, order error suppression in the regime of fixed-pulse
intervals.

Let us now discuss the remaining sequences and focus on
sequence lengths, and generalized sequence constructions, that
yield additional orders of error suppression. We find that in
order to achieve third-, fourth-, and fifth-order decoupling, a
minimum of 32, 64, and 256 pulses are required, respectively.
The sequences responsible for these effects are

GA32a := GA4[GA8a], GA32b := GA8a[GA4],

GA64a := GA8a[GA8a], GA64b := GA8b[GA8b],

GA256a := GA4[GA64a], GA256b := GA8b[GA32a],

where the square brackets are used to denote a concatenated
structure, e.g.,

GA32a = P2(GA8a)P1(GA8a)P2(GA8a)P1(GA8a)

= GA4[GA8a]. (39)

TABLE I. Summary of distance measure (D) scalings for each
optimal GAK sequence identified in the ideal pulse limit, for a fixed-
pulse interval of τd . Boxed performance scalings highlight optimal se-
quences in each of the relevant (J,β) regimes (columns) for each Kopt.

Sequence

Name Description J � β J 	 β

GA4 P1P2P1P2 O(Jβτ 2
d ) O(J 2τ 2

d )

GA8a IP1P2P1IP1P2P1 O(Jβ2τ 3
d ) O(J 3τ 3

d )

GA8b P3(GA4)P3(GA4) O(Jβ2τ 3
d ) O(Jβ2τ 3

d )

GA16a P3(GA8a)P3(GA8a) O(Jβ2τ 3
d ) O(J 3τ 3

d )

GA16b GA4[GA4] O(Jβ2τ 3
d ) O(Jβ2τ 3

d )

GA32a GA4[GA8a] O(Jβ3τ 4
d ) O(J 2β2τ 4

d )

GA32b GA8a[GA4] O(Jβ3τ 4
d ) O(J 2β2τ 4

d )

GA64a GA8a[GA8a] O(Jβ4τ 5
d ) O(J 3β2τ 5

d )

GA64b GA8b[GA8b] O(Jβ4τ 5
d ) O(J 3β2τ 5

d )

GA64c GA4[GA4[GA4]] O(Jβ3τ 4
d ) O(J 2β2τ 4

d )

GA256a GA4[GA64a] O(Jβ5τ 6
d ) O(J 3β3τ 6

d )

GA256b GA8b[GA32a] O(Jβ5τ 6
d ) O(J 3β3τ 6

d )

GA256c GA4[GA64c] O(Jβ4τ 5
d ) O(J 2β3τ 5

d )

The performance of both 32-pulse sequences scales as
D32a,b ∼ O(τ 4

d ). Similarly, the 64- and 256-pulse sequences
obtain performance scalings of D64a,b ∼ O(τ 5

d ) and D256a,b ∼
O(τ 6

d ). A more detailed characterization of the performance
scaling for each sequence is given in Table I. Note that we also
include K = 16 sequences even though they do not achieve
additional orders of error suppression. Their significance
will become apparent in subsequent discussions on pulse
imperfections presented in the main text and Appendix. In
regards to the remaining optimal sequences, one may notice the
absence of XY4-based CDD which contains sequences of K =
16,64,256 pulses. The generalized sequences defined above in
fact outperform CDD sequences and obtain an additional order
of decoupling at each of the K = 16,64,256 sequence lengths.

2. Characterization of G AK sequences in ( J,β) space

In Fig. 1, the space of optimal sequences is characterized
as a function of Jτd and βτd for each of the optimal sequence
lengths discussed above. A general trend is observed for
each sequence type, where a-type sequences tend to be
optimal when J < β and b-type sequences dominate the
J > β regime. Note that when the bath dynamics is dominant
such that βτd 	 1, repeated cycles of GA4 become the
preferred sequence. Here, bath self-averaging effects are more
prominent and sequence effectiveness is reduced dramatically
for more sophisticated sequence structures which possess cycle
times that are longer than β−1. It is important to note that
additional sequences beyond those discussed above also ap-
pear: GA64c = GA4[GA4[GA4]] and GA256c = GA4[GA64c].
These structures correspond to generalized XY 4-based CDD
sequences which only appear to be optimal when Jτd 	 1.
This result is consistent with the performance scaling equations
presented in Table I, where the quadratic scaling in J for c-type
(as opposed to cubic scaling for a,b-type) sequences is clearly
more favorable when Jτd 	 1.

B. Finite-width and flip-angle errors

Flip-angle and finite-width pulse errors are prevalent in
a variety of experimental settings. Therefore, it is necessary
for DD sequences to be robust against both types of errors
simultaneously if reliable computation is to be implemented
under the protection of DD in realistic setups. Designs based
on (C)DCG [50–52] do not apply in this case as they do not
address flip-angle errors. The KDD sequence is applicable, but
unlike this study, it employs π pulses which are not uniaxial
[58]. As a final consideration, we investigate the inclusion of
the two forms of pulse errors and search for optimal sequences
at each Kopt. By performing this search, we are essentially
addressing the possibility of constructing fault-tolerant DD in
the most convenient possible arrangement: fixed-pulse interval
and rectangular pulse shape.

The control pulse set is nowG = {I,X,Y,Z,X̄,Ȳ ,Z̄}, where
each pulse operator is defined by

X(Y,Z) = e−iτp[A(1+ε)σx(y,z)+H0] (40)

with {X̄,Ȳ ,Z̄} corresponding to 180◦ phase rotations (A →
−A) and I ≡ exp(−iτpH0). The identity operator is chosen in
this manner so that the cycle time for a given K is equivalent
for all sequences. Note that pulse operators for nontrivial
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FIG. 1. (Color online) Performance of GAK sequences for K = 4,8,16,32,64,256, as shown in (a)–(f), respectively, as a function of J and
β. The minimum pulse interval is fixed at τd = 0.1 ns and the results are averaged over 10 realizations of Bμ. The GAKa sequences tend to be
optimal in the range J < β, while GAKb are optimal for J � β. Sequences closely related to the deterministic structure of CDD, GAKc, begin
to appear as optimal sequences for Jτd > 1 at K = 64.

pulses now include the internal Hamiltonian H0 to effectively
model pulses which are finite in duration and amplitude. This
form reduces to the ideal-pulse operators given in Eq. (18)
by considering infinite-pulse amplitude (A → ∞) and a pulse
duration τp → 0 so that ‖HC(t)‖τp = π/2 is maintained and
‖H0‖τp → 0.

Of course, we must still make the strong pulse assumption
‖HC(t)‖ 	 ‖H0‖ in order to reduce the additional errors
generated by H0 during the pulse. We enforce this assumption
in the following section and utilize it to calculate effective
pulse dynamics where the contributions of H0 are essentially
perturbations to HC(t). The effective pulse operators are
then used to calculate effective error Hamiltonians for each
sequence.

The amplitudes of the error and bath Hamiltonians are
chosen as J = 1 MHz and β = 1 kHz, respectively. Optimal
sequence performance is analyzed with respect to ε and τp

in the regime where J 	 β and Jτd � 1 to characterize
sequence robustness as a function of errors generated by the
DD pulses.

1. Results of numerical search

Here, we present a summary of our numerical search for
pulse error-optimized sequences, which we will refer to as
robust GAK (RGAK ) sequences. The first case to examine is
that of K = 4, where we locate two optimal sequences

RGA4 := P̄2fτd
P1fτd

P̄2fτd
P1fτd

(41)

and two cycles of

RGA2 := P̄ fτd
Pfτd

, (42)

which we will denote as 2 × RGA2. It is perhaps not
surprising that a robust version of GA4 appears as an optimal

sequence given the results of the ideal-pulse analysis. The
more interesting result is the emergence of 2 × RGA2 as an
optimal four-pulse sequence since it does not provide complete
first-order error suppression. Its presence is clearly attributed
to its robustness against pulse imperfections rather than errors
generated by free evolution.

Determining which form of pulse error is addressed most
effectively by RGA2, and RGA4 for that matter, is best
accomplished via direct calculation of the effective error
Hamiltonian. In the case of RGA4, the effective dynamics
is governed by

H̄ RGA4
err ≈ −π2ε2

2τc

σ z − 4τp

πτc

σ zBx−y + O(εJ τp,εJ τd ), (43)

with Bx−y ≡ Bx − By , while for RGA2,

H̄ RGA2
err ≈ σxBx − 4τp

πτc

(1 − ε)σ zBy + O(εJ τp,εJ τd ). (44)

Here, the pulses are taken as {P1,P2} = {X,Y } and P = X

for RGA4 and RGA2, respectively. Note that RGA4 produces
first-order decoupling in τp and ε, yet does not effectively
address errors generated by the finite-pulse duration. The
effective error Hamiltonian for RGA2 confirms the presence
of O(Jτd ) terms and also displays a similar lack of first-order
decoupling in τp. The primary distinction between the two
sequences is the suppression of O(ε2) errors provided solely
by RGA2. In summary, the regimes of optimal performance for
each sequence can be characterized as follows: RGA4 is most
advantageous when the pulse imperfections are relatively small
and the free-evolution periods ascribe to the primary source of
decoherence (Jτd > Jτp and Jτp > ε), while RGA2 is most
effective when flip-angle errors are dominant (ε > Jτp and
ε > Jτd ).
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Continuing the search to K = 8, we find that all eight-pulse
optimal sequences which exhibit robustness to both finite-
pulse width and flip-angle errors can be described by

RGA8a := I P̄1P2P̄1IP1P̄2P1, (45)

RGA8c := P1P2P1P2P2P1P2P1. (46)

Again, a correspondence between RGAK and GAK sequences
is observed with RGA8a , as it is essentially GA8a with π -phase
adjustments required for additional robustness against pulse
imperfections. The latter sequence did not appear as an optimal
sequence in the ideal-pulse analysis; however, it is identified as
a generalized version of the well-known Eulerian DD (EDD)
sequence which is known for producing first-order decoupling
in the pulse duration [49]. See Appendix E 1 for a detailed
discussion of EDD and additional RGAK sequences optimized
exclusively for finite-pulse width.

