
PHYSICAL REVIEW A 88, 052130 (2013)

Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference

M. S. Leifer1,2,* and Robert W. Spekkens2,†
1Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5
(Received 19 June 2012; revised manuscript received 30 October 2013; published 27 November 2013)

Quantum theory can be viewed as a generalization of classical probability theory, but the analogy as it has been
developed so far is not complete. Whereas the manner in which inferences are made in classical probability theory
is independent of the causal relation that holds between the conditioned variable and the conditioning variable,
in the conventional quantum formalism, there is a significant difference between how one treats experiments
involving two systems at a single time and those involving a single system at two times. In this article, we
develop the formalism of quantum conditional states, which provides a unified description of these two sorts of
experiment. In addition, concepts that are distinct in the conventional formalism become unified: Channels, sets
of states, and positive operator valued measures are all seen to be instances of conditional states; the action of a
channel on a state, ensemble averaging, the Born rule, the composition of channels, and nonselective state-update
rules are all seen to be instances of belief propagation. Using a quantum generalization of Bayes’ theorem
and the associated notion of Bayesian conditioning, we also show that the remote steering of quantum states
can be described within our formalism as a mere updating of beliefs about one system given new information
about another, and retrodictive inferences can be expressed using the same belief propagation rule as is used
for predictive inferences. Finally, we show that previous arguments for interpreting the projection postulate as a
quantum generalization of Bayesian conditioning are based on a misleading analogy and that it is best understood
as a combination of belief propagation (corresponding to the nonselective state-update map) and conditioning on
the measurement outcome.
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I. INTRODUCTION

Quantum theory can be understood as a noncommutative
generalization of classical probability theory wherein prob-
ability measures are replaced by density operators. Much
of quantum information theory, especially quantum Shannon
theory, can be viewed as the systematic application of this
generalization of probability theory to information theory.

However, despite the power of this point of view, the
conventional formalism for quantum theory is a poor analog
to classical probability theory because, in quantum theory,
the appropriate mathematical description of an experiment
depends on its causal structure. For example, experiments
involving a pair of systems at spacelike separation are
described differently from those that involve a single system at
two different times. The former are described by a joint state
on the tensor product of two Hilbert spaces, and the latter are
described by an input state and a dynamical map on a single
Hilbert space. Classical probability works at a more abstract
level than this. It specifies how to represent uncertainty prior
to, and independently of, causal structure. For example, our
uncertainty about two random variables is always described
by a joint probability distribution, regardless of whether the
variables represent two spacelike separated systems or the
input and output of a classical channel. Although channels
represent time evolution, they are described mathematically by
conditional probability distributions. The input state specifies
a marginal distribution, and thus we have the ingredients to
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define a joint probability distribution over the input and output
variables. This joint probability distribution could equally
well be used to describe two spacelike separated variables.
Therefore, we do not need to know how the variables are
embedded in space-time in advance in order to apply classical
probability theory. This has the advantage that it cleanly
separates the concept of correlation from that of causation.
The former is the proper subject of probabilistic inference
and statistics. Within the subjective Bayesian approach to
probability, independence of inference and causality has been
emphasized by de Finetti ([1], Preface pp. x–xi):

“Probabilistic reasoning—always to be understood as
subjective—merely stems from our being uncertain about
something. It makes no difference whether the uncertainty
relates to an unforeseeable future, or to an unnoticed past, or
to a past doubtfully reported or forgotten; it may even relate to
something more or less knowable (by means of a computation,
a logical deduction, etc.) but for which we are not willing to
make the effort; and so on.”

Thus, in order to build a quantum theory of Bayesian
inference, we need a formalism that is even handed in
its treatment of different causal scenarios. There are some
clues that this might be possible. Several authors have noted
that there are close connections, and often isomorphisms,
between the statistics that can be obtained from quantum
experiments with distinct causal arrangements [2–8]. Time-
reversal symmetry is an example of this, but it is also possible to
relate experiments involving two systems at the same time with
those involving a single system at two times. The equivalence
[9] of prepare-and-measure [10] and entanglement-based [11]
quantum key distribution protocols is an example of this and
provides the basis for proofs of the security of the former [12].
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Such equivalences suggest that it may be possible to obtain a
causally neutral formalism for quantum theory by describing
such isomorphic experiments by similar mathematical objects.

Among the main goals of this work are to provide this
unification for the case of experiments involving two distinct
quantum systems at one time and those involving a single
quantum system at two times and to provide a framework
for making probabilistic inferences that is independent of this
causal structure. Both types of experiment can be described
by operators on a tensor product of Hilbert spaces, differing
from one another only by a partial transpose. Probabilistic
inference is achieved using a quantum generalization of
Bayesian conditioning applied to quantum conditional states,
which are the main objects of study of this work.

Quantum conditional states are a generalization of classical
conditional probability distributions. Conditional probability
plays a key role in classical probability theory, not least due
to its role in Bayesian inference, and there have been attempts
to generalize it to the quantum case. The most relevant to
quantum information are perhaps the quantum conditional
expectation [13] (see [14,15] for a basic introduction and [16]
for a review) and the Cerf-Adami conditional density operator
[17–19]. To date, these have not seen widespread application
in quantum information, which casts some doubt on whether
they are really the most useful generalization of conditional
probability from the point of view of practical applications.
Quantum conditional states, which have previously appeared
in [4,20,21], provide an alternative approach to this problem.
We show that they are useful for drawing out the analogies
between classical probability and quantum theory, they can
be used to describe both spacelike and timelike correlations,
and they unify concepts that look distinct in the conventional
formalism.

The remainder of the introduction summarizes the contents
of this article. It is meant to provide a broad overview
of the conditional states formalism, its motivations, and
its applications, while introducing only a minimum of the
technical details found in the rest of the paper.

A. Irrelevance of causal structure to the rules of inference

Unifying the quantum description of experiments involving
two distinct systems at one time with the description of those
involving a single system at two distinct times requires some
modifications to the way that the Hilbert space formalism of
quantum theory is usually set up. Conventionally, a Hilbert
space HA describes a system, labeled A, that persists through
time. Given two such systems, A and B, the joint system
is described by the tensor product HAB = HA ⊗ HB . In the
present work, a Hilbert space and its associated label should
rather be thought of as representing a localized region of
space-time. Specifically, an elementary region is a small
space-time region in which an agent might possibly make a
single intervention in the course of an experiment, for example
by making a measurement or by preparing a specific state.
Each elementary region is associated with a label and a Hilbert
space, for instance, A and HA.

Generally, a region refers to a collection of elementary
regions. A region that is composed of a pair of disjoint regions,
labeled A and B, is ascribed the tensor product Hilbert space

HAB = HA ⊗ HB . In contrast to the usual formalism, this
applies regardless of whether A and B describe independent
systems or the same system at two different times. Because
of this, if an experiment involves a system that does persist
through time, then a different label is given to each region
it inhabits; e.g., the input and output spaces for a quantum
channel are assigned different labels.

Although we have motivated our work by the distinction
between spatial and temporal separation, in fact it is not the
spatiotemporal relation between the regions that is relevant
for how they ought to be represented in our quantum
generalization of probability theory. Rather, it is the causal
relation that holds between them which is important.

More precisely, what is important is the distinction between
two regions that are causally related, which is to say that one
has a causal influence on the other (perhaps via intermediaries),
and two regions that are acausally related, which is to say that
neither has a causal influence on the other (although they may
have a common cause or a common effect or be connected via
intermediaries to a common cause or a common effect).

The causal relation between a pair of regions cannot be
inferred simply from their spatiotemporal relation. Consider
a relativistic quantum theory for instance. Although a pair
of regions that are spacelike separated are always acausally
related, a pair of regions that are timelike separated can be
related causally, for instance if they constitute the input and
the output of a channel, or they can be related acausally, for
instance if they constitute the input of one channel and the
output of another. Although timelike separation implies that a
causal connection is possible, it is whether such a connection
actually holds that is relevant in our formalism. The distinction
can also be made in nonrelativistic theories and in theories
with exotic causal structure. Indeed, causal structure is a more
primitive notion than spatiotemporal structure, and it is all that
we need here.

Typically, we confine our attention to two paradigmatic
examples of causal and acausal separation (which can be
formulated in either a relativistic or a nonrelativistic quantum
theory). Two distinct regions at the same time, the correlations
between which are conventionally described by a bipartite
quantum state, are acausally related. The regions at the input
and output of a quantum channel, the correlations between
which are conventionally described by an input state and
a quantum channel, are causally related (although there are
exceptions, such as a channel which erases the state of the
system and then reprepares it in a fixed state).1

1Although it is not required here, one can be more precise about this
distinction as follows. A causal structure for a set of quantum regions
is represented by a directed acyclic graph wherein the nodes are the
regions and the directed edges are relations of causal dependence
(the restriction to acyclic graphs prohibits causal loops). Two regions
are said to be causally related if for all paths connecting one to the
other in the graph every edge along the path is directed in the same
sense. Two systems are said to be acausally related if for all paths
connecting one to the other not every edge along the path is directed
in the same sense. When there exist both sorts of paths between a
pair of nodes, the associated regions are neither purely causally nor
purely acausally related. We do not consider this case in the article.
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TABLE I. Analogies between the classical theory of Bayesian inference and the conditional states formalism for quantum theory.

Classical Quantum

State P (R) ρA

Joint state P (R,S) σAB

Marginalization P (S) = ∑
R P (R,S) ρB = TrA(σAB )

Conditional state P (S|R) σB|A∑
S P (S|R) = 1 TrB (σB|A) = IA

Relation between joint and P (R,S) = P (S|R)P (R) σAB = σB|A � ρA

conditional states P (S|R) = P (R,S)/P (R) σB|A = σAB � ρ−1
A

Bayes’ theorem P (R|S) = P (S|R)P (R)/P (S) σA|B = σB|A � (ρAρ−1
B )

Belief propagation P (S) = ∑
R P (S|R)P (R) ρB = TrA(σB|AρA)

We unify the description of Bayesian inference in the
two different causal scenarios in the sense that various
formulas are shown to have precisely the same form, in
particular the relation between joints and conditionals, the
formula for Bayesian inversion, and the formula for belief
propagation.

B. Basic elements of the formalism

Without providing all the details, we summarize the
analogs, within our formalism, of the most basic elements
of classical probability theory. These are presented in
Table I.

For an elementary region A, the quantum analog of a
normalized probability distribution is a conventional quantum
state ρA, that is, a positive trace-one operator on HA. For
a region AB, composed of two disjoint elementary regions,
the analog of a joint probability distribution is a trace-one
operator σAB on HAB . This operator is not always positive
(but we nonetheless refer to it as a state). The marginal-
ization operation is replaced by the partial trace operation,
TrA, which corresponds to ignoring region A. The role of
the marginal distribution is played by the marginal state
ρB = TrA(σAB).

The quantum analog of a conditional probability is a
conditional state for region B given region A. This is an
operator on HAB , denoted σB|A, that satisfies TrB(σB|A) = IA.

The relation between a conditional state and a joint state
is σB|A = σAB � ρ−1

A , where the � product is a particular
noncommutative and nonassociative product, defined by
M � N ≡ N1/2MN1/2, where we have adopted the conven-
tion of dropping identity operators and tensor products, so
that σAB � ρ−1

A is shorthand for σAB � (ρ−1
A ⊗ IB) = (ρ−1/2

A ⊗
IB)σAB(ρ−1/2

A ⊗ IB).
This relation implies that the quantum analog of Bayes’

theorem, relating σB|A and σA|B , is σA|B = σB|A � (ρAρ−1
B ).

A standard example of inference then proceeds as follows.
Suppose a conditional state σB|A represents your beliefs about
the relation that holds between a pair of elementary regions. In
this case, if you represent your beliefs about A by the quantum
state ρA, then you must represent your beliefs about B by the
quantum state ρB , where

ρB = TrA(σB|AρA). (1)

We refer to this map from ρA to ρB as belief
propagation.2

C. Relevance of causal structure to the form of the state

In the case of acausally related regions, it is the joint state
that is easily inferred from the conventional formalism, and the
conditional state that is derived from the joint. Specifically, if
A and B are acausally related, then their joint state, σAB , is
simply the bipartite state that one would assign to them in
the conventional formalism. Consequently, σAB is a positive
operator in this case. The conditional state can be inferred
from the rule relating joints to conditionals, namely, σB|A =
σAB � ρA. It follows that σB|A is also a positive operator.

On the other hand, if A and B are causally related, then
it is the conditional state that is easily inferred from the
conventional formalism and the joint state that is derivative.
Specifically, if the regions are related by a quantum operation
EB|A, then σB|A is defined as the operator on HA ⊗ HB that is
Jamiołkowski isomorphic to EB|A [22]. The joint state is then
inferred from the rule relating joints to conditionals. One can
show that both σB|A and σAB fail to be positive in general, but
they have positive partial transpose.

Because of this, the set of permissible joint and conditional
states for acausally related regions is different from the set for
causally related regions. To distinguish the two cases, we use
the notation ρAB and ρB|A for the acausal case and �AB and
�B|A for the causal case.

It is important to note that in a classical theory of Bayesian
inference, the rules of inference are independent of the causal
relations that hold among the variables. The causal relations
can still be relevant, however, for constraining the probability
distribution that is assigned to those variables. For instance,
the causal relations among a triple of variables are significant
for the sort of probability distribution that can be assigned to
them. Specifically, if variable R is a common cause of variables
S and T , while there is no direct causal connection between S

and T , then S and T should be conditionally independent
given R, which is to say that the joint distribution over

2Note that the term “belief propagation” has also been used to
describe message-passing algorithms for performing inference on
Bayesian networks. This is not the intended meaning here.

052130-3



M. S. LEIFER AND ROBERT W. SPEKKENS PHYSICAL REVIEW A 88, 052130 (2013)

TABLE II. Translation of concepts and equations from conventional notation to the conditional states formalism.

Conventional notation Conditional states formalism

Probability distribution of X P (X) ρX

Probability that X = x P (X = x) ρX=x

Set of states on A
{
ρA

x

}
�A|X

Individual state on A ρA
x �A|X=x

POVM on A
{
EA

y

}
�Y |A

Individual effect on A EA
y �Y=y|A

Channel from A to B EB|A �B|A
Instrument

{
EB|A

y

}
�YB|A

Individual operation EB|A
y �Y=y,B|A

The Born rule ∀ y : P (Y = y) = TrA
(
EA

y ρA

)
ρY = TrA(�Y |AρA)

Ensemble averaging ρA = ∑
x P (X = x)ρA

x ρA = TrX(�A|XρX)
Action of a channel (Schrödinger) ρB = EB|A(ρA) ρB = TrA(�B|AρA)
Composition of channels EC|A = EC|B ◦ EB|A �C|A = TrB (�C|B�B|A)
Action of a channel (Heisenberg) EA

y = (EB|A)†(EB
y ) �Y |A = TrB (�Y |B�B|A)

Nonselective state-update rule ∀ y : P (Y = y)ρB
y = EB|A

y (ρA) ρYB = TrA(�YB|AρA)

these variables is not arbitrary, but has the form P (R,S,T ) =
P (S|R)P (T |R)P (R).

In the quantum case, the situation is similar. The rules
of inference, such as the formula for belief propagation, the
formula for Bayesian inversion, and the relation between the
joint and the conditional, do not depend on the causal relations
between the regions under consideration, but causal relations
do constrain the set of operators that can describe joint states.

In fact, the dependence is stronger in the quantum case
because the set of permissible states depends on the causal
relation even for a pair of regions. This is not a feature of a
classical theory of inference: If we consider all the possible
joint distributions over a pair of variables, R and S, we find
that the set of possibilities is the same for the case where R

and S are causally related as it is for the case where R and S

are acausally related.
To reiterate, the fact that the set of possible states that can

be assigned to a set of regions is constrained by the causal
relation between those regions is common to the classical and
quantum theories of inference. What is particular to the theory
of quantum inference is that even in the case of a pair of
regions, the causal relation between the regions is relevant for
the set of possible states that can be assigned to those regions.3

D. Recasting conventional quantum notions in terms
of conditional states and belief propagation

The conditional states formalism incorporates the possibil-
ity that a given region is associated to a classical variable rather
than a quantum system. In this case, the classical variable is
represented by a Hilbert space with a preferred basis, where the
different elements of the basis correspond to different values
of the variable, and any state assigned to that region is diagonal
in that basis. Any joint state or conditional state involving this

3There does exist a classical analog of this dependence on causal
structure for pairs of regions, but it requires considering the case of a
classical theory with an epistemic restriction [23]. We do not pursue
the analogy here.

region is also restricted to have this diagonal form. It follows
that for a set of regions that are all classical, the formalism
reproduces the classical theory of Bayesian inference.

The formalism also yields a new and unified perspective
on many notions in quantum theory. To see this, it is useful
to recall that measurements, sets of state preparations, and
transformations can all be represented by quantum operations,
that is, as completely positive trace-preserving (CPT) linear
maps. Channels are CPT maps wherein the input and output
spaces are both quantum. A positive operator valued measure
(POVM) is a CPT map from a quantum input to a classical
output (the measurement outcome). A set of states is a CPT
map from a classical input (the state index) to a quantum output
(the associated state). Finally, a quantum instrument, which
is a measurement together with a state-update rule for every
outcome, can be represented as a CPT map from a quantum
input to a composite output with a quantum part (the updated
state) and a classical part (the measurement outcome). Insofar
as every CPT map defines a conditional state, each of these
notions in quantum theory is an instance of a conditional state
in our formalism. This is summarized in the top half of Table II.

It follows that many relations that seem unrelated in the
conventional formalism all become instances of the belief
propagation rule in our formalism. This includes the Born
rule, the formula for calculating the average state for an
ensemble, the composition of channels, the state-update rule
in a measurement, and the action of a channel in both the
Heisenberg and Schrödinger pictures. This is summarized in
the bottom half of Table II.

E. Applications of the formalism

The formalism also accommodates forms of belief prop-
agation that do not fit into the standard list of the previous
section.

One example is the inference made about one system based
on the outcome of a measurement made on another when
the two are correlated by virtue of a common cause. This
reproduces the remote collapse postulate of quantum theory,
which is sometimes called “remote steering” of a quantum state
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and was made famous by the thought experiment of Einstein,
Podolsky, and Rosen. It follows that in the conditional states
framework, the steering effect is merely belief propagation
(updating beliefs about one system based on new evidence
about another) and does not require any causal influence
from one to the other. This interpretation has been advocated
previously by Fuchs [24]. Our formalism also provides an
elegant derivation of the formula for the set of ensembles to
which a remote system may be steered, previously obtained
by conventional methods in [25].

Another example of an unconventional form of belief
propagation is retrodiction, that is, inferences about a region
based on beliefs about another region in its future. We develop
a retrodictive formalism using our quantum Bayes’ theorem.
The latter is a necessary ingredient because the “givens” in
a retrodiction problem are typically the descriptions of sets
of state preparations, measurements, and channels, each of
which corresponds to a conditional wherein the conditioning
system is to the past of the conditioned system. We use Bayes’
theorem to invert each of these conditionals to ones wherein
the conditioning system is to the future of the conditioned
system. Then, one can use these conditionals to propagate
one’s beliefs backwards in time, that is, to update one’s beliefs
about the past based on new evidence in the present. This
application of our formalism is a good example of how one
can achieve causal neutrality: Belief propagation backward in
time follows the same rules as belief propagation forward in
time. The retrodictive formalism we devise coincides with the
one introduced in [26–28] in the case of unbiased sources,
but differs in the general case, retaining a closer analogy with
classical Bayesian inference.

In the case where a quantum system is passed through
a channel (possibly noisy), the Bayesian inversion of the
conditional associated to this channel, when interpreted as
a quantum operation itself, is the Barnum-Knill approximate
error correction map [29]. It follows that this error correction
scheme is the quantum analog of the following classical error
correction scheme: Based on a channel’s output, compute a
posterior distribution over inputs (i.e., classical retrodiction)
and then sample from the latter.

In the case where a quantum system is prepared in one
of a set of states, the Bayesian inversion of the conditional
associated to this set of states (a “quantum given classical”
conditional) is a conditional associated to a measurement (a
“classical given quantum” conditional). Indeed, we find that
in these contexts, our quantum Bayes’ theorem reproduces the
well-known rule relating sets of states to POVMs [3,4,30].
The POVM obtained as the Bayesian inversion of an ensemble
of states turns out to be the “pretty-good” measurement for
distinguishing those states [31–33]. Therefore, the latter, like
the Barnum-Knill recovery operation, can be understood as a
quantum analog of sampling from the posterior.

Similarly, the Bayesian inversion of the conditional asso-
ciated with a measurement is a conditional associated with
a set of states. For this case, our quantum Bayes’ theorem
reproduces a rule proposed by Fuchs as a quantum analog of
Bayes’ theorem [24].

Finally, we show that our notion of conditioning does
not include the projection postulate as a special case and
that previous arguments to the contrary (i.e., in favor of the

projection postulate being viewed as an instance of Bayesian
conditioning) [34,35] are based on a misleading analogy.
Within the conditional states formalism, the projection postu-
late is best described as the application of a belief propagation
rule (a nonselective update map), followed by conditioning
(the selection). This is broadly in line with the treatment
of quantum measurements advocated by Ozawa [36,37]. In
support of the argument that the projection postulate is not a
type of conditioning, we provide a conditional state version
of the argument that all informative measurements must be
disturbing, which may be of independent interest due to its
close relationship to entanglement monogamy.

F. Structure of the paper

The remainder of this paper is structured as follows.
The relevant aspects of classical conditional probability are
reviewed in Sec. II. Section III introduces quantum conditional
states and the basic concepts of quantum Bayesian inference
for a pair of regions. The distinction between conditional states
for causally related and acausally related regions is discussed
here. This section also provides a detailed discussion of the
translations from the conventional formalism to the conditional
states formalism that are highlighted in Table II.

Section IV introduces our quantum version of Bayes’ theo-
rem and discusses its applications, in particular the connection
with the update rule proposed by Fuchs, the correspondence
between POVMs and ensemble decompositions of a density
operator, the pretty-good measurement, and the Barnum-Knill
recovery map. In Sec. IV C, we develop the retrodictive
formalism for quantum theory and describe how it relates to the
one introduced in [26–28]. Finally, in Sec. IV D, the acausal
analog of the symmetry between prediction and retrodiction is
discussed in the context of remote measurement.

Section V discusses quantum Bayesian conditioning. After
a brief discussion of the general problem of conditioning a
quantum region on another quantum region, we focus on
conditioning a quantum region on a classical variable. This
is the correct way to update quantum states in light of classical
data, regardless of the causal relationship between the two.
Various examples of this are discussed in Sec. V A, including
the case of the remote steering phenomenon. Section V B
concerns how to understand within our formalism the rules
for updating quantum states after a nondestructive quantum
measurement, in particular, how to understand the projection
postulate.

In Sec. VI, we discuss related work. Quantum conditional
states are compared to other proposals for quantum generaliza-
tions of conditional probability in Sec. VI A and the conditional
states formalism is compared to several recently proposed
operational reformulations of quantum theory in Sec. VI B.

Section VII discusses limitations of the conditional states
framework. These arise because the classical operation of
taking the product of a conditional and a marginal prob-
ability distribution to form a joint distribution is replaced
by a noncommutative and nonassociative operation on the
corresponding operators in the quantum case. Because of
this, unlike in classical probability, an equation involving
conditional states does not necessarily remain valid when both
sides are conditionalized on an additional variable. This is
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discussed in Sec. VII A. Section VII B discusses the reasons
why causal joint states are limited to two elementary regions.
Section VII B1 discusses why they cannot be applied to mixed
causal scenarios, such as two acausally related regions with
a third region causally related to one of the other two, and
Sec. VII B2 discusses the difficulties with generalizing the
notion to multiple time steps, where we have three or more
causally related regions.

Section VIII discusses an open question about when
assignments of conditional states are compatible with one
another. That not all conditional assignments are compatible
can be shown via the monogamy of entanglement. Indeed, this
incompatibility seems to be a more basic notion, of which
monogamy is a consequence. Finally, we conclude in Sec. IX.

II. CLASSICAL CONDITIONAL PROBABILITY

In this section, the basic definitions and formalism of
classical conditional probability are reviewed, with a view
to their quantum generalization in Sec. III.

Let R denote a (discrete) random variable, R = r the event
that R takes the value r , P (R = r) the probability of event
R = r , and P (R) the probability that R takes an arbitrary
unspecified value. Finally,

∑
R denotes a sum over the possible

values of R.
A conditional probability distribution is a function of two

random variables P (S|R), such that for each value r of R,
P (S|R = r) is a probability distribution over S. Equivalently,
it is a positive function of R and S such that∑

S

P (S|R) = 1 (2)

independently of the value of R.
Given a probability distribution P (R) and a conditional

probability distribution P (S|R), a joint distribution over R

and S can be defined via

P (R,S) = P (S|R)P (R), (3)

where the multiplication is defined elementwise, i.e., for all
values r,s of R and S, P (R = r,S = s) = P (S = s|R = r)
P (R = r).

Conversely, given a joint distribution P (R,S), the marginal
distribution over R is defined as

P (R) =
∑

S

P (R,S), (4)

and the conditional probability of S given R is

P (S|R) = P (R,S)

P (R)
. (5)

Note that Eq. (5) only defines a conditional probability
distribution for those values r of R such that P (R = r) �= 0.
The conditional probability is undefined for other values of R.

The chain rule for conditional probabilities states that a
joint probability over n random variables R1,R2, . . . ,Rn can
be written as

P (R1,R2, . . . ,Rn)

= P (Rn|R1,R2, . . . ,Rn−1)

×P (Rn−1|R1,R2, . . . ,Rn−2) . . . P (R2|R1)P (R1). (6)

Finally, note that the process of marginalizing a distribution
over a set of variables commutes with the process of condition-
ing on a disjoint set of variables, as illustrated in the following
commutative diagram:

P (R,S,T )
∑

R−−−−−→ P (S,T )⏐⏐⏐	×P (T )−1

⏐⏐⏐	×P (T )−1

P (R,S|T )
∑

R−−−−−→ P (S|T ).

(7)

III. QUANTUM CONDITIONAL STATES

In this section, the quantum analog of conditional
probability—a conditional state—is introduced. We also dis-
cuss how the states assigned to disjoint regions are related
via a quantum analog of the belief propagation rule P (S) =∑

R P (S|R)P (R). There is a small difference between condi-
tional states for acausally related and causally related regions.
The acausal case is discussed in Secs. III A and III B. On the
other hand, Secs. III C–III K mainly concern the causal case,
wherein we find that quantum dynamics, ensemble averaging,
the Born rule, Heisenberg dynamics, and the transition from
the initial state to the ensemble of states resulting from
a measurement can all be represented as special cases of
quantum belief propagation. Acausal analogies of some of
these ideas are also developed in these sections.

A. Acausal conditional states

We begin by defining conditional states for acausally
related regions. This scenario, and its classical analog, are
depicted in Fig. 1. The definition proceeds in analogy with the
classical treatment given in Sec. II. The convention of using
A,B,C, . . . to label quantum regions that are analogous to
classical variables R,S,T , . . . is adopted throughout. The la-
bels X,Y,Z, . . . are reserved for classical variables associated
with preparations and measurements, which remain classical
when we pass from probability theory to the quantum analog.

The analog of a probability distribution P (R) assigned to
a random variable R is a quantum state (density operator)

A B

(a)

R S

(b)

FIG. 1. Acausally related quantum and classical regions. Classi-
cal variables are denoted by triangles and quantum regions by circles
(this convention is suggested by the shape of the convex set of states in
each theory). The dotted line represents acausal correlation. (a) Two
quantum regions in an arbitrary joint state (possibly correlated). (b)
Two classical variables with an arbitrary joint probability distribution
(possibly correlated).
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TABLE III. Analogies between classical probability theory for
two random variables and quantum theory for two acausally related
regions.

Classical probability Quantum theory

P (R) ρA

P (R,S) ρAB

P (S) = ∑
R P (R,S) ρB = TrA(ρAB )∑

S P (S|R) = 1 TrB (ρB|A) = IA

P (R,S) = P (S|R)P (R) ρAB = ρB|A � ρA

P (S|R) = P (R,S)/P (R) ρB|A = ρAB � ρ−1
A

ρA acting on a Hilbert space HA. When there are two
disjoint regions with Hilbert spaces HA and HB , the tensor
product HAB = HA ⊗ HB describes the composite region.
The quantum analog of a joint distribution P (R,S) is a density
operator ρAB of the composite region, defined on HAB . The
analog of marginalization over a variable is the partial trace
over a region. These analogies are set out in the top half of
Table III.