The effective error Hamiltonian for RGA8a ,

H̄ RGA8a

err ≈ 4τp

πτc

[σxBz + σ z(Bx − 2Bz)] − 4πετd

τc

σ zBx−y,

(47)

displays an improvement in performance over both K = 4
optimal sequences in its ability to produce second-order de-
coupling in both τd and ε. Further improvement in robustness
is observed for RGA8c, where

H̄ RGA8c

err ≈ (σx + σy)

[
π3ε3

2τc

− 4ετp

τc

(Bx + By)

]
+O

(
εJ τd,J

2τ 2
d

)
(48)

confirms the first-order decoupling in τp expected from
EDD sequences and, interestingly, displays a second-order
decoupling in ε as well. While RGA8c appears to address pulse
imperfections more effectively that RGA8a , its optimality is
limited to the regime where τp > τd and Jτp > ε. Following,
we will illustrate this result by analyzing performance numer-
ically as a function of ε and τp.

The remaining optimal sequences obtained for K =
16,32,64,256 do not appear to offer any additional robustness.
Each sequence is either robust against finite-pulse width or flip-
angle errors, but not both forms of pulse errors simultaneously.
The effective error Hamiltonians are generally defined as

H̄ a
err ≈ τp

τc

∑
μ,ν

γμν σμBν + O(εJ τp,εJ τd ) (49)

for a-type sequences and

H̄ c
err ≈ ε2

τc

∑
μ

ζμ σμ + O(εJ τp,εJ τd ) (50)

for c-type sequences, with the worst possible case of H̄ b
err =

H̄ a
err + H̄ c

err appearing primarily for b-type sequences. Table II
presents all remaining sequences we have located, and outlines
the scaling of the effective error Hamiltonians for each
sequence.

In summary, our results essentially indicate that attaining
robustness for a wide range of τp, τd , and ε solely by manip-
ulating the sequence configuration is insufficient. However,
this does not invalidate the sequences we have obtained here
since if a particular parameter regime is achievable, namely,

TABLE II. Summary of distance measure D scalings for optimal
RGAK sequences identified for DD evolution subjected to finite-
width pulses of duration τp and flip-angle errors with rotation error ε

in the regime of system-environment interaction-dominated (J 	 β)
dynamics. The sequences with the best performance scaling in each
parameter regime (column) for each Kopt are boxed. Note specifically
the case of strong pulses dominated by flip-angle errors (Jτp �
ε) where RGA8a , RGA16a , and RGA64a obtain the more favorable
performance scaling.

Sequence

Name Description Jτp � ε J τp 	 ε

RGA2 P̄ P O(Jτd ) O(Jτp)

RGA4 P̄2P1P̄2P1 O(J 2τ 2
d ,ε2) O(J 2τ 2

d ,J τp)

RGA4′ P̄2P̄1P̄2P1

RGA8a I P̄1P2P̄1IP1P̄2P1 O(εJ τd ) O(Jτp)

RGA8c P1P2P1P2P2P1P2P1 O(εJ τd,ε
2) O(J 2τ 2

d ,J 2τdτp)

RGA16a P̄3(RGA8a)P3(RGA8a) O(Jτp) O(Jτp)

RGA16b′′ RGA4′ [RGA4′ ] O(ε2) O(Jτp)

RGA32a RGA4[RGA8a] O(ε2) O(Jτp)
RGA32c RGA8c[RGA4] O(ε2) O(εJ τp)

RGA64a RGA8a[RGA8a] O(Jτp) O(Jτp)

RGA64c RGA8c[RGA8c] O(ε2) O(εJ τp)

RGA256a RGA4[RGA64a] O(ε2) O(Jτp)

the strong-pulse regime where flip-angle errors are dominant
(Jτp � Jτd � ε), sequences such as RGA8a , RGA16a , and
RGA64a still exhibit a high level of robustness. This is not only
evident from their ability to suppress errors solely proportional
to ε and τd (see Appendix E 2 for a discussion of RGAK

excusively for flip-angle errors), but also from the fact that
error accumulation for O(Jτp) terms is not observed as the
number of pulses is increased. Therefore, if the pulse duration
can be made small relative to the pulse interval, then the
finite-width errors are less consequential and it is still possible
to maintain some form of robustness without the need for
additional techniques. When such a regime is not attainable,
it may be necessary to utilize pulse-shaping techniques to
aid flip-angle-error robust sequences in the suppression of
finite-width pulses, or to exploit composite pulses to suppress
flip-angle errors for sequences highly robust to finite-width
pulses. Ultimately, a combination of sequence configuration,
pulse shaping, and composite pulses is most likely the path
forward to constructing fault-tolerant DD sequences for a wide
range of parameter regimes.

2. Characterization of RGAK sequences in (ε,Jτ p) space

In Fig. 2, the regions of optimal performance for the
RGAK sequences are characterized with respect to magnitude
of the flip-angle error ε and the ratio of the pulse duration
τp to pulse delay τd . For each K , an evident partitioning
in the space is observed depending on the form of the
prevailing pulse error indicating that it is not possible to
combat both forms of pulse imperfections simultaneously
by solely manipulating sequence configuration. We find that
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FIG. 2. (Color online) Performance of RGAK sequences for K = 4,8,16,32,64,256, as shown in (a)–(f), respectively, as a function of ε

and τp/τd . The minimum pulse interval is fixed at τd = 0.1 ns, while J = 1 MHz and β = 1 kHz. The flip-angle error is varied from a 1%
to a 10% error and τp is varied throughout a wide range of values so that τp � τd and τp 	 τd is explored. The majority of the parameter
space is dominated by the RGAKa sequences, even in the finite-width error-dominant regime. The robustness of RGAKa to pulse imperfections
ultimately saturates at K = 64. All simulations are averaged over 10 realizations of Bμ.

the a-type sequences, along with RGA2, are more effective
against flip-angle errors and offer increasing performance
for K = 16,32,64,256 as τp/τd → 0. (See Appendix E 2 for
implications and details regarding this result.) Upon reaching
τp = τd , the optimal sequence structure is highly dependent
upon the relationship between Jτp and ε. Sequences of a

type continue to be the preferred structure for ε > Jτp, while
b-type and additionally defined (c-type) sequences are optimal
when ε < Jτp. These results are essentially illustrations of
the analysis given in the previous section where sequence
effectiveness is described in terms of the effective error
Hamiltonian.

IV. COMPARISON WITH KNOWN
DETERMINISTIC SCHEMES

In this section, GAK and RGAK optimal sequences are
compared to two known deterministic DD schemes: CDD and
QDD, for each pulse profile.

CDD represents a fair comparison to the numerically
optimal sequences since in both cases the pulse intervals are
fixed and the error suppression properties are dictated only
by the sequence structure. Schemes which rely on optimized
pulse delays to gain decoupling efficiency, such as QDD (see
following), have much better scaling and error suppression
properties than fixed delay schemes in the ideal-pulse limit.
However, the GAK optimal sequences can be expected to
prevail in the case of nonideal pulse profiles, where no robust
version of QDD currently exists. Optimal control theory can
also be used to generate robust DD sequences [71].

The foundation of single-qubit CDD rests on the universal
decoupling group (modulo irrelevant phases)

S = {I,X,Y,Z}, (51)

i.e, the single-qubit Pauli group, which implements first-order
error suppression by symmetrizing Herr over S. Higher-
order error suppression can be achieved by continuing the
symmetrization recursively, such that each additional level
averages out the leading term in the Magnus expansion of
each sublevel. At the rth level of recursion,

CDDr = Ȳ CDDr−1X̄ CDDr−1Ȳ CDDr−1X CDDr−1, (52)

where CDD0 = fτd
and the first level of symmetrization r = 1

corresponds to RGA′
4 with {P1,P2} = {X,Y }:

CDD1 = RGA4′ = (
Yfτd

Y
)(

Zfτd
Z

)(
Xfτd

X
)(

Ifτd
I
)
. (53)

Note that S-based CDD requires 4r pulses to accomplish rth-
order error suppression [23].

A large body of work now exists concerning DD sequences
with nonuniform pulse intervals, a technique which enables
a drastic improvement over the exponential scaling of CDD.
Uhrig DD (UDD) is one such method, which applies DD pulses
separated by unequal time intervals, at instances determined
by a closed-form expression originally developed in the
context of the spin-boson model [38]. Using N control pulses,
UDD suppresses the first N orders of the time-dependent
perturbation theory expansion along the directions which do
not commute with the pulses, provided the bath spectral density
contains a sharp high-frequency cutoff [38,39], or for generic
bounded bath operators [40]. For an analysis of the scaling
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FIG. 3. (Color online) Comparison of performance for (a) CDD (empty symbols) and (b) QDD (empty symbols) versus GAK (filled
symbols) as a function of the pulse interval τd in the ideal-pulse limit. The strength of the error Hamiltonian is chosen as J = 1 MHz and
the strength of the pure-environment dynamics β = 1 kHz. Optimal GA sequences achieve a higher-order error suppression than CDD as the
number of pulses increases; note GA64a and GA256a as compared to CDD3 and CDD4, respectively. In contrast, QDD outperforms GAK for all
sequence lengths, consistent with the expected superiority of interval-optimized schemes in the ideal-pulse limit.

properties and corresponding distance measure performance of
UDD, see Ref. [42]. UDD can be extended to combat general
single-qubit decoherence by nesting two anticommuting UDD
sequences. The resulting quadratic DD (QDD) scheme [43]
achieves min(M1,M2)th-order decoupling using M1 × M2

pulses in the ideal pulse limit, where Mj , j = 1,2, refers
to the number of pulses in each nested UDD sequence. The
decoupling efficiency of QDD has been extensively studied
and confirmed numerically [44] and analytically [45].