In analogy to the classical case, where P (S|R) is a positive
function that satisfies

∑
S P (S|R) = 1, an acausal conditional

state for B given A is defined as follows.
Definition 1. An acausal conditional state for B given A is

a positive operator ρB|A on HAB = HA ⊗ HB that satisfies

TrB(ρB|A) = IA, (8)

where IA is the identity operator on HA.
To provide an analogy with Eq. (3), a method of construct-

ing a joint state on HAB from a reduced state on HA and a
conditional state on HAB is required. This is given by

ρAB = (
ρ

1
2
A ⊗ IB

)
ρB|A

(
ρ

1
2
A ⊗ IB

)
. (9)

Equation (9) involves two constructions that appear repeat-

edly in what follows. First, the operators ρ
1
2
A and ρB|A are

combined via multiplication, but they are defined on different

spaces. To solve this problem, ρ
1
2
A is expanded to an operator

on HAB by tensoring it with IB . To simplify notation, the
identity operators required to equalize the Hilbert spaces of
two operators are left implicit, so that if MAB is an operator
on HAB and NBC is an operator on HBC then MABNBC =
(MAB ⊗ IC)(IA ⊗ NBC) and an equation like MAB = NBC is
interpreted as MAB ⊗ IC = IA ⊗ NBC . This notation allows
us to omit tensor product symbols where convenient, since
MA ⊗ NB = (MA ⊗ IB)(IA ⊗ NB) = MANB .

Second, rather than simply multiplying ρB|A with ρA in

Eq. (9), ρB|A is conjugated by ρ
1
2
A . This ensures that the

resulting joint operator is positive. To define a notation for this
conjugation, let M and N be positive operators on a Hilbert
space H. Then define a (nonassociative and noncommutative)
product M � N via

M � N = N
1
2 MN

1
2 . (10)

With these conventions, Eq. (9) can be rewritten as

ρAB = ρB|A � ρA, (11)

which looks a lot closer to Eq. (3) than Eq. (9) does.

Starting with a joint state ρAB and its reduced state
ρA = TrB(ρAB), a conditional state can be defined via

ρB|A = ρAB � ρ−1
A , (12)

which is the analog of Eq. (5).
As with Eq. (5) there are problems with this formula if ρA

is not supported on the entire Hilbert space HA. In that case
Eq. (12) is to be understood as an equation on the Hilbert
space supp(ρA) ⊗ HB , where supp(ρA) denotes the support
of ρA (the span of the eigenvectors of ρA having nonzero
eigenvalues). Because of this, the resulting conditional density
operator satisfies TrB(ρB|A) = Isupp(ρA) rather than Eq. (8).

The analogies between the classical and quantum relations
between conditionals, marginals, and joints are set out in the
bottom half of Table III. As these analogies suggest, the �-
product notation allows equations from classical probability
to be generalized to quantum theory by replacing functions
with operators, products with � products, and division with �

products with the inverse. However, while this is a useful way
of postulating results in the conditional states formalism, one
has to take care of the nonassociativity and noncommutativity
of the � product when making such generalizations.

To provide an analogy with the chain rule of Eq. (6)
it is helpful to adopt the convention that, in the absence
of parentheses, � products are evaluated right to left. Then,
given n disjoint acausally related regions A1,A2, . . . ,An, with
Hilbert space HA1,A2,...,An

= ⊗n
j=1 HAj

, the joint state can be
written as

ρA1,A2,...,An
= ρAn|A1,A2,...,An−1 � ρAn−1|A1,A2,...,An−2

� · · · � ρA2|A1 � ρA1 . (13)

Finally, note that the process of marginalizing a conditional
state over a region commutes with the process of conditioning
on a disjoint region, as illustrated in the following commutative
diagram:

ρABC

TrC−−−−−→ ρAB⏐⏐⏐	ρ
− 1

2
A (·)ρ− 1

2
A

⏐⏐⏐	ρ
− 1

2
A (·)ρ− 1

2
A

ρBC|A
TrC−−−−−→ ρB|A.

(14)

Example 1: Classical states. As one might expect, classical
conditional probability is a special case of the quantum con-
structions outlined above. To see this, the classical variables
have to be encoded in quantum regions in some way, and
we adopt the convention of using the same letter to denote the
classical variable and the corresponding quantum region. Thus,
HR,HS,HT , . . . refer to quantum regions that encode classical
random variables R,S,T , . . . , as opposed toHA,HB,HC, . . . ,

which are general quantum regions.
For classical random variables R and S, pick Hilbert spaces

HR and HS with dimension equal to the number of distinct
values of R and S, respectively, and choose orthonormal bases
{|r〉} for HR and {|s〉} for HS labeled by the possible values
of R and S. Then, joint, marginal, and conditional probability
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distributions are encoded as operators via

ρRS =
∑
r,s

P (R = r,S = s) |r〉 〈r|R ⊗ |s〉 〈s|S , (15)

ρR =
∑

r

P (R = r) |r〉 〈r|R = TrS (ρRS) , (16)

ρS|R =
∑
r,s

P (S = s|R = r) |r〉 〈r|R ⊗ |s〉 〈s|S . (17)

Using Eqs. (2)–(5), it is straightforward to check that these
operators satisfy Eqs. (8), (11), and (12).

In order to unify the notation for classical variables and
quantum regions, the operators ρRS , ρR , and ρS|R are often
used to directly represent the functions P (R,S), P (R), and
P (S|R) without introducing the classical functions explicitly.
Whenever states and conditional states have subscripts R,S,T

or X,Y,Z, they are implicitly assumed to be of this classical
form. If needed, the classical functions can be read off from
Eqs. (15)–(17).

Example 2: Pure conditional states. A pure conditional
state is one that is of the form ρB|A = |ψ〉〈ψ |B|A for some
vector |ψ〉B|A ∈ HAB . Since TrB(ρB|A) = IA, and IA has all
eigenvalues equal to 1, the Schmidt decomposition of |ψ〉B|A
is of the form

|ψ〉B|A =
∑

k

|uk〉A ⊗ |vk〉B , (18)

where {|uk〉} is an orthonormal basis for HA and {|vk〉} is an
orthonormal basis for HB . This implies that a pure conditional
state only exists if dim(HA) � dim(HB) because otherwise
there would not be enough orthonormal vectors on the B side
to enforce TrB(ρB|A) = IA.4

Since all the Schmidt coefficients are the same, the bases
{|uk〉} and {|vk〉} are highly nonunique. The conditional state
|ψ〉B|A itself only determines the relationship between the
two Schmidt bases; i.e., for any basis in HA it determines
a corresponding basis in HB . To see this, fix a reference
basis, {|j 〉}, for HA in order to define a complex conjugation
operation. Next, define an isometry UB|A = ∑

k |vk〉B〈u∗
k |A,

where ∗ denotes complex conjugation in the {|j 〉} basis. Then,
if {|wk〉A} is any other basis for HA, Eq. (18) can be rewritten
as

|ψ〉B|A =
∑

k

|wk〉A ⊗ UB|A′ |w∗
k 〉A′ , (19)

where A′ labels a second copy of HA. With respect to the
reference basis {|j 〉}, this simplifies to

|ψ〉B|A = UB|A′ |�+〉AA′ , (20)

where |�+〉AA′ = ∑
j |jj 〉AA′ .

Let ρA be an arbitrary density operator on HA with
eigendecomposition ρA = ∑

k pk|wk〉〈wk|A. Combining this
with |ψ〉〈ψ |B|A via Eq. (11) in order to define a joint state
gives the projector onto the pure state,

|ψ〉AB = ρ
1
2
A |ψ〉B|A. (21)

4If |ψ〉B|A derives from a joint pure state |ψ〉AB via Eq. (12), then
this only implies that dim[supp(ρA)] � dim(HB ), which is always
true because the ranks of ρA and ρB are equal.

Combining this with Eq. (19) gives the Schmidt decomposition

|ψ〉AB =
∑

k

√
pk|wk〉A ⊗ UB|A′ |w∗

k 〉A′ . (22)

Since an arbitrary pure joint state is of this form, this shows
that pure conditional states determine pure joint states when
combined with arbitrary reduced states and, conversely, the
conditional state of a pure joint state is always pure.

Note that using Eq. (20) instead of Eq. (19) gives

|ψ〉AB = ρ
1/2
A UB|A′ |�+〉AA′ , (23)

which is a well-known canonical decomposition of a bipartite
pure state.

B. Acausal belief propagation

Suppose you characterize your beliefs about two classical
variables, R and S, by specifying a marginal probability
distribution P (R) and a conditional probability distribution
P (S|R). Then, you can compute the probability distribution
you ought to assign to S via

P (S) =
∑
R

P (S|R)P (R). (24)

This is called the classical belief propagation rule (also
known as the law of total probability). It follows from
calculating the joint distribution P (R,S) = P (S|R)P (R) and
then marginalizing over R.

The belief propagation rule can be thought of as specifying
a linear map �S|R from the space of probability distributions
over R to the space of probability distributions over S that
preserves positivity and normalization. This is defined as

�S|R(P (R)) ≡
∑
R

P (S|R)P (R). (25)

Propagating beliefs about a quantum region A to an
acausally related region B works in a similar way. If you
specify a reduced state ρA and a conditional state ρB|A then
your state for B is determined by the acausal quantum belief
propagation rule,

ρB = TrA(ρB|AρA), (26)

which follows from the fact that the joint state is ρAB = ρB|A �

ρA, so that ρB = TrA(ρB|A � ρA), and from the cyclic property
of the trace.

As in the classical case, acausal belief propagation can also
be viewed as a linear map EB|A from states on A to states on
B that preserves positivity and normalization, defined by

EB|A(ρA) ≡ TrA(ρB|AρA). (27)

The linear map so defined is clearly positive because it maps
states to states. It is not completely positive in general, but its
composition with a transpose on A is completely positive. The
map EB|A is, in fact, identical to the map associated to ρB|A
via the Jamiołkowski isomorphism [22], which is a familiar
construction in quantum information theory. These facts are
consequences of the following theorem.

Theorem 1: Jamiołkowski isomorphism. Let EB|A :
L(HA) → L(HB) be a linear map and let MAC ∈ L(HAC),
where HC is a Hilbert space of arbitrary dimension. Then, the
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action of EB|A on L(HA) [tensored with the identity on L(HC)]
is given by

(EB|A ⊗ IC)(MAC) = TrA(ρB|AMAC), (28)

where ρB|A ∈ L(HAB) is given by

ρB|A ≡ (EB|A′ ⊗ IA)

(∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′

)
. (29)

Here, A′ labels a second copy of A, IA is the identity
superoperator on L(HA), and {|j 〉} is an orthonormal basis
for HA.

Furthermore, the operator ρB|A is an acausal conditional
state; i.e., it satisfies Definition 1, if and only if EB|A ◦ TA is
completely positive and trace preserving (CPT), where TA :
L(HA) → L(HA) denotes the linear map implementing the
partial transpose relative to some basis.

The proof is provided in the Appendix.

C. Causal conditional states

The analogy between conditional probabilities and condi-
tional states presented so far is not complete. In conventional
quantum theory, the tensor product HAB = HA ⊗ HB is used
to represent a joint system with two subsystems, so that the
conditional state ρB|A refers to the state of two subsystems at
a given time. However, for classical conditional probabilities,
there is no corresponding requirement that the two random
variables R and S appearing in P (S|R) should have any
particular causal relation to one another. Indeed, R might
equally well represent the input to a classical channel and S

the output; i.e., they may be causally related. This is illustrated
in Fig. 2(b). If this is indeed the case, then the classical belief
propagation rule of Eqs. (24) and (25) can be interpreted as
stochastic dynamics.

B

A

ρB = TrA
⎛
⎝

B|AρA

⎞
⎠

Conventional notation:

ρB = EB|A (ρA)

(a)

R

S

P (S) = ΣRP (S|R)P (R)

(b)

FIG. 2. Causally related quantum and classical regions. The
arrows represent the direction of causal influence. (a) General
quantum dynamics. A is the input to a CPT map and B is the
output. (b) Classical stochastic dynamics. R is the input to a classical
channel and S is the output.

In order to formulate quantum theory as a causally neutral
theory of Bayesian inference, the same formalism should be
used to describe causally related regions as is used to describe
acausally related regions. In particular, if A and B are two
causally related regions, as depicted in Fig. 2(a), then it ought
to be possible to define a quantum conditional state for B given
A as an operator on the tensor product HAB = HA ⊗ HB .
Towards this end, we make the following definition.

Definition 2. A causal conditional state of B given A is an
operator �B|A on HAB that can be written as

�B|A = ρ
TA

B|A, (30)

for some acausal conditional state ρB|A, where TA denotes the
partial transpose in some basis on HA.

Thus, the set of causal conditional states is just the image
under a partial transpose on the conditioning region of the set
of acausal conditional states. Note that, although the partial
transpose is basis dependent, its image on the set of acausal
conditional states is not and therefore neither is our definition
of a causal conditional state. Also, because the set of acausal
conditional states is mapped to itself by the full transpose (i.e.,
the transpose on AB), a partial transpose over the conditioned
region B, rather than the conditioning region A, could
alternatively have been used to define a causal conditional
state. Due to the partial transpose, causal conditional states
are not positive operators in general, but they are always
locally positive; i.e., 〈ψ |A ⊗ 〈φ|B�B|A|ψ〉A ⊗ |φ〉B � 0 for
all |ψ〉A ∈ HA,|φ〉B ∈ HB .

In this section, we show that defining causal conditional
states in this way allows us to implement quantum belief
propagation across causally related regions using the same
formula as one uses for quantum belief propagation across
acausally related regions, namely by a rule of the form
ρB = TrA(�B|AρA). Belief propagation for dynamics with a
quantum input and a quantum output are treated in Sec. III D.
Section III I treats belief propagation for causal conditional
states themselves, which corresponds to composition of
dynamical maps. Section III E introduces the notion of a causal
joint state, which is analogous to the joint distribution of
input and output variables for a classical channel. Section III F
introduces the idea of a quantum-classical hybrid, which is
a composite of a quantum region and a classical variable.
This allows dynamics with a classical input and quantum
output (and vice versa) to be described in terms of causal
conditional states. These correspond to ensemble preparation
procedures and measurements, as discussed in Secs. III G
and III H. In Sec. III J, the Heisenberg picture is translated
into the conditional states formalism. In Sec. III K, the most
general type of state-update rule that can occur after a
measurement—a quantum instrument—is described in terms
of causal conditional states. Table II summarizes the translation
of these concepts from conventional notation to the conditional
states formalism.

D. Quantum channels as causal belief propagation

Conventionally, the transition from a region A to a causally
related later region B is described by a dynamical CPT map
EB|A : L(HA) → L(HB) such that, if ρA is the state of A and
ρB is the state of B, then ρB = EB|A(ρA). However, causal
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conditional states can provide an alternative representation of
quantum dynamics, as we will show. First note the following
isomorphism.

Theorem 2. Let EB|A : L(HA) → L(HB) be a linear map
and let �B|A ∈ L(HAB) be the Jamiołkowski-isomorphic oper-
ator, as defined in Eq. (29). Then, �B|A is a causal conditional
state; i.e. it satisfies Definition 2, if and only if EB|A is CPT.

Proof. Define ρB|A ≡ �
TA

B|A and let EB|A be the linear map
that is Jamiołkowski isomorphic to ρB|A. It follows that EB|A =
EB|A ◦ TA. Recalling the relation between causal and acausal
conditional states, �B|A is a causal conditional state if and only
if ρB|A is an acausal conditional state. Recalling Theorem 1,
ρB|A is an acausal conditional state if and only if EB|A ◦ TA is
CPT. It follows that �B|A is a causal conditional state if and
only if EB|A is CPT. �

Together with Theorem 1, this implies that the action of a
CPT map EB|A on an operator MAC is given by

EB|A(MAC) = TrA(�B|AMAC), (31)

where �B|A is the Jamiołkowski isomorphic operator to EB|A.
Quantum dynamics may be represented by causal condi-

tional states as follows.
Proposition 1. Let �B|A be the causal conditional state that

is Jamiołkowski-isomorphic to a CPT map EB|A that describes
a quantum dynamics. If the initial state of region A is ρA, then
the state of B, conventionally written as

ρB = EB|A(ρA), (32)

can be expressed in the conditional states formalism as

ρB = TrA(�B|AρA), (33)

in analogy with the classical belief propagation rule Eq. (24).
We call Eq. (33) the causal quantum belief propagation

rule. It follows from Eq. (31).
Figure 2 and the fourth and eighth lines of Table II

summarize how this representation of quantum dynamics
contrasts with the conventional representation, with Fig. 2
emphasizing the analogy between the classical and quantum
belief propagation rules.

E. Causal joint states

Section III A showed that a joint state ρAB of two acausally
related regions can be decomposed into a reduced state ρA

and an acausal conditional state ρB|A. Similarly, two causally
related regions can be described by an input state ρA and a
causal conditional state �B|A, but so far there is no causal
analog of a joint state. This is addressed by making the
following definition, in analogy with Eq. (11).

Definition 3. A causal joint state of two causally related
regions, A and B, is an operator on HAB of the form

�AB = �B|A � ρA, (34)

where ρA is a state on HA and �B|A is a causal conditional
state of B given A.

Note that the reduced state on A of �AB is the initial state
(input to the channel) and the reduced state on B is

ρB = TrA(�B|A � ρA), (35)

which, by the cyclic property of the trace and Proposition 1, is
the final state (output of the channel).

It is not too difficult to see that a causal joint state
�AB is the partial transpose of an acausal joint state on
HAB . Specifically, �

TA

AB = ρB|A � ρ
TA

A , where ρB|A = �
TA

B|A is

an acausal conditional state and ρ
TA

A is a valid reduced state
because the transpose preserves positivity.

Thus, just as a causal conditional state for B given A is
an operator on HA ⊗ HB that can be obtained as the partial
transpose over A of an acausal conditional state ρB|A, a causal
joint state on AB is simply an operator on HA ⊗ HB that can
be obtained as the partial transpose over A of an acausal joint
state ρAB .

Example 3: Unitary dynamics. Suppose a region A

is assigned the state ρA with eigendecomposition ρA =∑
j pj |uj 〉〈uj |. A is then mapped to a region B, which has

a Hilbert space of the same dimension as that of A, by
an isometry UB|A = ∑

j |vj 〉B〈uj |A. Since the Jamiołkowski
isomorphism is basis independent, the causal conditional
state associated with the map EB|A(·) = UB|A(·)(UB|A)† can
be written in the eigenbasis of ρA as

�B|A =
∑
j,k

|uj 〉〈uk|A ⊗ UB|A′ |uk〉〈uj |A′(UB|A′)† (36)

=
∑
j,k

|uj 〉〈uk|A ⊗ |vk〉〈vj |. (37)

It follows that the causal joint state for AB is

�AB =
∑
j,k

√
pjpk|uj 〉〈uk|A ⊗ |vk〉〈vj |B. (38)

Note that the pure causal conditional state �B|A is the partial
transpose over A of a pure acausal conditional state, as can be
seen by comparison with Eq. (18) from Example 2. Also, the
pure causal joint state �AB is the partial transpose over A of a
pure acausal joint state ρAB = |ψ〉〈ψ |AB , where

|ψ〉AB =
∑

j

√
pj |uj 〉A ⊗ |vj 〉B. (39)

Causal joint states can be given an operational interpretation
similar to that of acausal joint states by specifying a procedure
to perform tomography on them (see [3,4]). The motivation
for introducing them here is that they allow quantum Bayesian
inference to be developed in a way that is blind to the
distinction between acausally and causally related regions.
This is discussed in Sec. IV.

Note that whereas acausal joint states may involve more
than two acausally related regions, causal joint states are thus
far only well defined for two causally related regions. The
reasons for this limitation are discussed in Sec. VII.

F. Quantum-classical hybrid regions

An ensemble preparation procedure can be represented by
a CPT map from a classical variable to a quantum region
and a measurement can be represented as a CPT map from
a quantum region to a classical variable. Therefore, these
processes can be represented by conditional states for which
either the conditioned or conditioning region is classical as a
special case of Proposition 1. In order to compare this to the
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conventional formalism, we need to describe how composite
regions consisting of a classical variable and a quantum region
are represented in the conditional states formalism. Such
composites are called quantum-classical hybrid regions.

As in Example 1, the classical variable X is associated with
a Hilbert space HX equipped with a preferred basis {|x〉} that
represents the possible values of X. The quantum region is
associated with a Hilbert space HA and the joint region with
the tensor product HXA = HX ⊗ HA. In order to preserve the
classical nature of X, states and conditional states on HXA are
restricted to be of the following form.

Definition 4. A hybrid operator on HXA is an operator of
the form

MXA =
∑

x

|x〉〈x|X ⊗ MA
x , (40)

where {|x〉} is a preferred basis for HX and {MA
x } is a set

of operators acting on HA, labeled by the values of X. The
operators MA

x are referred to as the components of MXA.
When MXA is a state, this ensures that the reduced state on

X is diagonal in the preferred basis and that there can be no
entanglement between the quantum and classical regions.

Although our primary interest is in causal hybrids, since
these are relevant to preparations and measurements, one can
also have acausal hybrids. As shown below, the set of acausal
hybrid conditional states and the set of acausal hybrid joint
states are invariant under partial transpose. It follows that
the set of acausal hybrid states and the set of causal hybrid
states are the same. In particular, this means that, unlike
fully quantum causal states, hybrid causal states not only
have positive partial transpose but are themselves positive,
and unlike fully quantum acausal states, hybrid acausal states
not only are positive but also have positive partial transpose.

Therefore, for hybrid states, the notational distinction
between ρ and � serves merely as a reminder of the causal ar-
rangement of the regions under consideration. This in contrast
with the fully quantum case, where the distinction also has
significance for the mathematical properties of the operator.
When making claims about the mathematical properties of
hybrid conditional states that are independent of causal struc-
ture, the notation σ is used. According to these conventions,
any formula expressed in terms of σ ’s will yield a valid formula
about hybrid states if the σ ’s are replaced by either ρ’s or �’s.

For hybrid regions, there are two possible types of condi-
tional state, depending on whether the conditioning is done on
the quantum or the classical region. In the case of conditioning
on the classical variable, a hybrid conditional state σA|X is a
positive operator on HXA, satisfying

TrA(σA|X) = IX. (41)

In the case of conditioning on the quantum region, a hybrid
conditional state σX|A is again a positive operator on HXA, but
this time satisfying

TrX(σX|A) = IA. (42)

G. Ensemble averaging as belief propagation

A hybrid conditional state of the form σA|X is a quan-
tum state conditioned on a classical variable. The causal

interpretation of such states is a process that takes a classical
variable as input and outputs a quantum state. This is just
an ensemble preparation procedure. In such a preparation
procedure, a classical random variable X is sampled from a
probability distribution P (X) (by flipping coins, rolling dice,
or any other suitable method). Depending on the value x of
X thereby obtained, one of a set of quantum states {ρA

x } is
prepared for a quantum region A. If you do not know the
value of X, then you should assign the ensemble average
state ρA = ∑

x P (X = x)ρA
x to A. This scenario is depicted in

Fig. 3(a). A quantum preparation procedure has an obvious
classical analog wherein the quantum region A is replaced
by a classical variable R that is prepared in one of a set of
probability distributions P (R|X = x) depending on the value
x of X. If you do not know the value of X, then the classical
belief propagation rule specifies that you should assign the
probability distribution P (R) = ∑

X P (R|X)P (X) to R. This
case is illustrated in Fig. 3(b). This section shows that a set of
density operators can be represented by a hybrid conditional
state of the form σA|X and that the formula for the ensemble
average state in a preparation procedure is a special case of
quantum belief propagation.

Theorem 3. Let σA|X be a hybrid operator, so that by Eq. (40)
it can be written as

σA|X =
∑

x

ρA
x ⊗ |x〉〈x|X, (43)

for some set of operators {ρA
x }. Then, σA|X satisfies the

definition of both an acausal and a causal conditional state

X

A

ρA = TrX
⎛
⎝

A|XρX

⎞
⎠

Conventional notation:

ρA = ΣxP (X = x)ρA
x

(a)

X

R

P (R) = ΣXP (R|X)P (X)

(b)

FIG. 3. Quantum and classical preparation procedures. (a) A
quantum preparation procedure is a process that takes a classical
variable X as input and outputs a quantum region A in one of a set
{ρA

x } of states, depending on the value of X. It is mathematically
equivalent to the special case of a CPT map where the input is
classical. (b) A classical preparation procedure is a process that
takes a variable X as input and outputs one of a set {P (R|X = x)}
of probability distributions over R, depending on the value of X.
It is mathematically equivalent to the stochastic dynamics depicted
in Fig. 2(b).
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for A given X if and only if each of the components ρA
x is a

normalized state on HA.
The proof is provided in the Appendix.
It is often convenient to use the notation σA|X=x =

〈x|XσA|X|x〉X = ρA
x for the components of a conditional state

of this form.
If we adopt the convention that the partial transpose on

the Hilbert space of a classical variable is performed in its
preferred basis then it has no effect on hybrid operators. Thus,
acausal conditional states of the form ρA|X are invariant under
partial transpose on X and this is why acausal and causal
conditional states that are conditioned on the classical variable
have the same form.5 The remainder of this section concerns
the causal interpretation of such states in terms of preparation
procedures, so we shift to the notation �A|X.

Proposition 2. Let �A|X be the causal hybrid conditional
state with components given by a set of states {ρA

x }. The
ensemble average state arising from a preparation procedure
that samples a value x of a classical variable X from the
distribution P (X) and prepares the state ρA

x is given by

ρA =
∑

x

P (X = x)ρA
x . (44)

This can be expressed in the conditional states formalism via
the quantum belief propagation rule as

ρA = TrX(�A|XρX), (45)

where ρX = ∑
x P (X = x)|x〉〈x|X.

This result follows simply from substituting the definition
of ρX and �A|X into Eq. (45).

Figure 3 and the second and seventh lines of Table II
summarize how the representation of a preparation procedure
within the conditional states formalism contrasts with the
conventional representation and how the latter generalizes the
analogous classical expression.

It should be noted that Theorem 3 can alternatively be
derived as a special case of Theorem 2 and Proposition 2
as a special case of Proposition 1. This follows from the fact
that a preparation procedure can be represented by a CPT map
EA|X from a classical variable to a quantum region (sometimes
called a CQ map). The map is defined on diagonal states ρX

via

EA|X(ρX) =
∑

x

〈x|XρX|x〉XρA
x . (46)

By Proposition 1, the conditional state associated with the
preparation is the Jamiołkowski isomorphic operator to this
map. Equation (45) is then obtained as a special case of Eq. (33)
where the input is classical.

5Even if we do not adopt the convention of evaluating partial
transposes in the preferred basis, the sets of acausal and causal
conditional states are still isomorphic. If {|x〉X} is the preferred basis
for acausal states, then this amounts to choosing a different preferred
basis {|x∗〉X} for causal states, where ∗ is complex conjugation
in the basis used to define the partial transpose. However, this
is an unnecessary complication that is avoided by adopting the
recommended convention.

H. The Born rule as belief propagation

A hybrid conditional state of the form σY |A is a classical
probability distribution conditioned on a quantum region. The
causal interpretation of such states is as a process that takes a
quantum region as input and outputs a classical variable. This
is just a measurement. The most general kind of measurement
on a quantum region A is conventionally represented by a
POVM {EA

y } with the classical variable Y ranging over the
possible outcomes. If the state of the region is ρA, then the
probability of obtaining outcome y is given by the Born
rule as P (Y = y) = TrA(EA

y ρA). This scenario is depicted in
Fig. 4(a). In the classical analog, the quantum region A is
replaced by a classical variable R, the state ρA is replaced
by a distribution P (R), and the POVM is replaced by a
(possibly noisy) classical measurement described by a set
of response functions {P (Y = y|R)}, i.e., a set of functions
of R labeled by the values of Y , where P (Y = y|R = r)
specifies the probability of obtaining the outcome y given that
R = r . The overall probability of obtaining the outcome y

is given by P (Y = y) = ∑
R P (Y = y|R)P (R), which is just

another instance of belief propagation. This case is illustrated
in Fig. 4(b). In analogy to this, the remainder of this section
shows that the components of a conditional state σY |A form a
POVM and that the Born rule can be written as quantum belief
propagation with respect to a causal conditional state of this
form.

Theorem 4. Let σY |A be a hybrid operator so that, by
Eq. (40), it can be written in the form

σY |A =
∑

y

|y〉〈y|Y ⊗ EA
y , (47)

A

Y

ρY = TrA
⎛
⎝

Y |AρA

⎞
⎠

P (Y = y) = TrA
⎛
⎝EA

y ρA

⎞
⎠

Conventional notation:

(a)

R

Y

P (Y ) = ΣRP (Y |R)P (R)

(b)

FIG. 4. Quantum and classical measurements. (a) A quantum
measurement is a process that takes a quantum region A as input
and outputs a classical variable Y . It is mathematically equivalent
to the special case of a CPT map where the output is classical.
(b) A classical (noisy) measurement is a process that takes a variable
R as input and outputs a variable Y that depends on R, possibly
in a coarse-grained or nondeterministic way. It is mathematically
equivalent to the stochastic dynamics depicted in Fig. 2(b).
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for some set of operators {EA
y }. Then σY |A satisfies the

definition of both an acausal and a causal conditional state
for Y given A if and only if the set {EA

y } is a POVM on HA,
i.e., each EA

y is positive and
∑

y EA
y = IA.