Most relevant to us, because it decouples a single qubit
from a general system-bath interaction, is the QDD sequence,
generated by nesting two UDD sequences as

QDDM1,M2 = �
M2+1
2

M2+1∏
j=1

�2 UDD�1
M1

(
λ

(M2)
j τd

)
= UDD�2

M2

[
UDD�1

M1
(τd )

]
, (54)

where �1 �= �2 are the generators of S and

UDD�
M (τd ) = �M+1

M+1∏
k=1

�f
λ

(M)
k τd

. (55)

The free-evolution periods for each UDD sequence are dictated
by the normalized pulse intervals

λ
(M)
k = t

(M)
k − t

(M)
k−1

t
(M)
1 − t

(M)
0

, (56)

where

t
(M)
k = τc sin2

(
kπ

2M + 2

)
, j = 1,2, . . . ,M + 1, (57)

and (minimum) pulse delay τd . In the following analysis, we
will focus on Mj = M , j = 1,2, to account for the effectively
uniform decoherence model of Eq. (15) and arbitrarily choose
�j ∈ {Z,X} as the generators of S.

A. Ideal pulses

In Fig. 3(a), we compare the performance of CDDl to
GAK with respect to Jτd ∈ [10−12,102] for J = 1 MHz and
β = 1 kHz in the ideal-pulse limit. Numerically optimal
sequences first coincide with CDDl at K = 16, where both
achieve second-order error suppression. The main advantage
of GA16a over CDD2 is a reduction in the error amplitude
by a factor of approximately 103. Significant improvement
in error suppression is observed for K = 64 and 256, where
GA optimal sequences offer an additional order of error
suppression over corresponding CDD sequences r = 3,4. The
results indicate that CDD does not constitute an optimal
deterministic sequence structure for fixed-pulse delays. In
Sec. V, we elaborate on this fact and explore the possibility
of designing a deterministic scheme to correctly describe the
optimal GA sequences.

Pulse-interval-optimized sequences have been shown to
far surpass the decoupling efficiency of any known fixed-
pulse-interval scheme in the ideal-pulse limit, requiring only
a quadratic increase in the number of pulses to suppress
an additional order of the Magnus expansion. We validate
the above statement by comparing QDDM to the optimal
GA sequences in Fig. 3(b) for M = 1,3,7,15; an equivalent
number of pulses to K = 4,16,64,256, respectively. For each
set of sequence orders {M,M} QDDM attains a decoupling
order of M , which is beyond the ability of the GAK for
an equivalent number of pulses. QDDM superiority is an
indication that optimizing with respect to pulse interval, in
addition to pulse configuration, is necessary to obtain higher
decoupling efficiency. However, these results depend heavily
on the ideal-pulse limit. As we show in the next section, the
story is very different when finite-width and flip-angle error
effects are accounted for.

B. Finite-width and flip-angle errors

As a final comparison, we examine the performance and
robustness of RGAK , CDDr , and QDDM in the presence of
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FIG. 4. (Color online) Performance of RGAK , CDDr , and QDDM when subjected to finite-pulse duration and flip-angle errors. The pulse
interval is fixed at τd = 0.1 ns, while J = 1 MHz and β = 1 kHz. RGAK sequences significantly outperform both CDDr and QDDM for
K = 4,16,64,256. The most notable region of robustness exists for ε < 0.04 and τp < τd for K = 16,64,256.

both finite-width and flip-angle pulse errors. In particular, we
focus on the performance as a function of ε and τp relative to
the size of the pulse interval τd = 0.1 ns. The flip-angle error is
varied from 0 to a 15% rotation error, the ratio of pulse duration
to interpulse delay τp/τd ∈ [10−5,104], and J = 1 MHz with
β = 1 kHz. We average over 10 realizations of Bμ.

The performance of RGAK is shown in Figs. 4(a)–4(d) for
K = 4,16a,64a,256a, respectively. Although additional opti-
mal configurations were identified at other sequence lengths,
we focus on these particular values of K to compare them
directly to CDDr , r = 1,2,3,4, and QDDM , M = 1,3,7,15.
RGAK performance is found to be primarily dependent upon
τp, only showing significant ε dependence when ε � 0.04.
Below ε = 0.04, specifically in the region where τp < τd ,
robustness increases as the number of pulses is increased
from K = 16a to 256a. Error accumulation within this
particular range of values appears not to be an issue. CDDr

performance is displayed in Figs. 4(e)–4(h) for r = 1,2,3,4,
respectively. In contrast to RGAK , CDDr performance exhibits
a strong dependence on flip-angle errors rather than finite-pulse
duration. Optimal performance is heavily concentrated around
small values of ε due to the low level of robustness exhibited
by CDDr for flip-angle errors. Robustness to finite-pulse
duration appears to be most noticeable for r = 2,4, although
performance is still rather poor compared to RGAK .

Lastly, we examine QDDM in Figs. 4(i)–4(l), where M =
1,3,7,15, respectively. The lowest sequence order M = 1
generates the exact same sequence as RGA4, therefore,
performance is identical. The remaining sequence orders result
in continual error accumulation, which is evident from the
steady decline in performance from M = 3 to 15. As in the

case of CDDr , QDDM performance is primarily ε dependent
and degrades rapidly with increasing ε. Similarly to the
additional comparisons of numerically optimized sequences
and deterministic schemes for faulty DD pulses given above,
RGAK sequences significantly outperform CDDr and QDDM .

V. EXISTENCE OF DETERMINISTIC STRUCTURE

Concatenation appears to play an important role in the
construction of optimal DD in the case of fixed-pulse intervals.
One of the goals of this study is to determine whether the
optimal sequences provided above can be generalized into a
deterministic concatenation scheme for arbitrary order decou-
pling. As suggested by the ideal-pulse analysis summarized
in Table I, such a scheme is possible by utilizing GA8a as the
fundamental unit of concatenation in

GA(q)
8a = GA8a

[
GA(q−1)

8a

]
, (58)

where GA(0)
8a ≡ fτd

. Requiring 8q pulses, GA(q)
8a achieves

2qth-order error suppression, a quadratic improvement over
the decoupling efficiency of CDD, which requires 42q pulses
to achieve an equivalent decoupling order. The increased
decoupling efficiency is facilitated by second-order error
suppression provided by GA8a , which essentially boosts the
efficiency by a factor of 2 at each level of concatenation.

In Fig. 5, we compare the performance of GA(q)
8a to

that of CDDr and GA4 in the case of zero-width pulses
as a function of the number of pulses K . The results are
averaged over 25 random realizations of Bμ, where the
pulse operators are designated by {P1,P2} = {X,Y } for each
generalized sequence. The strengths of the error Hamiltonian
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FIG. 5. (Color online) Comparison of GA(q)
8a , CDDr , and XY4

performance after one cycle as a function of the number of pulses K

for ideal, zero-width pulses. The strength of the error Hamiltonian
and environment dynamics are set to J = 1 MHz and β = 1 kHz,
respectively, and the minimum pulse interval τd = 0.1 ns. Results are
averaged over 25 random realizations of Bμ, where the error bars are
shown, but quite small. As expected by the results of the GA search
GA(q)

8a , q = 1, . . . ,4, is indeed superior to CDDr , r = 1, . . . ,6, and
XY4.

and bath dynamics are given by J = 1 MHz and β = 1 kHz,
respectively, and the minimum pulse delay τd = 0.1 ns. In
comparing q = 1,2, . . . ,4 and l = 1,2, . . . ,6, the performance
of GA(q)

8a improves dramatically as the level of concatenation
increases, far exceeding that of CDDr and GA4.

However, the truly meaningful test of sequence perfor-
mance is in the presence of pulse errors. Defining

RGA(q)
8a = RGA8a

[
RGA(q−1)

8a

]
, (59)

to effectively combat the inclusion of flip-angle and finite-
width pulse errors, we compare the performance of RGA(q)

8a to
CDDr and RGA4 in Fig. 6 for {P1,P2} = {Y,X}. The relevant
Hamiltonian parameters are equivalent to those chosen for the
ideal case, while the flip-angle error ε = 0.01. As opposed
to fixing τd , we select a fixed cycle time τc to analyze the
relationship between τp and τd as the number of pulses grows.
In particular, we consider τc = 1 ns and τp/τc = 10−10. We
expect robustness to be most noticeable in the strong pulse
regime τp 	 τd , where the primary form of pulse error is
due to the flip-angle errors. Performing the analysis with a
fixed cycle time allows us to examine robustness as a function
of concatenation level and as τp → τd , simultaneously. As
expected by direct calculation of the effective Hamiltonian
for RGA4 [see Eq. (43)], increasing the number of pulses
via multiple DD cycles does not offer an enhancement in
sequence performance due to an immediate accumulation of
error proportional to τp and ε2. In contrast, CDDr performance
remains fairly consistent and oscillates between two values,
seemingly dependent on the parity of the concatenation level.
In Refs. [23,25], a similar study of CDD performance conveyed
that effective cancellation of pulse-width errors occurs for a
range of concatenation levels if the pulse width is much smaller
than the pulse interval; eventual saturation in performance
as r increases occurs once this condition is violated. The
performance characteristics of CDDr differ here due to the
presence of flip-angle errors, which were not accounted for in
Refs. [23,25]. Combined errors are most effectively addressed
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FIG. 6. (Color online) Comparison of RGA(q)
8a , CDDr , and RGA4

performance versus the number of pulses K for combined pulse errors
(flip angle and finite width) after one cycle. Hamiltonian parameters
J and β are the same as those in Fig. 5 with the total cycle time fixed at
τc = 1 ns, as opposed to τd . Results are averaged over 25 realizations
of Bμ with ε = 0.01 and τp/τc = 10−10. The performance of RGA(q)

8a

improves as the number of pulses is increased within a given cycle
time τc. For the specified parameters, CDDr does not exhibit enhanced
performance with increasing concatenation level.

by RGA(q)
8a , as can be seen by the improvements in sequence

performance as concatenation level increases. Note that the
performance eventually begins to show signs of saturation as
the concatenation level increases. Essentially, the pulse interval
is approaching a value comparable to the pulse duration
which leads to finite-width errors becoming a more significant
decoherence mechanism than flip-angle errors or the error
Hamiltonian. RGA8a and its concatenated versions do not
provide protection against finite-width errors, and therefore
their performance becomes hindered by the presence of terms
that are first order in τp.