The proof is given in the Appendix.
It is sometimes useful to use the notation σY=y|A =

〈y|Y σY |A|y〉Y = EA
y for the components of conditional states

of this form.
Unlike the case of hybrid states that are conditioned on a

classical variable, conditional states of the form σY |A are not
invariant under partial transpose on the conditioning region.
However, taking the partial transpose over A of ρY |A yields
another valid acausal conditional state, because {(EA

y )TA} is a
POVM if and only if {EA

y } is. The remainder of this section
concerns the causal interpretation of such states, so the notation
�Y |A is adopted.

Proposition 3. Consider a measurement of a POVM {EA
y }

on a quantum region A in state ρA. Let �Y |A be the causal
conditional state with components EA

y . The Born rule,

P (Y = y) = TrA
(
EA

y ρA

)
, (48)

can then be expressed in the conditional states formalism as
the quantum belief propagation rule

ρY = TrA(�Y |AρA), (49)

where ρY = ∑
y P (Y = y)|y〉〈y|Y .

This is easily verified by substituting the definition of �Y |A
from Eq. (47) into Eq. (49).

This representation of a measurement as a causal con-
ditional state and of the Born rule as an instance of belief
propagation is summarized in Fig. 4 and the third and sixth
lines of Table II.

Once again, these results can be understood as a special
case of Theorem 2 and Proposition 1 by recognizing that a
POVM may be represented as a map from a quantum region to
a classical variable (sometimes called a QC map). Specifically,
if the probability distribution P (Y ) is represented by a diagonal
state ρY , then the measurement can be represented by the CPT
map EY |A defined by

ρY = EY |A(ρA) =
∑

y

TrA
(
EA

y ρA

)|y〉〈y|Y . (50)

The causal conditional state �Y |A appearing in Eq. (49) is
simply the Jamiołkowski isomorphic operator to this map.

I. Belief propagation of conditional states

Consider three causally related regions A, B, and C, such
that B is in the future of A and C is in the future of B. If
the dynamics is Markovian then it can be described by first
applying a CPT map EB|A to A followed by a CPT map EC|B
to B. This scenario is illustrated in Fig. 5(a). If we are only
interested in regions A and C, then region B can be eliminated
from the description by composing the two maps to obtain
EC|A = EC|B ◦ EB|A, where E ◦ F(·) ≡ E(F(·)).

In the conditional states formalism the CPT maps are
replaced by the Jamiołkowski isomorphic causal conditional
states �B|A, �C|B , and �C|A, and thus EC|A = EC|B ◦ EB|A

B

A

C

C|A = TrB
⎛
⎝

C|B B|A
⎞
⎠

Conventional notation:

EC|A = EC|B ◦ EB|A

(a)

S

T

R

P (T |R) = ΣSP (T |S)P (S|R)

(b)

FIG. 5. Propagating causal conditional states and conditional
probability distributions. (a) Quantum case. (b) Classical case.

should be replaced by a formula for �C|A in terms of �B|A
and �C|B .

As an aid to intuition, consider the classical analog of
this scenario as depicted in Fig. 5(b). Here, the variable S

is in the future of R, and T is in the future of S. The three
variables are related by a Markovian dynamics, described by
the conditional probability distributions P (S|R) and P (T |S).
An initial probability distribution P (R) can be propagated
into the future to obtain P (T ) in two steps. First we propagate
from R to S to obtain P (S) = ∑

R P (S|R)P (R) and then from
S to T to obtain P (T ) = ∑

S P (T |S)P (S). Combining these
steps gives P (T ) = ∑

R,S P (T |S)P (S|R)P (R), so defining
the conditional probability distribution,

P (T |R) =
∑

S

P (T |S)P (S|R), (51)

allows the belief propagation from R to T to be performed in
a single step via P (T ) = ∑

R P (T |R)P (R).
The quantum analog of this is given by the following

theorem.
Theorem 5. Let EB|A, EC|B , and EC|A be linear maps such

that EC|A = EC|B ◦ EB|A. Then the Jamiołkowski isomorphic
operators, �B|A, �C|B , and �C|A, satisfy

�C|A = TrB(�C|B�B|A). (52)

Conversely, if three operators satisfy Eq. (52), then the
Jamiołkowski isomorphic maps satisfy EC|A = EC|B ◦ EB|A.

The proof is provided in the Appendix.
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A B

C

ρC|A = TrB
⎛
⎝

C|BρB|A
⎞
⎠

FIG. 6. Propagating an acausal conditional state through a causal
conditional state.

Equation (52) can be regarded as a belief propagation rule
for causal conditional states. It propagates beliefs about B,
conditional on A, into the future to obtain beliefs about C,
conditional on A.

A similar formalism can be developed for the propagation
of acausal conditional states across acausally related regions.
However, for present purposes, it is more interesting to
consider a situation of mixed causality, wherein a causal
conditional state is propagated across two acausally related
regions. This is used in the application to steering developed
in Sec. V A3.

Consider the scenario depicted in Fig. 6. Initially, a state
ρAB is assigned to regions A and B, which are acausally
related. A CPT map EC|B (alternatively represented by a causal
conditional state �C|B) is then applied to region B to obtain
the state of AC. In this scenario, C is causally related to B,
but acausally related to A. By Theorem 1, the state of AC is
given by

ρAC = TrB(�C|BρAB). (53)

Now ρAB = ρB|A � ρA and ρAC = ρC|A � ρA, so we have

ρC|A � ρA = TrB(�C|BρB|A) � ρA, (54)

where we have used the fact that ρA commutes with �C|B .
Taking the � product of this equation with ρ−1

A then gives

ρC|A = TrB(�C|BρB|A), (55)

in analogy with Eq. (52). This can again be viewed as a
belief propagation rule for conditional states, but this time an
acausal conditional state is being propagated through a causal
conditional state.

J. The Heisenberg picture

In Sec. III D, quantum evolution from an early region A

to a late region B was described by a map from states on
HA to states on HB . However, dynamics can alternatively be
represented in terms of observables rather than states. This
is simply the textbook distinction between the Schrödinger
picture and the Heisenberg picture. In the Heisenberg picture,
a temporal evolution is described by a map from the space of
observables on the late region B to the space of observables on
the early region A. The observables are usually represented by
self-adjoint operators and the dynamics by unitary operations,
but this can be generalized to take account of generalized
measurements and CPT dynamics. In this generalization,
Heisenberg dynamics consists of a map from POVM elements
(also known as effects) on B to POVM elements on A. In other

Y

B

A

Y |A = TrB
⎛
⎝

Y |B B|A
⎞
⎠

Conventional notation:

EA
y = E†A|B

⎛
⎝EB

y

⎞
⎠

FIG. 7. Dynamics in the Heisenberg picture.

words, effects are evolved backwards in time in the Heisenberg
picture.

In order to describe the Heisenberg picture for CPT maps,
it is necessary to define the notion of a dual map.

Definition 5. The dual map (EB|A)† : L(HB) → L(HA) of
a linear map EB|A : L(HA) → L(HB) is the unique map that
satisfies

TrA[(EB|A)†(NB)MA] = TrB(NBEB|A(MA)) (56)

for all MA ∈ L(HA),NB ∈ L(HB).
Note that the input space for the dual map is the output space

for the original map and vice versa. The notational convention

E†
A|B ≡ (EB|A)† (57)

is adopted in order to make this clear.
If EB|A is the map describing time evolution in the

Schrödinger picture through the formula ρB = EB|A(ρA), then
the same evolution is described in the Heisenberg picture by
the dual map E†

A|B through the formula EA
y = E†

A|B(EB
y ), where

{EA
y } and {EB

y } are POVMs. This follows from the condition
that the two pictures should be operationally equivalent; i.e.,
they should assign the same probabilities. To see this, imagine
that the evolution from region A to region B is followed by
a measurement on B yielding an outcome Y . This scenario
is depicted in Fig. 7. The probability of observing the effect
EB

y after a preparation of ρA followed by an evolution EB|A
is expressed in the Schrödinger picture as TrB(EB

y ρB), where
ρB = EB|A(ρA), while it is expressed in the Heisenberg picture
as TrA(EA

y ρA), where EA
y = E†

A|B(EB
y ). The definition of the

dual map ensures that the two expressions for the probability
are equivalent, i.e., TrB(EB

y ρB) = TrA(EA
y ρA).

A CPT map EB|A can always be written in a Kraus
decomposition

EB|A(·) =
∑

μ

Kμ(·)K†
μ, (58)

where Kμ : HA → HB . The dual map E†
A|B can then be

obtained by taking the adjoint of the operators in the Kraus
decomposition, i.e.,

E†
A|B(·) =

∑
μ

K†
μ(·)Kμ. (59)

Thus, if HA and HB are isomorphic and EB|A is a unitary
operation, i.e., EB|A(·) = U (·)U † for some unitary operator U ,

052130-14



TOWARDS A FORMULATION OF QUANTUM THEORY AS A . . . PHYSICAL REVIEW A 88, 052130 (2013)

then E†
A|B(·) = U †(·)U . This is the familiar special case of the

Heisenberg picture for unitary dynamics.
In order to translate the Heisenberg picture into the

conditional states formalism, first represent the POVM {EB
y }

by a conditional state �Y |B , the CPT map EB|A by a causal
conditional state �B|A, and the POVM {EA

y } by a conditional
state �Y |A. Second, note that Fig. 7 is just a special case of
Fig. 5(a) from Sec. III I in which the final region is classical,
so the three conditional states are related by Eq. (52), i.e.,

�Y |A = TrB(�Y |B�B|A). (60)

In Sec. III I, this was described as a belief propagation formula
for causal conditional states because �Y |B was regarded as
defining a map from �B|A to �Y |A, propagating beliefs about
B, conditional on A, into the future. However, in the context
of Heisenberg dynamics, we instead regard �B|A as defining a
map from �Y |B to �Y |A, in the opposite direction to the flow
of time. It remains to show that Eq. (60) is equivalent to the
conventional description of Heisenberg dynamics in terms of
dual maps.

Theorem 6. Let �B|A be the causal joint state that is
Jamiołkowski isomorphic to the CPT map EB|A. Then, the
action of the dual map E†

A|B on an operator MBC is given by

(E†
A|B ⊗ IC)(MBC) = TrB(MBC�B|A). (61)

Proof. By Definition 5, the dual map to EB|A is the unique
linear map E†

A|B that satisfies

TrA[E†
A|B(NB)MA] = TrB[NBEB|A(MA)] (62)

for all operators MA and NB . Using the Jamiołkowski
isomorphism and Theorem 2, the right-hand side can be written
as

TrB[NBEB|A(MA)] = TrAB(NB�B|AMA) (63)

= TrA[TrB(NB�B|A)MA]. (64)

The only way this can equal TrA[E†
A|B(NB)MA] for all MA is

if E†
A|B(NB) = TrB(NB�B|A). Equation (61) then follows by

linear extension to HBC . �
Combining this with Eq. (60) gives the following proposi-

tion.
Proposition 4. Let �B|A be the causal conditional state

associated with a quantum evolution described by the CPT
map EB|A and let �Y |A and �Y |B be the hybrid conditional states
associated with the POVMs {EA

y } and {EB
y }, such that {EA

y }
is obtained from {EB

y } by the Heisenberg picture dynamics.
The conventional description of evolution in the Heisenberg
picture,

EA
y = E†

A|B
(
EB

y

)
, (65)

can be expressed in the conditional states formalism as

�Y |A = TrB(�Y |B�B|A). (66)

This follows straightforwardly from Theorems 6 and 4.
As in Sec. III I, similar reasoning can be applied to other

causal scenarios. Consider the special case of Fig. 6 in which
C is replaced by a classical variable Y . This is depicted in

A B

Y ρY |A = TrB Y |BρB|A

Conventional notation:

EA
y =

†
A|B EB

y

FIG. 8. Heisenberg evolution for a remote measurement.

Fig. 8. Two acausally related regions, A and B, are assigned a
state ρAB and then the POVM {EB

y } (alternatively represented
by a conditional state �Y |B) is measured on region B. This
is the type of scenario that occurs in an EPR experiment. By
measuring the region B, information is obtained about the
remote region A and we are interested in how the state of A is
correlated with the measurement outcome Y .

The belief propagation formula for this scenario, Eq. (55),
gives

ρY |A = TrB(�Y |BρB|A). (67)

The components of the conditional state ρY |A specify a POVM
{EA

y }. This POVM can be thought of as describing the
effective measurement that gets performed on A when we
actually measure region B. When combined with ρA, the
conditional state ρY |A specifies the ensemble of states for
region A associated with the different measurement outcomes
via ρAY = ρY |A � ρA. In terms of components, this is

ρYA =
∑
Y

|y〉 〈y|Y ⊗ ρ
1
2
AEA

y ρ
1
2
A, (68)

so the un-normalized state of A corresponding to the outcome
Y = y is

P (Y = y)ρA
y = ρ

1
2
AEA

y ρ
1
2
A, (69)

where P (Y = y) = TrA(EA
y ρA) = TrB(EB

y ρB) is the Born rule
probability for the measurement outcome Y = y.

If ρB|A in Eq. (67) is thought of as specifying a map from
�Y |B to ρY |A, then this map is analogous to a Heisenberg picture
dynamics, except that the propagation is across acausally
related rather than causally related regions. If EB|A is the
Jamiołkowski isomorphic map to ρB|A, then, by Theorem 6,
the POVM elements are related by

EA
y = E

†
A|B

(
EB

y

)
. (70)

Mathematically, the only difference between this and a Heisen-
berg picture map is that EB|A ◦ TA is completely positive rather
than the map EB|A itself. This is just a reflection of the fact
that we are propagating across acausally related, rather than
causally related, regions.

A similar expression to Eq. (70) has appeared in the context
of quantum steering [25], although there it is written in terms of
the Choi, rather than Jamiołkowski, isomorphic map so there
is a transpose in the expression. We develop this application
in Sec. V A3.

K. Quantum instruments as causal belief propagation

Describing a measurement by a POVM is adequate for
determining the outcome probabilities of the measurement
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via the Born rule. However, one might also wish to describe
how the state of a postmeasurement region is correlated with
the measurement result. In the conventional formalism, the
transformative aspect of a measurement is represented by a
quantum instrument.

Definition 6. Given quantum regions A and B, and a
classical variable Y , a quantum instrument is a set {EB|A

y }
of CPT maps EB|A

y : L(HA) → L(HB) such that the operators

EA
y = E†A|B

y (IB) (71)

form a POVM.
If A and B represent causally related regions before

and after a measurement and Y represents the measurement
outcome, then a quantum instrument can be used to determine
the subnormalized state P (Y = y)ρB

y of B when the outcome
is known via

P (Y = y)ρB
y = EB|A

y (ρA). (72)

It can also be used to compute the outcome probabilities for
the measurement by simply tracing over B in Eq. (72) to obtain

P (Y = y) = TrB
[
EB|A

y (ρA)
]
. (73)

Using Eq. (71), this can be written as

P (Y = y) = TrB
[
EB|A

y (ρA)
]

(74)

= TrB
[
IBEB|A

y (ρA)
]

(75)

= TrA
[
E†A|B

y (IB)ρA

]
(76)

= TrA
[
EA

y ρA

]
, (77)

which is just the Born rule with respect to the POVM defined
by the instrument.

While an instrument defines a unique POVM, each POVM
corresponds to more than one quantum instrument. When
performing a measurement of a particular POVM, any of the
quantum instruments that correspond to it via Eq. (71) may be
obtained, depending on how the measurement is implemented.
Conversely, the set of instruments corresponding to a given
POVM exhaust the possible postmeasurement transforma-
tions. This includes, for example, the situation in which the
system being measured is absorbed by the detector, which
corresponds to choosing the trivial Hilbert space for B, i.e.,
HB = C.

Despite the freedom in choosing a quantum instrument,
certain kinds of instrument are usually considered particularly
important. For measurements associated with a projector-
valued measure {
A

y }, the possible quantum instruments
include the Lüders-von Neumann projection postulate as a
special case by taking HB to have the same dimension
as HA and EB|A

y (ρA) = IB|A(
A
y ρA
A

y ), where IB|A is an
isometry between HA and HB . For general POVMs the rule
EB|A

y (ρA) = IB|A((EA
y )

1
2 ρA(EA

y )
1
2 ), which is sometimes taken

as a natural generalization of the projection postulate, is also
included as a special case.

A general measurement procedure, where there is an initial
quantum region, a classical outcome of the measurement, and a
quantum region after the measurement, is depicted in Fig. 9(a).

Y

A

B
ρY B = TrA

⎛
⎝

Y B|AρA

⎞
⎠

Y |A = TrB
⎛
⎝

Y B|A
⎞
⎠

Conventional notation:

P (Y = y)ρB
y = EB|A

y (ρA)

EA
y = E†A|B

y (IB)

(a)

Y

S

R

P (Y, S) = ΣRP (Y, S|R)P (R)

P (Y |R) = ΣSP (Y, S|R)

(b)

FIG. 9. Measurements and their associated state-update rules.
(a) A quantum instrument, representing how the state of a quantum
persistent system changes after a measurement. (b) The classical
analog of a quantum instrument, representing how the state of
a classical persistent system changes after a general (possibly
disturbing) measurement.

Note that the final quantum region B may depend causally both
on the initial quantum region A and on the outcome Y .

In order to understand how quantum instruments are
represented in the conditional states formalism, it is helpful
to first look at the classical analog. This is a scenario wherein
a classical measurement is made upon a classical system,
which persists after the measurement, and in general the
measurement procedure is permitted to disturb the state of
the system. The variable R describes the system before the
measurement and the variable S describes the system after the
measurement. This is in line with the quantum treatment, in
which distinct regions are given distinct labels. The outcome
of the measurement is again denoted by Y . This scenario is
depicted in Fig. 9(b). The measurement is then described by
a conditional probability P (Y,S|R). This can equivalently be
thought of as a set of subnormalized conditional probabilities
for S given R, {P (Y = y,S|R)}, one for each outcome y, which
is the analog of a quantum instrument. The joint distribution
over Y and S, when the input distribution is P (R), is then given
by

P (Y,S) =
∑
R

P (Y,S|R)P (R). (78)

Furthermore, the set of response functions {P (Y = y|R)}
associated with such a measurement is easily computed from
P (Y,S|R) by marginalizing over S,

P (Y |R) =
∑

S

P (Y,S|R). (79)

In the conditional states formalism, Eqs. (72) and (71) are
replaced by straightforward analogs of Eqs. (78) and (79) for a
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causal hybrid state �YB|A of a classical variable Y and quantum
region B, conditioned on a quantum region A.

Theorem 7. Let �YB|A be an operator on HYAB of the form

�YB|A ≡
∑

y

|y〉〈y|Y ⊗ �Y=y,B|A, (80)

where

�Y=y,B|A ≡ EB|A′
y

( ∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′

)
(81)

are the Jamiołkowski isomorphic operators to maps EB|A
y :

L(HA) → L(HB). Then �YB|A is a causal conditional state if
and only if {EB|A

y } is a quantum instrument.
The proof is similar to those of Theorems 2, 3, and 4 and is

left to the reader.
Theorem 7 allows the transformative aspect of a quantum

measurement to be represented by conditional states as
follows.

Proposition 5. Let �YB|A be the causal conditional state
associated with the instrument {EB|A

y }. Then, when the mea-
surement corresponding to this instrument is made with input
state ρA, the state-update rule in conventional notation is
given by

P (Y = y)ρB
y = EB|A

y (ρA). (82)

In analogy with the classical expression in Eq. (78), this can
be expressed in the conditional states framework as

ρYB = TrA(�YB|AρA), (83)

where ρYB = ∑
y P (Y = y)|y〉〈y|Y ⊗ ρB

y . Furthermore, the
conventional expression for the relation between a POVM and
a quantum instrument,

EA
y = (E†

y )A|B(IB), (84)

can be expressed simply as

�Y |A = TrB(�YB|A), (85)

in analogy with the classical expression in Eq. (79).
The proof of Eq. (83) consists of applying Proposition 1,

in particular Eq. (33), to Eq. (82) for every value of Y .
Equation (85) follows from applying Theorem 6 to each
element of the instrument.

Note that, from the perspective of the conditional states
framework, the fact that there are many quantum instruments
consistent with a given POVM is no more surprising than the
fact that in classical probability theory there are many joint
distributions consistent with a given marginal distribution.

Finally, note that for a quantum instrument, the map
EB|A(ρA) = ∑

y E
B|A
y (ρA) is CPT and represents the nonselec-

tive state-update rule, i.e., the one that you should apply if you
know that the measurement has been made but do not know
its outcome. In the conditional states framework, if you know
that a measurement associated with the causal conditional state
�YB|A has been performed, but you do not know the outcome,
then you simply marginalize over Y to obtain the causal
conditional state �B|A. Quantum belief propagation from A

to B using �B|A is the nonselective state-update rule.

Table II provides a summary of how dynamics, ensem-
ble preparations, and measurements are represented in the
conditional states formalism as compared to the conventional
formalism.

IV. QUANTUM BAYES’ THEOREM

This section develops a quantum generalization of Bayes’
theorem that relates the conditional states ρB|A (�B|A) and ρA|B
(�A|B). Formally, the quantum Bayes’ theorem is the same
for acausal and causal conditional states, so this represents a
success in our project to develop a causally neutral theory of
quantum Bayesian inference. In Sec. IV A, the quantum Bayes’
theorem is introduced for two quantum regions. When written
in terms of conventional notation, it reproduces the Barnum-
Knill approximate error correction map [29]. Section IV B
specializes to the hybrid case, which provides a rule for
relating sets of states to POVMs. In conventional notation,
this reproduces the definition of the pretty-good measurement
[31–33] and a quantum analog of Bayes’ theorem previously
advocated by Fuchs [24]. As an application of the quantum
Bayes’ theorem, we develop a retrodictive formalism for
quantum theory in Sec. IV C in which states are evolved
backwards in time. This demonstrates that the conditional
states formalism is causally neutral with respect to the direction
of time. Finally, in Sec. IV D, the acausal analog of the
symmetry between prediction and retrodiction is discussed
in the context of remote measurement.

A. General quantum Bayes’ theorem

Recall that the classical Bayes’ theorem is

P (R|S) = P (S|R)P (R)

P (S)
, (86)

which is derived by noting two expressions for the joint
probability in terms of conditionals and marginals

P (R,S) = P (R|S)P (S) (87)

= P (S|R)P (R). (88)

Quantum conditional states can be used to derive a quantum
analog of Bayes’ theorem. For acausal conditional states, the
two analogous expressions to Eqs. (87) and (88) are

ρAB = ρA|B � ρB (89)

= ρB|A � ρA. (90)

Combining these gives

ρA|B = ρB|A �
(
ρAρ−1

B

)
, (91)

which is a quantum analog of Bayes’ theorem for acausal
conditional states.

Classically, the distribution P (S) that appears in the
denominator of Bayes’ theorem is usually computed via
belief propagation as P (S) = ∑

R P (S|R)P (R). This gives
the alternative form of Bayes’ theorem

P (R|S) = P (S|R)P (R)∑
R P (S|R)P (R)

. (92)
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Similarly, noting that ρB = TrA(ρB|A � ρA) = TrA(ρB|AρA),
the quantum Bayes’ theorem for acausal conditionals can be
written as

ρA|B = ρB|A � {ρA[TrA(ρB|AρA)]−1}. (93)

Now consider the case of two causally related regions.
Suppose that a region A, described by the state ρA, is mapped
to B by a CPT map EB|A that is Jamiołkowski-isomorphic to
the causal conditional state �B|A. Recall from Sec. III E that the
conditional state and input state can be used to define a causal
joint state �AB = �B|A � ρA. Now we can try to define a new
causal conditional state �A|B via an analogous decomposition
of the causal joint state, namely, �AB = �A|B � ρB , where
ρB = TrA(�B|AρA) is the output state of the channel. Equating
the two expressions for the joint state �AB , we obtain an
expression for �A|B , which can be regarded as the causal
version of the quantum Bayes’ theorem,

�A|B = �B|A �
(
ρAρ−1

B

)
, (94)

and which can also be written as

�A|B = �B|A � {ρA[TrA(�B|AρA)]−1}. (95)

In order for this to make sense, it must be checked
that �A|B is indeed a valid causal conditional state. Taking
the partial transpose over B of Eq. (94), we have �

TB

A|B =
�

TB

B|A � [ρA(ρTB

B )−1]. Given that ρB is a valid state (positive and
normalized) and given that the set of such states is mapped to
itself by the transpose, ρ

TB

B is also a valid state. Furthermore,
given that �B|A is a valid causal conditional state and the fact
that the set of such states are mapped to the set of valid acausal
conditional states by the partial transpose, it follows that �

TB

B|A
is a valid acausal conditional state. However, then, by the
acausal quantum Bayes’ theorem given in Eq. (91), �

TB

A|B is a
valid acausal conditional state, which implies that �B|A is a
valid causal conditional state.

It is instructive to see how the causal and acausal versions
of Bayes’ theorem appear in conventional notation.

For the causal version, suppose that the causal conditional
state �B|A is associated, via the Jamiołkowski isomorphism,
with a quantum channel EB|A and its Bayesian inversion �A|B
is associated with a quantum channel FA|B . Then, Eq. (94) is
equivalent to

FA|B(·) = ρ
1
2
A

{
E†

A|B
[
ρ

− 1
2

B (·)ρ− 1
2

B

]}
ρ

1
2
A, (96)

where

ρB = EB|A(ρA). (97)

The converse of this relation, wherein EB|A is expressed in
terms of FA|B , is obtained by simply exchanging A and B as
well as E and F .

The proof that Eq. (94) translates into Eq. (96) is straight-
forward. From the Jamiołkowski isomorphism (Theorem 1),

FA|B(·) = TrB[�A|B(·)], which implies that

FA|B(·) = TrB
[
ρ

1
2
Aρ

− 1
2

B �B|Aρ
− 1

2
B ρ

1
2
A(·)] (98)

= ρ
1
2
ATrB

[
ρ

− 1
2

B (·)ρ− 1
2

B �B|Aρ
1
2
A

]
, (99)

where the first step follows from Eq. (94) and expanding the
� product, and the second step uses the cyclic property of the
trace. Equation (96) then follows from the representation of
dual maps in terms of conditional states given in Theorem 6.

The mapFA|B is recognizable as the Barnum-Knill recovery
map for the channel EB|A [29]. This map is known to achieve
near-optimal quantum error correction in situations where
the input state and channel are known. Its connection with
Bayesian inversion suggests that the best way of thinking about
FA|B is not as an error correction map, but rather as a means for
accurately capturing your beliefs about region A given your
beliefs about region B.

A similar result holds for the acausal case. Suppose that
the linear map that is Jamiołkowski-isomorphic to the acausal
conditional state ρB|A is EB|A and the one associated to its
Bayesian inversion ρA|B is FA|B (recall that only EB|A ◦ TA

and FA|B ◦ TA are CPT maps). Following the same reasoning
used above, Eq. (91) can be rewritten as

FA|B(·) = ρ
1
2
A

{
E
†
A|B

[
ρ

− 1
2

B (·)ρ− 1
2

B

]}
ρ

1
2
A, (100)

where

ρB = EB|A(ρA). (101)

B. Bayes’ theorem for quantum-classical hybrids

For quantum-classical hybrids, there are two versions of
Bayes’ theorem, depending on whether it is the conditioned
region or the conditioning region that is classical. Recall that
the mathematical form of hybrid conditional states does not
depend on whether they are causal or acausal, and σ is the
notation used for results that do not depend on the causal
interpretation. The two versions of Bayes’ theorem are then

σX|A = σA|X �
(
ρXρ−1

A

)
(102)

and

σA|X = σX|A �
(
ρAρ−1

X

)
, (103)

where ρA = TrX(σA|XρX) and ρX = TrA(σX|AρA).
A hybrid joint state σXA may be decomposed into a hybrid

conditional state and a reduced state via Eq. (11) in two
distinct ways: either in terms of a classical reduced state and a
conditional state that is conditioned on the classical part,

σXA = σA|X � ρX, (104)

or in terms of a quantum reduced state and a conditional state
that is conditioned on the quantum part,

σXA = σX|A � ρA. (105)

The hybrid Bayes’ theorems of Eqs. (102) and (103) give the
rules for converting between these two decompositions.