VI. CONCLUSIONS

In this work, we showed that numerically optimal DD
sequences can be constructed using a genetic algorithm in
conjunction with a simulated annealing convergence accelera-
tor and a complexity-reduction technique. The search focused
on sequences containing K = 1,2, . . . ,256 pulses, however,
we identified optimal performance at K = 4,8,16,32,64,256
and compared each sequence to known deterministic schemes,
such as CDD and QDD. The ideal-pulse analysis showed
that, under the constraint of a fixed-pulse interval, optimal
sequences can be constructed which outperform CDD, yet
fall short of the decoupling efficiency realized by QDD.
Optimization proved to be quite beneficial in the case of
finite-width and flip-angle errors, where numerically optimal
sequences obtained a level of robustness that could not be
reached by either CDD or QDD.

The culmination of our study is centered around the
identification of a deterministic sequence structure that obtains
a high decoupling efficiency in the ideal limit and robustness
to errors generated by pulse imperfections. We determined
that RGA8a [Eq. (45)] is the favored generating sequence
for a majority of the pulse profiles considered. Concatenating
this particular sequence, it is possible to suppress the first 2q

terms in the Magnus expansion using 8q pulses. Compared to
the 4q pulses required for the widely used original version
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of CDD [22], the concatenated version of RGA8a utilizes
quadratically fewer pulses to obtain the same decoupling
order. Although it is not possible to obtain such high levels
of decoupling in the presence of pulse imperfections, RGA8a

contains an inherent robustness that continues to aid the error
suppression process as the level of concatenation increases.
This result is most apparent in our final study of faulty DD
pulses, which includes both finite duration and flip-angle
errors; we found the concatenated RGA8a construction to be
the most robust scheme available for fixed-pulse-interval DD
sequences.

The importance of optimizing over pulse intervals was
clearly displayed in the ideal-pulse analysis, where sequence
configuration optimization alone could not supply the decou-
pling efficiency achieved by QDD. However, in agreement
with previous work, we have shown that pulse-interval-
optimized sequences fail to be robust against additional errors
generated by faulty DD pulses. Future work should focus
on extending the search algorithm to incorporate multiqubit
systems and unequal pulse delays, to obtain robust DD
sequences in the presence of various pulse errors.
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APPENDIX A: INDEPENDENCE OF OPTIMAL
SEQUENCES ON BATH HILBERT SPACE DIMENSION

In order to support our claim in Sec. II B regarding
the independence of optimal sequence configuration on the
dimension of the bath Hilbert space, we consider the case of
six bath spins and search for ideal-pulse optimal sequences
specifically for K = 4. The results obtained from the search
are identical to those presented in Sec. III A, where RGA4

is the dominant optimal sequence. In Fig. 7, the results are
summarized for Jτd ∈ [10−10,103] and βτd ∈ [10−10,103].
Note that, as in the case of four bath spins, RGA4 remains
optimal for most values of J,β.

APPENDIX B: SCALING OF PERFORMANCE

Here, we prove the scaling of distance measure D(U,IS)
described in Eq. (26) for the ideal-pulse limit. First, we prove
that the general distance measure D(U,G) [see Eq. (22)]
satisfies

D(U,G) � 1√
2
‖U − G ⊗ IB‖. (B1)

The upper bound is obtained by utilizing the steps originally
taken in Ref. [70] to obtain the closed-form expression of
D(U,G) given in Eq. (23), where initially it is shown that, for

FIG. 7. (Color online) Summary of results for ideal pulse GA
search for six bath spins. Regions of optimal performance for each
sequence are identical to those obtained for the four-bath-spin case.

� satisfying �†� = IB ,

D(U,G) = 1√
2dSdB

min
�

‖U − G ⊗ �‖F

= min
�

√
1 − 1

dSdB

Re{Tr[U (G† ⊗ �†)]}

= min
�

√
1 − 1

dSdB

Re{TrB[TrS[U (G† ⊗ IB)]�†]}

= min
�

√
1 − 1

dSdB

Re[Tr(��†)]. (B2)

It is then noticed that computing the minimization problem
of Eq. (22) is equivalent to finding the maximum value of
Re[Tr(��†)] over all unitary �. In order to complete the
proof, the singular value decomposition (SVD) � = W�V †

is invoked, where W,V are unitary and � = diag(s1, . . . ,sdB
)

is a real diagonal matrix containing the singular values s1 �
s2 � . . . � sdB

� 0. The relevant expression becomes

Tr(��†) = Tr(W�V †�†) = Tr[�(V †�†W )] (B3)

and the final details of the proof involve showing that
Re{Tr[�(V †�†W )]} is essentially maximized if and only if
V †�†W = IB or, equivalently, when � = WV †. Note that

Re{Tr[�(V †�†W )]} � Tr(�) (B4)

holds for all � that differ from WV †.
It is now straightforward to obtain the bound expressed in

Eq. (B1) since by choosing � = IB we are satisfying the lower
bound expression of Eq. (B4) and generating the upper bound

D(U,G) � 1√
2dSdB

‖U − G ⊗ IB‖F (B5)

� 1√
2
‖U − G ⊗ IB‖. (B6)

Note that we have used the inequality ‖T ‖F �
√

dSdB‖T ‖ in
order to transform from the Frobenius norm [Eq. (B5)] to the
sup-operator norm [Eq. (B6)].

Choosing G = IS , as specified by the desired action of
the DD evolution on the system, and the toggling frame
evolution operator U = Ũ0(τc), the distance measure upper
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bound becomes

D � 1√
2
‖Ũ0(τc) − IS ⊗ IB‖. (B7)

Expressing the unitary evolution operator Ũ0(τc) as a time-
dependent perturbation expansion

Ũ0(τc) = IS ⊗ IB +
∞∑

n=1

Ũ
(n)
0 (τc), (B8)

with Dyson operators

Ũ
(n)
0 (τc) = (−i)n

∫ τc

0
dt1 . . .

∫ tn−1

0
dtn

n∏
j=1

H̃0(tj ), (B9)

we obtain, using the triangle inequality,

D � 1√
2

∥∥∥∥
∞∑

n=1

Ũ
(n)
0 (τc)

∥∥∥∥� 1√
2

∞∑
n=1

∥∥Ũ
(n)
0 (τc)

∥∥. (B10)

The final step is to show that ‖Un(τc)‖ obtains the scaling
claimed by Eq. (26). This is accomplished by using (1) the
triangle inequality, (2) submultiplicativity, and (3) unitary
invariance to obtain an upper bound on Eq. (B9) as follows:

∥∥Ũ
(n)
0 (τc)

∥∥ =
∥∥∥∥∥∥(−i)n

∫ τc

0
dt1 . . .

∫ tn−1

0
dtn

n∏
j=1

H̃0(tj )

∥∥∥∥∥∥
(1)
�

∫ τc

0
dt1 . . .

∫ tn−1

0
dtn

∥∥∥∥∥∥
n∏

j=1

H̃0(tj )

∥∥∥∥∥∥
(2)
�

∫ τc

0
dt1 . . .

∫ tn−1

0
dtn

n∏
j=1

‖H̃0(tj )‖

(3)=
∫ τc

0
dt1 . . .

∫ tn−1

0
dtn

n∏
j=1

‖H0‖

= τn
c

n!
‖H0‖n

(1)
� τn

c

n!
(J + β)n. (B11)

As a result, Eq. (B10) achieves the upper bound

D � 1√
2

∞∑
n=1

τn
c

n!
(J + β)n = 1√

2
(eτc(J+β) − 1). (B12)

Let us now consider the case of N th-order error suppression,
where all Ũ

(n)
0 (τc) for n � N vanish. The bound then truncates

to

D � 1√
2

∞∑
n=N+1

τn
c

n!
(J + β)n, (B13)

which scales accordingly as

D � O
[
τN+1
c (J + β)N+1] (B14)

when Jτc � 1 and βτc � 1 are satisfied.

APPENDIX C: ALGORITHM

Genetic algorithms represent an approach to optimization
problems based on the properties of natural evolution. Given
an initial population and a definition of fitness, the algorithm

simulates the processes of selection, reproduction, and mu-
tation in an attempt to locate the member in the population
with the highest probability of survival. In regards to DD,
the population can be thought of as a subset of all possible
sequence configurations, where a configuration is specified by
the order and types of pulses, for a given sequence length
K . The member with the highest probability of survival
is the sequence which maximally suppresses system-bath
interactions with respect to a particular distance measure.
In the following sections, we outline the representation of
the population and discuss how selection, reproduction, and
mutations are implemented in the setting of DD optimization.

1. Chromosome structure

The canonical approach to GAs is to define a member
of the population by a set of genes, loosely referred to as a
chromosome. Each gene can be thought of as a parameter
in the optimization problem which contributes in some way
to the fitness, and therefore the probability of selection, of
the member. Defining a member in the population as a DD
sequence, Eq. (27) is translated directly into its corresponding
chromosome

C
(α)
j = {P1,P2, . . . ,PK−1,PK}, (C1)

representing the j th member in the αth generation. The genes
are given by the pulses in the sequence, therefore, the number
of genes increases with increasing sequence length. In general,
a sequence and its corresponding chromosome do not have to
be structurally equivalent. Later, we will elaborate on why
the naive translation of Eq. (C1) is not favorable for DD
optimization and discuss how it can be refined; however,
for now Eq. (C1) is adequate to describe each aspect of the
algorithm outlined in the subsequent sections.

The population is given by the set of chromosomes
{C(α)

j }Qj=1, where each C
(α)
j corresponds to a sequence U

(α)
j (τc)

and Q is the population size. The total number of possible
sequence configurations N (K) is determined by both the
length of the sequence and the number of pulse types in G.
The size of the sequence space grows exponentially with the
length of the sequence N (K) = |G|K , where |G| is the number
of elements in G.