To see how these two decompositions appear in conven-
tional notation, recall from Theorem 3 that a general hybrid
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conditional state σA|X is of the form

σA|X =
∑

x

|x〉〈x|X ⊗ ρA
x , (106)

where each ρA
x is a normalized density operator on HA, and

from Theorem 4 that σX|A is of the form

σX|A =
∑

x

|x〉〈x|X ⊗ EA
x , (107)

where {EA
x } is a POVM on A. Finally, recall that the classical

state ρX is of the form ρX = ∑
x P (X = x)|x〉〈x|X where

P (X) is a classical probability distribution.
Equation (104) therefore gives a decomposition of a joint

state in terms of a set of states and a probability distribution
via

σXA =
∑

x

P (X = x)|x〉〈x|X ⊗ ρA
x , (108)

and Eq. (105) gives a decomposition in terms of a POVM and
a state for A via

σXA =
∑

x

|x〉〈x|X ⊗ ρ
1
2
AEA

x ρ
1
2
A. (109)

In terms of components, the Bayes’ theorem of Eq. (102) is
a rule for determining a POVM from a probability distribution
and a set of states, while Eq. (103) is a rule for determining a
set of states from a POVM and a state on A. These rules are

ρA
x = ρ

1
2
AEA

x ρ
1
2
A

TrA
(
EA

x ρA

) (110)

and

EA
x = P (X = x)ρ

− 1
2

A ρA
x ρ

− 1
2

A , (111)

where ρA = ∑
x P (X = x)ρA

x .
These rules have appeared numerous times in the literature,

e.g., [3,4,30]. In the context of distinguishing the states in an
ensemble, the POVM defined by Eq. (111) is known as the
pretty-good measurement [31–33]. Equation (110) is a rule
previously advocated by Fuchs as a quantum analog of Bayes’
theorem [24]. The fact that these rules are all special cases of
a more general quantum Bayes’ theorem goes some way to
explaining their utility.

C. Retrodiction and time symmetry

As an application of the quantum Bayes’ theorem, we use
it to develop a retrodictive formalism for quantum theory,
in which states are propagated backwards in time from late
regions to early regions. This is operationally equivalent to the
usual predictive formalism, in which states are propagated
forward in time from early regions to late regions. The
retrodictive description is particularly useful if you acquire
new information about the late region and wish to update your
beliefs about the early region, for instance, when you learn
about the output of a noisy channel and wish to make inferences
about its input. This situation is considered in Sec. V A.

Barnett et al. have previously proposed a formalism for
retrodictive inference in quantum theory [26–28]. For unbiased
sources—for which the ensemble average of the prepared

states is the maximally mixed state—their formalism is
identical to the one presented here, and the quantum Bayes’
theorem provides it with an intuitive derivation. For biased
sources, their formalism differs from ours. The one we propose
has the advantage that it can be derived as a special case of our
general formalism for quantum Bayesian inference and thereby
retains a closer analogy with classical Bayesian inference.

As emphasized by the de Finetti quote in the Introduction,
the rules for making classical probabilistic inferences about
the past are the same as those for making inferences about
the future. By analogy, in the conditional states formalism,
we would expect to be able to propagate quantum states
from future regions to past regions via the same rules used
to propagate them from past regions to future regions.

If the state ρA of an early region is mapped to the state ρB

of a later region by a CPT map EB|A, then

ρB = TrA(�B|AρA), (112)

where �B|A is the Jamiołkowski isomorphic causal conditional
state to EB|A. By construction, the causal conditional state
�A|B defined by Bayes’ theorem in Eq. (94) satisfies �AB =
�B|A � ρA = �A|B � ρB , and this causal joint state has ρA and
ρB as its marginals, so we have

ρA = TrB(�A|BρB). (113)

In conventional notation, this is equivalent to

ρA = E retr
A|B(ρB), (114)

where

E retr
A|B(·) ≡ ρ

1
2
AE

†
A|B

(
ρ

− 1
2

B (·)ρ− 1
2

B

)
ρ

1
2
A (115)

is the map that is Jamiołkowski isomorphic to �A|B and the
superscript “retr” is used to indicate that this is a retrodictive
map that propagates states from future to past regions.

For comparison with the retrodictive formalism of [26],
consider a simple prepare-and-measure experiment, as de-
picted in Fig. 10.

In the predictive description, the preparation procedure is
characterized by a probability distribution P (X), which can

X

A

Y

Predictive expression:

XY = TrA
⎛
⎝

Y |A A|X
⎞
⎠

X

Conventional notation:

px,y = TrA
⎛
⎝EA

y ρA
x

⎞
⎠ P (X = x)

Retrodictive expression:

XY = TrA
⎛
⎝

X|A A|Y
⎞
⎠

Y

Conventional notation:

px,y = TrA
⎛
⎝EA,retr

x ρA,retr
y

⎞
⎠ P (Y = y)

FIG. 10. A prepare-and-measure experiment in which a prepa-
ration procedure is followed by a measurement. We are interested
in computing the joint probability distribution P (X,Y ) of the
preparation variable and the measurement outcome. For compactness,
px,y = P (X = x,Y = y) is used for the expressions in conventional
notation.
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alternatively be represented by a diagonal state ρX, and by a set
of states ρA

x , which can alternatively be represented by a causal
conditional state �A|X. The measurement is characterized by
a POVM {EA

y } or, alternatively, by a causal conditional state
�Y |A. This is predictive because the conditional states, �A|X
and �Y |A, are conditioned on regions in their immediate past.

In order to calculate the joint distribution P (X,Y ), or
equivalently the causal joint state �XY , we need to use the belief
propagation formula for causal conditional states as given in
Eq. (52). This proceeds as follows.

(1) Propagate the causal conditional state of A given X

into the future to obtain �Y |X = TrA(�Y |A�A|X).
(2) Combine the causal conditional state for Y given X

with the state for X to obtain �XY = ρY |X � ρX.
Combining these steps, the predictive expression for �XY is

�XY = TrA(�Y |A�A|X) � ρX. (116)

In conventional notation, if the states {ρA
x } are the compo-

nents of �A|X and the elements of the POVM {EA
y } are the

components of �Y |A, then Eq. (116) is equivalent to

P (X = x,Y = y) = TrA
(
EA

y ρA
x

)
P (X = x). (117)

A retrodictive description of the same experiment can
be given, involving states of regions conditioned on regions
in their immediate future, i.e., ρY , �A|Y , and �X|A. These
correspond, respectively, to a probability distribution P (Y ),
a set of states {ρA,retr

y }, and a POVM {EA,retr
x }. Note that,

in contrast to the predictive description, the measurement is
now being described by a classical probability distribution
and a set of states, which we call retrodictive states, while
the preparation is being described by a POVM, which we call
the retrodictive POVM. The retrodictive calculation of �XY

proceeds as follows.
(1) Propagate the causal conditional state of A given Y into

the past to obtain �X|Y = TrA(�X|A�A|Y ).
(2) Combine the causal conditional state for X given Y

with the state for Y to obtain �XY = ρX|Y � ρY .
Combining these steps, the retrodictive expression for �XY

is

�XY = TrA(�X|A�A|Y ) � ρY . (118)

In conventional notation, this is equivalent to

P (X = x,Y = y) = TrA
(
EA,retr

x ρA,retr
y

)
P (Y = y). (119)

The retrodictive and predictive descriptions of the experi-
ment are related by the quantum Bayes’ and quantum belief
propagation via

�X|A = �A|X �
(
ρXρ−1

A

)
, (120)

where ρA = TrX(ρA|XρX), (121)

and

�A|Y = �Y |A �
(
ρAρ−1

Y

)
, (122)

where ρY = TrA(ρY |AρA). (123)

In conventional notation, these equations are equivalent to

EA,retr
x = P (X = x)ρ

− 1
2

A ρA
x ρ

− 1
2

A , (124)

where ρA =
∑

x

P (X = x)ρA
x , (125)

and

ρA,retr
y = ρ

1
2
AEA

y ρ
1
2
A

P (Y = y)
, (126)

where P (Y = y) = TrB
(
EA

y ρA

)
. (127)

Equations (120) and (122) can be used to prove that the
predictive and retrodictive expressions for �XY do indeed give
the same causal joint state. Starting from Eq. (118), we have

�XY = TrA(�X|A�A|Y ) � ρY (128)

= TrA
{(

�A|X �
[
ρXρ−1

A

])
(
�Y |A �

[
ρAρ−1

Y

]) }
� ρY (129)

= TrA
(
ρ

1
2
Y ρ

1
2
Xρ

− 1
2

A �A|Xρ
1
2
Xρ

− 1
2

A

ρ
1
2
Aρ

− 1
2

Y �Y |Aρ
1
2
Aρ

− 1
2

Y ρ
1
2
Y

)
(130)

= TrA
(
ρ

1
2
Y ρ

1
2
Xρ

− 1
2

A �A|Xρ
1
2
Xρ

− 1
2

Y �Y |Aρ
1
2
A

)
. (131)

Since ρY commutes with ρX, ρA, and �A|X, the ρ
1
2
Y term can be

moved forward to cancel with ρ
− 1

2
Y term. The ρ

− 1
2

A term can be

made to cancel with the last ρ
1
2
A term via the cyclic property of

the trace. This yields

�XY = TrA
(
ρ

1
2
X�A|Xρ

1
2
X�Y |A

)
(132)

= ρ
1
2
XTrA(�A|X�Y |A)ρ

1
2
X (133)

= TrA(�A|X�Y |A) � ρX, (134)

where, in the second line, we have used the fact that ρX

commutes with ρY |A. Finally, applying the cyclic property of
the trace gives

�XY = TrA(�Y |A�A|X) � ρX, (135)

which is the predictive expression for �XY .
We are now in a position to show that our formalism

coincides with that of Ref. [26] for the case of unbiased
sources, where ρA = IA/d with d the dimension of HA. In
this case, the definitions of retrodictive states and retrodictive
POVMs in [26] were

EA,retr
x = dP (X = x)ρA

x , (136)

and

ρA,retr
y = EA

y

dP (Y = y)
, (137)

which are easily seen to be special cases of Eqs. (124)
and (126).

Finally, note that the analysis above can be extended
to deal with the scenario depicted in Fig. 11, in which
there is an intervening channel EB|A between the preparation
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X

Y

B

A

Predictive expression:

XY = TrB
⎛
⎝

Y |BTrA
⎛
⎝

B|A A|X
⎞
⎠

⎞
⎠

X

Conventional notation:

px,y = TrB
⎛
⎝EB

y EB|A
⎛
⎝ρA

x

⎞
⎠

⎞
⎠ P (X = x)

Retrodictive expression:

XY = TrA
⎛
⎝

X|ATrB
⎛
⎝

A|B B|Y
⎞
⎠

⎞
⎠

Y

Conventional notation:

px,y = TrA
⎛
⎝EA,retr

x Eretr
A|B

⎛
⎝ρB,retr

y

⎞
⎠

⎞
⎠ P (Y = y)

FIG. 11. A prepare-and-measure experiment with an intervening
channel. We are interested in computing the joint probability
distribution P (X,Y ) of the preparation variable and the measurement
outcome. For compactness, px,y = P (X = x,Y = y) is used for the
expressions in conventional notation.

and measurement so that the measurement is now made on
region B. In fact, by making use of the rule for propagating
conditional states given in Eq. (52) [or equivalently the
Heisenberg dynamics given in Eq. (60)], the extra region B

can be eliminated from the description by defining

�Y |A = TrA(�Y |B�B|A), (138)

which determines the effective measurement on A that is
performed by actually measuring region B. The three operators
ρX, �A|X, and �Y |A then provide a predictive description of a
simple prepare-and-measure experiment, and so the previous
analysis applies.

Specifically, substituting Eq. (138) into Eq. (116) gives the
predictive expression for �XY as

�XY = TrAB(�Y |B�B|A�A|X) � ρX, (139)

or in conventional notation

P (X = x,Y = y) = TrB
[
EB

y EB|A
(
ρA

x

)]
P (X = x). (140)

Similarly, the retrodictive expression is obtained from
Eq. (118) by substituting �A|Y = TrB(�A|B�B|Y ), where �A|B
and �B|Y are obtained from �B|A and �Y |B , respectively, by
Bayes’ theorem. This gives

�XY = TrAB(�X|A�A|B�B|Y ) � ρY , (141)

or in conventional notation

P (X = x,Y = y) = TrA
[
EA,retr

x E retr
A|B

(
ρB,retr

y

)]
P (Y = y).

(142)

To sum up, the formalism of quantum conditional states
shows that, just as in the classical case, the rules of quantum
Bayesian inference do not discriminate between prediction
and retrodiction. Specifically, the rules are the same regardless
of whether the propagation is in the same or the opposite
direction to the causal arrows. This reveals an important kind
of time symmetry that is not apparent in the normal quantum

formalism. More importantly, it shows that a formalism for
quantum Bayesian inference can be found that is blind to at
least this aspect of the causal structure.

D. Remote measurements and spatial symmetry

Many of the novel features of quantum theory exhibit
themselves in the correlations that can be obtained between
local measurements on a pair of acausally related regions.
These include Einstein-Podolsky-Rosen correlations and Bell
correlations. Inferences about such measurements can be
treated using a formalism that is almost identical to the pre-
dictive and retrodictive expressions for prepare-and-measure
experiments given above. One simply has to substitute the
formula for propagating a causal conditional state across
acausally related regions [Eq. (55)] for the formula for
propagating them across causally related regions [Eq. (52)]
used above.

For two acausally related regions, A and B, it is self-evident
that there is complete symmetry between propagation from one
region to another and back again, i.e., if

ρB = TrA(ρB|AρA), (143)

then

ρA = TrB(ρA|BρB). (144)

The two conditional states, ρB|A and ρA|B , are related by
the quantum Bayes’ theorem, so Bayes’ theorem allows the
direction of belief propagation to be reversed.

To see this spatial symmetry at work, consider the scenario
of measurements being implemented on a pair of acausally
related regions, A and B, as depicted in Fig. 12.

In the conditional states formalism, the region AB is
assigned a joint state ρAB , and the measurements on A and
B are represented by causal conditional states �X|A and �Y |B .
The joint distribution P (X,Y ) over outcomes is given by the
components of the acausal joint state ρXY via

ρXY = TrAB[(�X|A�Y |B)ρAB]. (145)

These correlations can alternatively be calculated by prop-
agating beliefs about A conditioned on X to beliefs about Y

conditioned on X, and also by propagating beliefs about B

conditioned on Y to beliefs about X conditioned on Y . These
representations are analogous to the predictive and retrodictive
expressions for prepare-and-measure experiments discussed
in the previous section. We refer to these as rightward and
leftward belief propagation, respectively.