The search space can be reduced by imposing the cyclic
DD condition UC(τc) = IS , which is applicable for our focus
on quantum memory preservation. The condition can be recast
in the context of the search problem as

K∏
j=1

P ideal
j ∝ IS (C2)

on all C
(α)
j , where only the ideal, zero-width version of the

pulse is used when finite-width or flip-angle error pulse profiles
define Vμ(t). Applying Eq. (C2), the search space is reduced
to NR(K) = |G|K−1, where only |G|−1 of the original search
space accounts for viable DD sequences.

The initial population is chosen at random from the reduced
search space, such that Q � NR(K). In general, the size of Q

is somewhat arbitrary and expected to vary depending on the
number of degrees of freedom specified by the problem. In the
context of DD optimization, the size of the initial population

052306-15



GREGORY QUIROZ AND DANIEL A. LIDAR PHYSICAL REVIEW A 88, 052306 (2013)

will ultimately end up fixed for all sequence lengths due to the
structure of the initial chromosomes (see Appendix C 5 a for
additional details.

2. Selection

Associated with each chromosome C
(α)
j is a selection

probability p
(α)
j . This quantity defines the probability of being

selected for reproduction in generation α and is given by

p
(α)
j = q

(α)
j∑
i q

(α)
i

, (C3)

where q
(α)
j = − log10 D

(α)
j represents the performance, or

fitness, of the j th sequence. Here, we impose the cyclic DD
condition as well, G = IS , and denote D

(α)
j ≡ D

(α)
j (U (τc),IS).

The logarithm is included in the definition of the fitness due to
complications with the selection probability that are attributed
to the extreme sensitivity of Eq. (22), and any distance measure
for that matter, to sequence variations. The exchange of a single
pulse in a sequence with any other member of the decoupling
set can result in a change in performance up to many orders of
magnitude. Since the reduced search space does not eliminate
all poorly performing sequences, the fitness can vary greatly
in any generation. As a result, there is a reduced contribution
of high-performance sequences in the selection probability
distribution. The logarithm counteracts this issue by increasing
the resolution of the selection probability.

3. Crossover

In each generation, 2Q offspring are produced from the
current population. Members of the population are chosen
for reproduction based on their probability of selection.
The selection process is constrained such that the crossover
procedure only occurs between two distinct members of the
population. Members with a high probability of selection not
only possess a higher likelihood of reproduction, but also have
a higher probability of reproducing with multiple members
in a single generation since each crossover is an independent
event.

Reproduction is implemented by a crossover between two
members in the population, yielding two offspring. To best
illustrate the crossover, consider the two chromosomes

C
(α)
j = {P1, . . . ,Pi, . . . ,Pk}, (C4)

C
(α)
j ′ = {R1, . . . ,Ri, . . . ,Rk}, (C5)

where Pi,Ri ∈ G. The offspring are created by splicing the
parent chromosomes at a location chosen at random, where
each pulse location has an equal probability of being chosen.
Taking the splice point to be the ith pulse site, the resulting
offspring are

C̃
(α)
j = {P1, . . . ,Pi,Ri+1, . . . ,Rk}, (C6)

C̃
(α)
j ′ = {R1, . . . ,Ri,Pi+1, . . . ,Pk}. (C7)

It is essential that the offspring still satisfy Eq. (C2), however,
it is not necessarily true that each is guaranteed to do so.
If the DD condition is not satisfied, the pulse located at the
splice point is manipulated until the condition is satisfied. For

example, if C̃
(α)
j does not fulfill the DD condition, then it is

transformed to

˜̃C(α)
j = {P1, . . . ,P

′
i ,Ri+1, . . . ,Rk}, (C8)

where it now is in agreement with Eq. (C2) and P ′
i ∈ G. In the

situation that ˜̃C(α)
j can not be found, the splice point is chosen

again and the process is repeated until the proper offspring are
created.

The condition set forth by Eq. (C2) restricts the crossover
process and in some cases does not allow it at all. By permitting
the manipulation of the pulse at the splice point, it is ensured
that only the probability of selection dictates reproduction. It is
always possible to construct offspring from the above process
since there is no constraint on yielding offspring which are
identical to the parent chromosomes. Thus, every set of parent
chromosomes is guaranteed to produce some form of offspring.

Upon producing the 2Q offspring, the best Q/4 parents
and 3Q/4 offspring are taken to be the new population. The
partitioning was chosen based on what appeared to be the most
beneficial to the convergence of the algorithm. No duplicate
sequences are allowed in the new population, however, if the
updated population size is less than Q, then new members are
generated at random from within the reduced search space.

4. Mutation

After reproduction, the new population composed of Q/4
parents and 3Q/4 offspring is used to create 2Q mutated
sequences, Q single site and Q double site. Every sequence
in the population participates in both mutation processes,
however, only a portion of the mutated sequences is retained
for the succeeding generation.

Single-site mutations are performed by choosing a pulse
site at random and altering the pulse until Eq. (C2) is again
satisfied. If the DD condition is unsatisfiable, then the original
pulse is replaced and a different pulse site is chosen. It is
possible that only the original configuration satisfies Eq. (C2).
In this situation, the mutated member is simply a duplicate
sequence, therefore it is discarded.

Double-site mutations correspond to linked single-site
mutations. The process begins in a similar manner by choosing
a pulse site at random, say the ith site with pulse Pi . An
additional pulse site is now chosen at random from the set of
pulse sites which have pulse types equivalent to Pi , e.g., the
j th site. Both Pi and Pj are updated simultaneously until the
DD condition is again satisfied. If an additional pulse site does
not exist, then the initial site is reselected and the double-site
mutation process is repeated. As in the case of the single-site
mutation, if the DD condition can not be satisfied, then the
mutated sequence is accepted as the original configuration and
discarded.

At the conclusion of the two mutations, a portion of the
parent, offspring, and mutated sequences will comprise the
new population. Only the sequences that have the highest
fitness with respect to Eq. (22) are desired from each division
of the population. We find that the best Q/8 parent, 5Q/8
offspring, Q/8 single-site mutated, and Q/8 double-site
mutated sequences comprise a favorable distribution for the
new population. Other distributions were considered such as
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taking the best Q/4 of all mutated sequences, as well as
different proportions of the offspring. However, no distribution
appeared to yield a higher probability of optimal sequence
convergence.

5. Necessary convergence accelerators

As noted above, single-site perturbations may result in large
deviations in sequence performance. Hence, the logarithm was
introduced to decrease the performance gap between poor- and
well-performing sequences, thereby increasing the resolution
of the selection probability. However, this adjustment only
proves to aid in optimal convergence for sequences comprised
of K < 16 pulses. This is evident from a simple compar-
ison between CDD and numerically located sequences at
K = 16,64,256, where the numerically “optimal” sequences
perform far worse than CDD.

We suspect that the local minima convergence is ultimately
attributed to significant deviations in sequence performance
that result in relatively large local minima traps. We alleviate
this complication by introducing two convergence accelerators
which act to reduce the size and presence of large traps, thereby
smoothening what we refer to as the fitness landscape. Both
accelerators are crucial for the algorithm to converge on global
optima as the number of pulses increases beyond K = 16.

a. Reducing local traps via complexity

Although the size of N (K) is decreased by imposing
the cyclic DD condition, the resulting reduced search space
NR(K) maintains its exponential scaling in the number of
control pulses. Hence, there is still a high probability of the
subspace containing low-performance sequences that lead to
large local traps. This issue is resolved by reducing the search
space further and systematically increasing its size as the
algorithm iterates, such that the search space at the termination
of the algorithm is NR(K). The additional reduction is
achieved by constraining the complexity of the chromosome,
thereby moderating the possible sequence configurations.

Initially, we choose each chromosome to represent the most
elementary two-dimensional sequence

C
(l=0,α=0)
j = {

Ps1 ,Ps2

}
, (C9)

where l = 0 is the initial complexity index. The notation Psj

denotes a pulse Pj applied at the locations specified by the set
sj . We choose s1 and s2 to contain only the odd and even pulse
sites, respectively, for the initial population. This is a relevant
construction since all known deterministic DD schemes utiliz-
ing fixed free intervals contain the same pulse at either every
even or odd site [20,23]. Moreover, it conveniently reduces the
space to only |G|2 sequence configurations for all K .

For a general complexity index l, the chromosome is defined
as

C
(l,α)
j = {

Ps1 ,Ps2 , . . . ,PsK̃(l)

}
, (C10)

where we require that

K̃(l)⋃
i=1

si = all sites and
K̃(l)⋂
i=1

si = ∅ (C11)

FIG. 8. (Color online) Complexity-reduction protocol for K =
16. The upper (blue) curves denote the linking between odd pulse
sites and the lower (red) curves denote even pulse site linking. The
process begins with all odd and even pulses linked, then continues
by removing links between every other even pulse site. Links are
removed until all even sites are uncorrelated, thereafter the odd sites
undergo the same process.

be satisfied so that only one control pulse is applied at
each pulse site. The number of sets {sj } is determined by
K(l), for l = 0,1,2, . . . ,lmax, whose specification is ultimately
dependent upon the nature of the protocol. At maximum
complexity lmax, the most general sequence within NR(K)
is permitted. Hence, each sj is a single element set containing
only the j th pulse site. An example of the complexity-increase
procedure utilized here is illustrated in Fig. 8 for K = 16.
Note that at each level of complexity increase we have chosen
to remove constraints only pertaining to odd or even sites.
The constraint between every other even site is removed until
each even pulse site is independent, after which the same is
performed on the odd sites.

In contrast to Eq. (C1), the number of elements in Eq. (C10)
increases as the algorithm iterates. It is important to note
that this aspect does not imply an increase in the number
of pulses, rather an increase in the permissible search space.
This is an attractive feature since it not only diminishes
the presence of local traps, but also yields an initial set of
sequence configurations which only scales quadratically in
|G|. Choosing sequences for the initial population is obviously
much more favorable here since the space is drastically smaller
thanNR(K). In principle, it may even be possible to choose the
entire set as the initial population. For a single-qubit system
subjected to ideal π pulses, we find that the complete initial
set of configurations is indeed computationally convenient,
consisting of only 16 possible configurations. Other pulse
profiles lead to larger initial sets, but, remarkably, optimal
sequence convergence is possible for initial populations of
only 16 sequences.

b. Fitness annealing

Substantial differences in sequence fitness manifest local
traps in the fitness landscape. By decreasing the complexity
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of the chromosome, only the probability of generating local
traps is diminished. In order to control the relative differences
between high- and low-performance sequences, we introduce
an annealing process into the selection probability. Adopted
from Ref. [72], the selection probability is redefined as

p
(l,α)
j (T ) = q̃

(l,α)
j (T )∑
i q̃

(l,α)
i (T )

(C12)

[compare with Eq. (C3)] such that

q̃
(l,α)
j (T ) = exp

(
q

(α)
j − q

(α)
best

T (α)

)
. (C13)

The performance of the most fit member in the αth generation
is denoted by q

(α)
best and the temperature function is given by

T (α) = T0

(
Tf

T0

)α/αc
[

1 − η sin

(
λπ

αc

α

)]
. (C14)

The temperature function utilized here is a modified version
of the one introduced in Ref. [72], where we have included the
sinusoidal function to reduce the probability of local minima
convergence as T (α) decreases from the initial temperature
T0 to the final temperature Tf . The number of generations
between these temperatures is dictated by the cutoff generation
αc, which is chosen based on the value of K . For large K , we
pick αc to be large as well since the annealing process is to
accelerate global minimum convergence while reducing the
probability of local minimum convergence. The remaining pa-
rameters η and λ are related to the amplitude and frequency of
the oscillations, respectively. Upon increasing the complexity
index l, the annealing process resets with an initial temperature
T0 chosen so that all sequences in the current population have
an equal likelihood of being chosen for reproduction.

APPENDIX D: EXTRACTING EFFECTIVE ERROR
HAMILTONIAN SCALING NUMERICALLY

In Sec. III A, we discussed the scaling of the distance
measure D for each optimal sequence in the ideal-pulse limit
without direct calculation of the effective Hamiltonian. We
obtain this scaling by assuming that D has the form

D ∼ O
(
J nJ βnβ τN+1

d

)
, (D1)

where N is the decoupling order of the sequence and nJ +
nβ = N + 1. First, the decoupling order is determined by
examining log10 D as a function of τd , as this quantity scales
linearly in τd with a slope of N + 1. The scaling of τd is
only dependent upon the decoupling order N , and therefore is
independent of the relative magnitudes of J and β. The only
constraint we consider is Jτd � 1 and βτd � 1 in order to
satisfy the condition ‖H ′

errτd‖ � 1 discussed in Sec. II A for
effective error suppression.

The scaling of the remaining quantities J and β is
determined for each relevant parameter regime (J � β and
J 	 β) by analyzing log10 D as a function of Jτd by varying
J for fixed τd and β. The logarithm of the performance measure
can again be expected to scale linearly in Jτd , now with a slope
of nJ . The value of nJ will ultimately depend on the magnitude
of J relative to β, however, in either case nJ is well defined.
The scaling of β is now determined from nJ + nβ = N + 1,
where nβ is the only unknown quantity. Note that this method

can be easily extended to include finite-width pulses, flip-angle
errors, or both, by assuming

D ∼ O
(
J nJ βnβ τ

np

p τ
nd

d

)
, (D2)

D ∼ O
(
εnε J nJ βnβ τN+1

d

)
, (D3)

D ∼ O
(
εnε J nJ βnβ τ

np

p τ
nd

d

)
, (D4)

respectively, where np + nd = nJ + nβ .

APPENDIX E: ADDITIONAL RESULTS

1. Finite-width pulses

In this section, we account for errors exclusively due to
finite-width rectangular pulses of duration τp. We note that in
this case EDD is a known way to achieve first-order pulse-
width error suppression, with the added assumption that pulse
shaping is possible [49]. Each optimal sequence construction
is examined with respect to J/β ∈ [10−15,103] for β = 1 kHz
and τp/τd ∈ [10−6,103] for τd = 0.1 ns. The set of allowable
control pulses is given by G = {I,X,Y,Z,X̄,Ȳ ,Z̄}, where the
unitary pulse operators

X(Y,Z) = e−iτp(Aσx(y,z)+H0) (E1)

are generated from Eq. (19). Throughout the following section
we will again enforce the strong pulse assumption (see
Sec. III B) to calculate the effective error Hamiltonian for
various optimal sequences.

a. Summary of numerical search

In optimizing over finite-width flip-angle errors, we con-
sider a situation in which both forms of pulse imperfections
are essentially equally prevalent. Here, we focus on a case
where the flip-angle errors are negligible and the finite-width
duration of the pulse completely determines the errors due
to pulse imperfections. While one may expect a considerable
overlap with the finite-width flip-angle error results, many
of the optimal sequences located in this section will differ
due to their inability to supply any form of flip-angle error
suppression.

The first case we consider is K = 4, where we find that
RGA4 [see Eq. (41)] and RGA4′ (see Table II) are the only
optimal sequence configurations. The two sequences result in
similar effective error Hamiltonians

H̄ RGA4
err ≈ 4τp

πτc

σ zBx−y + H̄ GA4
err , (E2)

H̄ RGA4′
err ≈ 4τp

πτc

(σyBz + σ zBx) + H̄ GA4
err , (E3)

which scale linearly in τp and, therefore, do not provide
first-order error suppression in the pulse duration. Note the
difference in error distribution between the effective error
Hamiltonians generated simply by reversing the phase of a
single pulse. Pulse imperfections generate errors along the σ z

channel for RGA4 and along the σy and σ z channels for RGA4′ .
Depending on the form of the system-environment interaction,
the difference in sequence performance could be quite drastic.
For example, consider the case of uniform decoherence in
the xy plane (Bx = By) which results in complete first-order
decoupling in τp for RGA4 only.
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IXYXIXYX 

FIG. 9. (Color online) Pictorial depiction for the action of RGA8a′

as a Eulerian path along the Cayley graph �(S,G) with vertices S =
{I,X,Y,Z} and generating set G = {I,X,Y,Z}. Note that unlike the
EDD construction [Eq. (46)], RGA8a′ is generated by Eulerian paths
rather than cycles.

The above results indicate that robustness to pulse imperfec-
tions can be extremely sensitive to variations in pulse phases,
even in the simplest case of uniaxial pulses. This statement
continues to hold true for

RGA8a′ := IP1P̄2P1IP1P̄2P1, (E4)

RGA8b := RGA2[RGA4], (E5)

and RGA8c [see Eq. (46)], the finite-width pulse error-
optimized sequences for K = 8. Although obvious similarities
between RGA8a [see Eq. (45)] and RGA8a′ exist, the effect
of altering pulse phases is quite significant. RGA8a does not
produce first-order decoupling in τp, while the effective error
Hamiltonian for RGA8a′ ,

H RGA8a′
err ≈ 16τdτp

πτc

σ yB2
x − 8τdτp

πτc

σ y{Bx,By} + O(Jβτdτp),

(E6)

conveys complete first-order suppression in the pulse duration.
RGA8a′ is the primary optimal sequence located at K = 8,
but is also accompanied by less-robust sequences such as
RGA8b and RGA8c. RGA8b is a robust form of GA8b [see
Eq. (34)] whose lack of first-order decoupling in τp is
particularly favorable when J 	 β. The remaining sequence,
RGA8c, denotes a generic version of the Eulerian DD (EDD)
sequence and attains first-order error suppression in τp by
traversing the Cayley graph � = �(S,G), where S denotes
the single-qubit Pauli group with elements denoting the graph
vertices and G = {I,X,Y,Z} is the generating set comprising
the edges [49]. The original construction (captured by RGA8c)
utilized two closed Eulerian cycles on � such that the second
is completed by returning along the first path. However,
additional paths exist which do not require closed cycles to
obtain first-order suppression in τp. One such case is RGA8a′ ,
where the initial path and its inversion are both open Eulerian
paths, as illustrated in Fig. 9. In comparing RGA8a′ and RGA8c,
the most important aspect appears to be the manner in which
the paths are traversed rather than their closure. Note that
variations in pulse phases may aid in the error suppression
process, but are not necessarily required to obtain first-order
decoupling in τp as GA8a also perform the task. In terms of

performance, RGA8c does not match the second-order error
suppression in τd found for RGA8a′ , as indicated by

H̄ RGA8c

err ≈ −4τdτp

πτc

[
σx

(
B2

y + {Bx,By}
)

+ σy
(
B2

x + {Bx,By}
)] + O

(
J 2τ 2

d

)
. (E7)

This attribute of RGA8c is ultimately the cause for the overall
advantageous performance of RGA8a′ .

Beyond K = 8, optimal sequence configurations are gen-
erally characterized by two specific sequences:

RGA16a′ := P3(RGA8a′ )P3(RGA8a′ ), (E8)

RGA64c := RGA8c[RGA8c]. (E9)

The former emerges at K = 16,32,64,256, where cycles of
RGA16a′ are utilized to generate the correct number of pulses
for each corresponding K value. Additional sequences such
as RGA16b′ := RGA4[RGA4′ ] and RGA32c := RGA8c[RGA4]
appear at K = 16 and 32, respectively, yet neither generate
the effective symmetrization of error along all three decoher-
ence channels achieved by RGA16a′ . Effective dynamics for
RGA16b′ and RGA32c are essentially described by

H̄ RGA16a′
err ≈ 8iτdτp

τc

(
σx

[
B0,Bx − 2

π
Bz

]

+ σy

[
B0,By − 2

π
Bz

]
+ σ z

[
B0,Bz + 2

π
By

])
(E10)

with an additional error term of O(Jβτdτp) along one of
the three decoherence channels. The final sequence described
above, RGA64c, produces a similar effective error Hamiltonian
to RGA16a′ :

H̄ RGA64c

err ≈ 32iτdτp

τc

(
σx

[
B0,Bx + 2

π
By

]

+ σy

[
B0,By − 2

π
Bz

]
+ σ z

[
B0,Bz + 2

π
By

])
,

(E11)

and further suppresses errors of O(J 2τ 2
p) to overtake RGA16a′

as an optimal sequence for K = 64,256 in the system-
environment interaction-dominant (J > β) regime.

A summary of the performance scaling equations for all
optimal sequences discussed above is presented in Table III.
Note that first-order error suppression, in τp, is achieved for
a majority of Kopt. However, we are only able to demonstrate
the reduction of second-order decoherence operators, such as
the suppression of O(J 2τdτp) terms for certain cases, and
not complete suppression of O(τpτd ) or O(τ 2

p) terms. This
result is consistent with DD no-go theorems which prove that
it is not possible to suppress decoherence operators that are
manifested by the second-order perturbation expansion for
the pulse error evolution operator, i.e., O(τpτd ) and O(τ 2

p)
terms, when rectangular pulse profiles are utilized [73,74]. Our
analysis is consistent with these theorems and further conveys
the need to utilize pulse-shaping techniques in conjunction
with optimal sequence construction to achieve high-order
error suppression in the presence of finite-width pulses.
Indeed, when liberated from the constraint of rectangular
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TABLE III. Summary of distance measure (D) scalings for each optimal RGAK sequence located by our
search algorithm, for DD evolution subjected to finite-width rectangular pulses of duration τp pulses and pulse
interval τd . Optimal performance scalings for each Kopt are boxed for each parameter regime (column).

Sequence

Name Description τp � τd τp 	 τd

RGA4 P̄2P1P̄2P 1 O(Jβτ 2
d ,J 2τ 2

d ) O(Jτp)

RGA4′ P̄2P̄1P̄2P 1 O(Jβτ 2
d ,J 2τ 2

d ) O(Jτp)

RGA8a′ IP1P̄2P1IP1P̄2P1 O(Jβτdτp,J 2τdτp) O(Jβτ 2
p,J 2τ 2

p)

RGA8b RGA2[RGA4] O(Jτp) O(Jτp)

RGA8c P1P2P1P2P2P1P2P1 O(Jβτ 2
d ,J 2τ 2

d ) O(Jβτ 2
p,J 2τ 2

p)

RGA16a′ P3(RGA8a′ )P3(RGA8a′ ) O(Jβτdτp) O(Jβτdτp,J 2τ 2
p)

RGA16b′ RGA4[RGA4′ ] O(Jβτdτp) O(Jβτdτp,J 2τ 2
p)

RGA32c RGA8c[RGA4] O(Jβτdτp) O(Jβτ 2
p)

RGA64c RGA8c[RGA8c] O(Jβτdτp) O(Jβτ 2
p)

RGA256c RGA4[RGA64c] O(Jτp) O(Jτp)

pulse profiles, pulse sequences using DCG and CDCG [50–52]
may be employed when pulse-width errors are the dominant
concern.

b. Characterization of RG AK sequences in (τd,τ p) space

In the previous section, finite-width pulse error-optimized
RGAK sequences were identified for various values of K .
In Fig. 10, we summarize these results using numerical

simulations to characterize the regions of optimal performance
for each sequence as a function of J/β and τp/τd . All results
are averaged over 10 random realizations of H0 with fixed τd =
0.1 ns and β = 1 kHz. The system-environment interaction
strength is varied within the range J/β ∈ [10−6,106] and
τp/τd ∈ [103,10−6].

Variations in the regions of optimal performance are
primarily dependent upon the value of J for a given K .
Sequences which obtain a favorable performance scaling for

FIG. 10. (Color online) Performance of optimal RGAK sequences for K = 4,8,16,32,64,256 shown in (a)–(f), respectively, as a function of
J/β and τp/τd when DD is subjected to finite-pulse duration. The norm of the bath Hamiltonian is fixed at β = 1 kHz, while J/β ∈ [10−6,106].
The pulse interval τd = 0.1 ns and the pulse width is varied in the range τp/τd ∈ [103,10−6]. For a given K , the optimal sequence configuration
is most sensitively dependent upon variations in J . Contrary to the ideal-pulse case, concatenated structures composed of RGA8a′ and RGA8c

appear to be the most favorable, in particular, for K � 16 where RGA16a′ and RGA64c repeatedly emerge as optimal sequences. Sequence
performance saturates at K = 16, while robustness begins to diminish at K = 256.
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FIG. 11. (Color online) Comparison of performance between RGAK and (a) CDDl , or (b) QDDM , when subjected to finite-pulse duration.
Performance is characterized as a function of τp , while τd = 0.1 ns. CDDl performance is essentially the same for all r , scaling as D ∼ O(Jτp).
RGAK achieves a significant increase in robustness over CDDr at K = 8a′,16a′,32c,64c, where the performance surpasses the linear scaling
in τp . Note the eventual saturation in decoupling order characteristic of the rectangular pulse profile displayed by the nearly equivalent scaling
of K = 32c,64c. QDDM , M = 1,3,7,15, performance becomes increasingly worse as the sequence order increases due to an accumulation in
errors brought about by the finite duration of the pulses. As in the case of CDDr , QDDM performance maintains D ∼ O(Jτp) for all M . All
results are averaged over 10 realizations of Bμ. Error bars are included, but are quite small.

a given J tend to maintain their dominance throughout a
wide range of τp values extending from the strong pulse to
pulse-width error dominant regimes. As a function of K ,
optimal performance eventually saturates at K = 16 where
RGA16a′ maintains regions of optimal performance within
K = 32,64,256 for J < β. Beyond K = 64, RGA16a′ is
accompanied by RGA64c, which maintains its region of
optimal performance within J > β for K = 64,256. Satu-
ration in optimal sequence configuration and performance
clearly agrees with the results of DD no-go theorems related
to the achievable order of error suppression for finite-width
pulse errors generated by rectangular pulse profiles.

c. Comparison with deterministic sequences

In Figs. 11(a) and 11(b), CDDr and QDDM , respectively,
are compared to the RGAK sequences optimized for finite
pulse width: K = 4,8a′,16a′,32c,64c,256c. The pulse in-
terval is chosen as τd = 0.1 ns, while τp/τd ∈ [10−5,107],
J = 1 MHz, and β = 1 kHz. All results are averaged over 10
random instances of the Hamiltonian.

Optimal performance for RGAK is observed predominately
for K = 32c,64c with K = 16a′ exhibiting a more favorable
performance only in the strong pulse regime, namely, when
τp/τd < 10−2 in Fig. 11. As the finite-width pulse errors
contribute more substantially, O(J 2τ 2

p) terms remaining in
the effective error Hamiltonian for K = 16c result in a
rapid decrease in performance leading to RGA32c/RGA64c

dominance. K = 4 maintains the lowest performance of all
RGAK sequences due to its inability to suppress the first-
order contribution in τp, D ∼ O(Jτp). CDDr performance
is nearly equivalent to K = 4 for τp/τd � 10−4, scaling as
D ∼ O(Jτp) for all r . The most noticeable difference occurs
at τp/τd < 10−4, where CDDr maintains the linear scaling
in τp for r = 2,3,4 and surpasses K = 4,8c. In Ref. [23],

an analysis of CDDr in the presence of finite-pulse width is
discussed as well. There it was shown that CDDr can reduce
pulse-width errors as the concatenation level increases if
τp � τd . Although the total cycle time was fixed, as opposed to
the pulse interval, the results obtained here are quite similar in
the τp/τd < 10−4 regime and confirm the inherent robustness
of CDDl to finite-width pulse errors.

As discussed in Ref. [75], UDD-based schemes are quite
susceptible to finite-pulse width errors and must be imple-
mented with specially tailored pulses to regain a portion of
the UDD decoupling efficiency. We confirm this result here
for the most simplistic pulse shape: the rectangular pulse.
Increasing the sequence order does not result in an increase,
or sustainability, of performance; rather, an accumulation
of error results. As in the case of CDDr , the performance
maintains a linear scaling in τp throughout the specified range
for the higher of the three sequence orders: M = 3,7,15.
The only variation occurs at M = 1 where the performance
becomes dependent upon τd for τp � τd . Although there
exists a regime where both deterministic schemes outperform
K = 4,8c, higher-order RGAK sequences provide a level
of robustness that can not be matched by either CDDr

or QDDM .

2. Flip-angle errors

An additional form of pulse error we consider is that of a
flip-angle error. The control pulse set G = {X,Y,Z,X̄,Ȳ ,Z̄},
with the pulse profile defined in Eq. (20). The resulting unitary
pulse operators are given by

X(Y,Z) = e−iπ/2 (1+ε)σx(y,z)
(E12)

and {X̄,Ȳ ,Z̄} = {X†,Y †,Z†}. The analysis is symmetric with
respect to over-rotations or under-rotations, therefore, our
focus on over-rotations does not result in a loss of generality.
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a. Summary of numerical search

In contrast to the finite-width and finite-width flip-angle
error analyses, where eventual saturation in performance
was observed, flip-angle error-optimized sequences exhibit an
increase in overall decoupling order for a majority of the Kopt

values. Therefore, manipulation of sequence configuration is
sufficient for acquiring robustness to this particular type of
pulse imperfection. Advanced pulse-shaping techniques may
aid in the suppression of additional errors; however, as we
will display below, sequence manipulation alone produces a
surprisingly high decoupling efficiency.

Robustness against flip-angle errors is completely charac-
terized by the a-type RGAK sequences. For K = 4, 2 × RGA2

is predominately the optimal choice, although RGA4 does
appear optimal when J 	 β. The dominance of RGA2 follows
from its O(ε2) decoupling, shown by

H̄ RGA2
err ≈ σxBx − πε

2
(σyBz − σ zBy)

+ π2ε2

4
(σyBy + σ zBz). (E13)

RGA4 does not achieve such a decoupling,

H̄ RGA4
err ≈ −π2ε2

8τd

σ z − πε

2
σ zBx−y

+ π2ε2

4
[σxBx−y + σy(By − 2Bx)], (E14)

and, therefore, is not the preferred optimal sequence for K = 4
until the effects of flip-angle errors are negligible compared to
the errors generated by free evolution (Jτd 	 ε).

We identify RGA8a as the sole optimal sequence for K = 8.
The structure is similar to GA8a and RGA8a′ , differing only by
pulse phases, and identical to a time-symmetrized version of
RGA4 sequence, namely, RGA4RGA4. Time symmetrization
has long been known to be beneficial for DD sequence
construction since all odd-order terms in the effective error
Hamiltonian are averaged out [25,76], even in the case of
pulse errors [13]. The effect of symmetrization is apparent
within

H̄ RGA8a ≈ −πε

2
σ zBx−y + π2ε2

4
σyBx−y

− π2ε2

4
σy(2Bx − By), (E15)

where the dominant error term scales as O(εJ τd ). Comparing
RGA8a to RGA2, the primary difference is the second-order
suppression of O(Jτd ) terms acquired by RGA8a . While RGA2

achieves a similar robustness against flip-angle errors, it fails
to address errors created by free evolution.

In the case of K = 16,32, all optimal sequences can
be characterized by RGA16a . As one may notice from the
definition of the sequence given in Table II, there is some
freedom in the choice of the P3 pulse. Considering the usual
case of {P1,P2} = {X,Y } discussed so far, the following
effective error Hamiltonians emerge for each P3 �= I :

H̄
RGA16a

err,P3=X ≈ π2ε2

4
[σxBx−y − σyBx−y], (E16)

H̄
RGA16a

err,P3=Y ≈ π2ε2

4
[σxBx−y − σy(2Bx − By)], (E17)

H̄
RGA16a

err,P3=Z ≈ πε

2
σ zBx−y. (E18)

Interestingly, the decoupling order for terms proportional to
ε is P3 dependent. Choosing P3 to be orthogonal to P1,P2

is clearly the least favorable choice, with P3 = P1 being the
optimal choice, most notably in the case of uniform decoher-
ence in the xy plane. From the effective error Hamiltonians
above, we find that optimal RGA16a performance is determined
by O(ε2Jτd ) terms. Additional sequence structures such as
RGA32a do not achieve similar performance and, in fact, suffer
from the presence of O(ε2) terms.

The decoupling order again increases at K = 64, where
RGA64a attains suppression of all errors up to O(ε3Jτd ) terms,
confirmed by

H̄ RGA64a ≈ π3ε3

4
σ zBy − 3π3ε3

8
σ zBx. (E19)

Comparing RGA8a and its first-level concatenation RGA64a ,
we find that an additional two orders of error suppression are
achieved simply by a single-level concatenation. An obvious
question that arises from this result is whether additional
orders of decoupling, and possibly arbitrary order decoupling,
is attainable by continuing the concatenation procedure.
While the question of arbitrary order decoupling will not
be addressed here, we are confident that such a scheme
exists due to the O(ε5Jτd ) scaling acquired by RGA512a =
RGA8a[RGA8a[RGA8a]].

The final sequence length considered, K = 256, is the first
instance of complete breakdown in performance. Optimal
sequences consist of cycles of RGA16a and RGA64a with
various regions where free evolution reigns supreme. More
sophisticated sequence structures, such as RGA256a , are not
found to be optimal due to remaining O(ε2) terms. In Table IV,
we display the performance scaling for K = 256 along with
the scalings for the remaining values of Kopt discussed
above.

In summary, the results presented for K = Kopt in the
presence of flip-angle errors demonstrate that successive
error suppression is achievable by concatenation only if the

TABLE IV. Summary of distance measure D scalings for each
optimal RGAK sequence located for DD pulses subjected to flip-angle
errors with rotation error ε, with fixed-pulse interval τd . Boxed
performance scalings highlight optimal performance scaling for
various Kopt.

Sequence

Name Description ε � Jτd ε 	 Jτd

RGA2 P̄ P O(Jτd ) O(εJ τd )

RGA4 P̄2P1P̄2P1 O(Jβτ 2
d ,J 2τ 2

d ) O(ε2)

RGA8a I P̄1P2P̄1IP1P̄2P1 O(εJ τd ) O(εJ τd )

RGA16a P̄3(RGA8a)P3(RGA8a) O(ε2Jτd ) O(ε2Jτd )

RGA32a RGA4[RGA8a] O(ε2) O(ε2)

RGA64a RGA8a[RGA8a] O(ε3Jτd ) O(ε3Jτd )

RGA256a RGA4[RGA64a] O(ε2) O(ε2)
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FIG. 12. (Color online) Performance of RGAK sequences for K = 4,8,16,32,64,256, as shown in (a)–(f), respectively, as a function of
J/β and ε. The minimum pulse interval is fixed at τd = 0.1 ns, J/β ∈ [10−6,106], and β = 1 kHz, while ε is varied from 1% to 20% percent
rotation error. Results are averaged over 10 realizations of Bμ. Sequence performance mostly increases from K = 4 to 64, indicating a reduction
in the error terms proportional to ε in the effective error Hamiltonian. Successive error suppression is achieved for K = 4,8,16,64, where
the maximum error suppression yields D ∼ O(ε3Jτd ) for RGA64a . Multiple cycles of RGA16a and RGA64a appear as optimal sequences for
various Kopt.

outer sequence maintains the same decoupling order as the
inner sequence(s). Supplying a lower-order decoupling outer
sequence ultimately leads to an effective error Hamiltonian
that possesses dominant error terms that are intrinsic to the
low-order sequence. Provided this condition is satisfied, flip-
angle error-optimized sequences exhibit a continual increase
in decoupling order with an increasing number of pulses. Un-
inhibited, due to the absence of no-go theorems for flip-angle
errors, we believe that extending the search beyond K = 256
will result in additional sequence configurations that utilize
concatenations of RGA8a , or even a more robust construction
such as RGA16a , to achieve higher-order decoupling. This
conclusion is supported by the increase in decoupling order
found for RGA512a , which suggests that arbitrary order error
suppression using � concatenations of RGA8a can be used to
achieve D ∼ O(ε2�−1Jτd ).

b. Characterization of RG AK sequences in (ε,Jτd) space

In this section, we illustrate the results obtained for the
flip-angle error-optimized sequence search using numerical
simulations to correctly identify the regions of optimal
performance as a function of J/β and ε (see Fig. 12). The
pulse delay and the strength of the bath dynamics are fixed
at τd = 0.1 ns and β = 1 kHz, respectively. The strength
of the system-environment interaction is varied within the
range J/β ∈ [10−6,106] and the flip-angle error ε ∈ [0,0.2],
corresponding to a 0% to 20% error in pulse rotation. All
results are averaged over 10 random realizations of the bath
operators Bμ.

In contrast to the results obtained for finite-width pulse
errors, optimal sequence configuration and performance gen-
erally increases as a function of K , up to K = 64, indicating
an increase in the suppression of error terms proportional
to ε. Saturation in performance is first observed at K = 32,
where two cycles of RGA16a is the optimal configuration ∀ J,ε

considered. This effect is actually quite brief, as an increase
in error suppression returns at K = 64 via RGA64a . The most
significant attenuation in performance is found for K = 256.
Optimal sequence configurations either consist of complete
free evolution or cycles of previously located sequences.
As discussed in the previous section, we expect additional
increases in performance using more sophisticated sequences
beyond K = 256, perhaps most obviously for concatenations
of RGA8a . We leave this analysis for future studies.

c. Comparison with deterministic schemes

In Appendix A 2a, robust sequences were identified for con-
trol pulses subjected to flip-angle errors. Here, we compare the
numerically optimal RGAK sequences to CDDr and QDDM as
a function of ε. We consider the case of interaction-dominated
dynamics and set the strengths of the environment dynamics
and system-bath interaction to β = 1 kHz and J = 1 MHz,
respectively. The pulse delay is chosen as τd = 0.1 ns and all
data is averaged over 20 realizations of the bath operators
{Bμ}. In addition to K = 2,8a,16a,64a, which exhibit an
increase in decoupling order for terms proportional to ε,
K = 4,32a,256a are included in the comparison as well to
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FIG. 13. (Color online) Performance of RGAK sequences versus (a) CDDr and (b) QDDM as a function of flip-angle error ε ∈ [0.01,0.2]
averaged over 20 realizations of Bμ. The relevant parameters are chosen as J = 1 MHz, β = 1 KHz, and τd = 0.1 ns. Numerically optimal
sequences are found to be highly robust against flip-angle errors, significantly outperforming CDDr for r = 1,2,3,4. For QDDM , the sequence
orders are chosen as M = 3,7,15 and directly correspond to K = 16,64,256. QDD is shown to be highly sensitive to flip-angle errors,
decreasing in performance as M grows. Again, robust GA sequences achieve optimal performance.

fully characterize RGAK performance with respect to both
deterministic schemes.

We first focus on RGAK and CDDr , where RGAK superi-
ority is clearly evident for all values of K shown in Fig. 13(a).
Optimal performance is observed for K = 2,8a,16a,64a,
as expected, with K = 64c providing the highest level of
robustness to flip-angle errors using the smallest number of
pulses. Although the lowest level of performance for RGAK

occurs at K = 4,32a,256a, a considerable improvement over
the corresponding CDDr , r = 1,2,3,4, is seen. Optimal CDDr

performance is achieved at r = 2,4, where the performance
can be shown to scale as D ∼ O(ε2). The remaining levels of
concatenation r = 1,3 do not achieve first-order suppression,

therefore, D ∼ O(ε). The comparison clearly indicates that
the numerically optimized sequences are highly robust to
flip-angle errors and capable of dramatically outperforming
CDDr .

Analyzing QDDM , for M = 1,3,7,15, as a function of ε,
we find that the performance maintains a D ∼ O(ε2) scaling
for all M [see Fig. 13(b)]. The performance for QDDM

diminishes with increasing M , indicating an accumulation
of error rather than a reduction, or sustainability as in the
case of CDDr . Although variations in performance exist
between the deterministic schemes, their robustness to flip-
angle errors is clearly not comparable to the optimized RGAK

sequences.
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