A B

YX

Rightward belief propagation:

TrAB

⎛
⎝

Y |B B|A A|X
⎞
⎠

X

Leftward belief propagation:

TrAB

⎛
⎝

X|A A|B B|Y
⎞
⎠

Y

ρXY =

ρXY =

FIG. 12. Measurements on a pair of acausally related regions,
rightward and leftward belief propagation.
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It may seem convoluted to calculate ρXY via rightward
or leftward belief propagation, when Eq. (145) already gives a
simple expression for it. However, it is important to understand
how to propagate beliefs across acausally related regions in
order to deal with the situation in which you obtain new
information about one region and wish to make inferences
about the other. This is exactly what happens in the analysis
of an EPR experiment. This problem is known as quantum
steering and is considered in Sec. V A3.

First, consider rightward belief propagation. The aim is to
rewrite Eq. (145) in terms of ρB|A, the state of B conditioned on
the region to its left. For greater symmetry with the prepare-
and-measure case, we also use ρX and �A|X to describe the
left-hand wing of the experiment, while retaining ρY |B for
the right. Then, we write ρAB = ρB|A � ρA and note that, by
Bayes’ theorem,

�X|A = �A|X �
(
ρXρ−1

A

)
. (146)

Substituting these into Eq. (145) gives

ρXY = TrAB

{[
�A|X �

(
ρXρ−1

A

)]
�Y |B[ρB|A � ρA]

}
. (147)

Expanding the � products gives

ρXY = TrAB

(
ρ

1
2
Xρ

− 1
2

A �A|Xρ
1
2
Xρ

− 1
2

A �Y |Bρ
1
2
AρB|Aρ

1
2
A

)
. (148)

All of the ρA terms can be canceled by using the fact that they
commute with �Y |B and ρX and by using the cyclic property
of the trace. Then we have

ρXY = TrAB

(
ρ

1
2
X�A|Xρ

1
2
X�Y |BρB|A

)
(149)

= TrAB

(
�Y |BρB|Aρ

1
2
X�A|Xρ

1
2
X

)
(150)

= TrAB(�Y |BρB|A�A|X) � ρX, (151)

where we have used the cyclic property of the trace and the
fact that ρX commutes with ρB|A and �Y |B . Equation (151)
has the same form as the predictive expression for a prepare-
and-measure experiment with an intervening channel given
in Eq. (139), except that, in this case, ρB|A is acausal. We
can also use Eq. (55) to define ρY |A = TrB(�Y |BρB|A), which
represents the effective measurement on region A that is made
by measuring region B. Using this, region B can be eliminated
from Eq. (151) to obtain

ρXY = TrAB(ρY |A�A|X) � ρX. (152)

This is similar to Eq. (116), and, in fact, is mathematically
identical to it because ρY |A is a hybrid conditional state, so its
mathematical form does not depend on whether it is acausal or
causal. Equation (152) is a useful form to use when we want
to consider the effect of measuring B on the remote region A,
as in quantum steering.

For leftward belief propagation, a similar analysis gives the
expressions

ρXY = TrAB(�X|AρA|B�B|Y ) � ρY , (153)

which is analogous to Eq. (141) and

ρXY = TrA(ρX|A�B|Y ) � ρY , (154)

which is analogous to Eq. (118).

As with prediction and retrodiction, there is complete
symmetry between leftward and rightward belief propagation,
and there is a strong symmetry between causal and acausal
belief propagation in general. This represents progress towards
a theory of quantum Bayesian inference that is completely
independent of causal structure.

V. QUANTUM BAYESIAN CONDITIONING

Classically, Bayesian conditioning is used to update prob-
abilities when new data are acquired. Specifically, if you
are interested in a variable R, and you learn that some
correlated variable X takes the value x, then the theory of
Bayesian inference recommends that you should update your
probability distribution for R from the prior P (R) to the
posterior Px(R) = P (R|X = x).6

Bayesian conditioning can be viewed as a two-step process.
First, the observation that X = x causes you to update your
probability distribution for X from P (X) to Px(X), where

Px(X = x ′) = δx,x ′ . (155)

Second, assuming that the observation of X does not cause
you to change your conditional probabilities P (R|X), the new
probability distribution for R is obtained via belief propagation
as

Px(R) =
∑
X

P (R|X)Px(X) (156)

= P (R|X = x). (157)

This two-step decomposition of conditioning has been
emphasized by Jeffrey [38,39], who showed that whenever an
observation causes the value of a random variable to become
certain, and that all probabilities conditioned on that random
variable are unchanged by the observation, then the change
in the probability distribution can be represented as Bayesian
conditioning.

The reason for emphasizing this decomposition is that
Jeffrey was interested in situations in which an observation
does not cause you to believe that some variable takes a precise
value. As an example of this, adapted from [40], suppose that
X is the color of a jellybean, which has possible values “red,”
“green,” and “yellow,” and that R is the flavor, which has
possible values “cherry,” “strawberry,” “lime,” and “lemon.”
Suppose that initially, your probability distribution for X,
P (X), assigns a probability 1/3 to each color and that your
observation consists of viewing the jellybean in the light of
a dim candle. This might not be enough for you to become
certain about the color of the jellybean, but it may reduce your
uncertainty somewhat. For example, you may now think it rea-
sonable to assign a probability distribution Ppost(X) that gives
probability 2/3 to X = “red” and 1/6 each to X = “green”
and X = “yellow.” Assuming that the observation does not
cause your conditional probabilities P (R|X) to change, Jeffrey

6Strictly speaking, this is only a special case of Bayesian condi-
tioning, which can be formulated more generally for arbitrary events
on a sample space rather than just for random variables. We restrict
attention to the special case of conditioning one random variable upon
another for ease of comparison with quantum theory.
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shows that your posterior probability distribution for R is
obtained by belief propagation via

Ppost(R) =
∑
X

P (R|X)Ppost(X), (158)

which is known as Jeffrey conditioning.
Many orthodox Bayesians reject the generalization to

Jeffrey conditioning and maintain that the rational way to
update probabilities in the light of data is always via Bayesian
conditioning, not least because most of the apparatus of
Bayesian statistics depends on this. This position can be
defended by insisting that the sort of situations described
above should really be handled by expanding the sample
space to include statements about your perceptions. One can
show that Jeffrey conditioning can always be represented as
Bayesian conditioning on a larger space in this way. Counter
to this, Jeffrey argues that it is not realistic to construct such
a space, since you do not actually have precise descriptions of
your perceptions. This argument has been eloquently put by
Diaconis and Zabell [41].

“For example, suppose we are about to hear one of two
recordings of Shakespeare on the radio, to be read by either
Olivier or Gielgud, but are unsure of which, and have a prior
with mass 1/2 on Olivier, 1/2 on Gielgud. After hearing the
recording, one might judge it fairly likely, but by no means
certain, to be by Olivier. The change in belief takes place by
direct recognition of the voice; all the integration of sensory
stimuli has already taken place at a subconscious level. To
demand a list of objective vocal features that we condition on
in order to affect the change would be a logician’s parody of a
complex psychological process.”

The debate over whether Jeffrey conditioning should be
subsumed into Bayesian conditioning is somewhat analogous
to a similar argument in quantum theory about whether
POVMs should be regarded as fundamental, since they can
always be represented by projective measurements on a larger
Hilbert space via Naimark extension [42].

In the conditional states formalism, the quantum analog
of Jeffrey conditioning is straightforward. If an observation
causes you to change the state you assign to a region A from
ρA to ρ

post
A , and if your conditional state for another region B,

given A (which will either be an acausal state ρB|A or a causal
state �B|A) is unchanged, then your posterior state for B is
determined by belief propagation via either

ρ
post
B = TrA

(
ρB|Aρ

post
A

)
(159)

or

ρ
post
B = TrA

(
�B|Aρ

post
A

)
, (160)

depending on whether A and B are acausally or causally
related.

The question of whether there is a quantum analog of
Bayesian conditioning is more subtle, as it depends on whether
there is a posterior quantum state for A that is analogous
to having certainty about the value of a classical variable,
i.e., the point measure Px(X = x ′) = δx,x ′ . Arguably, a pure
state could play this role, since it represents the smallest
amount of uncertainty that one can have about a quantum
region. However, unlike classical point measures, pure states
still assign probabilities other than 0 and 1 to fine-grained

measurements, e.g., measurements in a complimentary basis,
and there are good reasons to believe that, even if they represent
maximal knowledge, that knowledge is still incomplete [43].

We do not pursue this question further here, but instead
focus on the case of a hybrid region XA. If the the data is the
classical variable (so that one can indeed learn its value), then
Bayesian conditioning has a straightforward generalization.
Upon learning that X = x, the state of A should be updated
via

ρA → σA|X=x. (161)

Recall that the general form of a state conditioned on a classical
variable is σA|X = ∑

x ρA
x ⊗ |x〉〈x|X, where {ρA

x } is a set of
normalized density operators and σA|X=x is simply our notation
for ρA

x . The elements of this set are called the components of
σA|X, so we may describe Bayesian conditioning as replacing
σA with one of the components of σA|X.

Note that, as in the classical case, conditioning can be
viewed as a two-step process, wherein first the state of X is
updated to the diagonal density operator for the point measure,
ρX

x = |x〉〈x|X, and then belief propagation is used to determine
the posterior state of A,

ρA
x = TrX

(
σA|XρX

x

)
, (162)

= 〈x|XσA|X|x〉X, (163)

= σA|X=x, (164)

where we make use of the fact that σA|X = ∑
x σA|X=x ⊗

|x〉〈x|. Note that this holds regardless of the causal relation
between A and X because a hybrid conditional such as σA|X
does not distinguish between these causal possibilities.

Recall that the rule for propagating unconditional beliefs
about X to beliefs about A is ρA = TrX(σA|XρX). In conven-
tional notation, this translates to ρA = ∑

X P (X = x)σA|X=x .
Therefore, Bayesian conditioning is a process by which a
state ρA is updated to an element σA|X=x within a convex
decomposition of ρA.

A. Examples of quantum Bayesian conditioning

In this section, we consider several examples of Bayesian
conditioning, based on the different causal scenarios discussed
in Secs. III and IV. In all these cases, conditioning the state
of a quantum region on a classical variable is the correct thing
to do in order to update the predictions or retrodictions that
can be made about other classical variables correlated with the
region. In particular, in Sec. V A3, we develop the application
to quantum steering, showing that the set of states of a region
that can be steered to by making remote measurements can
be expressed compactly in terms of conditioning and belief
propagation.

1. Conditioning on a preparation variable

Consider again the preparation scenario depicted in
Fig. 3(a), wherein a quantum region A is prepared in one
of a set of states {�A|X=x} depending on the value of a classical
variable X with prior probability distribution P (X). This can
alternatively be described by a conditional state �A|X and a
diagonal state ρX. In this case, Bayesian conditioning of A on

052130-23



M. S. LEIFER AND ROBERT W. SPEKKENS PHYSICAL REVIEW A 88, 052130 (2013)

X = x

A

Y
Conditioning rule:

ρA → ρA|X=x

Conventional notation:

ρY → Y |X=x = TrA
⎛
⎝

Y |A A|X=x

⎞
⎠

Conditioning rule for probabilities:

ρA → ρA
x

Conventional notation:

P (Y ) → P (Y |X = x) = TrA
⎛
⎝EA

y ρA
x

⎞
⎠

direction
Inference

FIG. 13. Predictive inference in a prepare-and-measure experi-
ment. We are interested in inferring the probability of the measure-
ment outcome given knowledge of the preparation variable.

the value x of X corresponds to updating from the ensemble
average state ρA = ∑

x P (X = x)�A|X=x to the particular state
�A|X=x , corresponding to the value x of X that actually obtains,
which is clearly a reasonable thing to do.

The operational significance of this conditioning becomes
apparent by considering a measurement made on region A,
described by a conditional state �Y |A. We now have a prepare-
and-measure experiment, where we are interested in making
a predictive inference about the measurement outcome from
knowledge of the preparation variable, as depicted in Fig. 13.

Equation (116) gives the predictive expression for the joint
probability distribution for this experiment as

�XY = TrA(�Y |A�A|X) � ρX. (165)

From this, we can compute the marginal probability for Y as

ρY = TrA(�Y |AρA), (166)

where ρA = TrX(�A|XρX) is the ensemble average state. The
conditional �Y |X = �XY � ρ−1

X is given by

ρY |X = TrA(�Y |A�A|X), (167)

from which it follows that

ρY |X=x = TrA(�Y |A�A|X=x). (168)

The transition from Eqs. (166) to (168) is just classical
Bayesian conditioning of the probability for Y on the value
of X. Both expressions are representations of the Born rule in
terms of belief propagation, and Eq. (168) can be obtained from
Eq. (166) by replacing ρA with �A|X=x , which is just quantum
Bayesian conditioning. Thus, quantum Bayesian conditioning
on a preparation variable can be used as an intermediate step
in updating the probability distribution for a measurement
outcome by classical Bayesian conditioning.

Nothing changes if we consider the slightly more compli-
cated scenario where there is an intermediate channel between
the preparation and measurement, as depicted in Fig. 11. This
is because, as shown in Sec. IV C, the joint probability is
still given by Eq. (165), where now �Y |A = TrB(�Y |B�B|A)
describes the effective measurement on A that corresponds to
the actual measurement made on the later region B. By similar
reasoning, there could be an arbitrary number of time steps
between the preparation and measurement and conditioning

the state of A on the preparation variable would still be the
correct way to update the Born rule probabilities for Y .

2. Conditioning on the outcome of a measurement

When conditioning on a measurement outcome, it is
important to recall that the conditional states formalism assigns
states to regions rather than to persistent systems. Therefore,
when we update the state of a region by conditioning on a
measurement outcome, the resulting conditionalized state is
assigned to the very same region that we started with. This is a
different concept from the usual state-update rules that occur
in the standard quantum formalism, such as the projection
postulate. These standard rules apply to persistent systems
when we are interested in how the state of a system in a region
before the measurement gets mapped to its state in a region
after the measurement. Because the updated state belongs to
a different region than the initial state, this is not an example
of pure conditioning in our framework. Therefore, one should
not think that conditioning on a measurement outcome must
reproduce the projection postulate. The way in which this
kind of state-update rule is handled in the conditional states
framework is discussed in Sec. V B.

However, there are several other types of inference for
which pure conditioning on a measurement outcome is the
correct update rule to use. In particular, conditioning can
be used for making retrodictions about classical variables
in the past of the region of interest. For instance, in a
quantum communication scheme, registering the outcome of
a measurement on the output of the channel leads us to infer
something about which of a set of classical messages was
encoded in the quantum state of the channel as input. The use
of conditioning for this sort of inference is the topic of this
section.

Recall the measurement scenario depicted in Fig. 4(a). A
measurement with outcomes labeled by the classical variable
Y is implemented upon a quantum region A. In the predictive
formalism, this experiment is described by an input state ρA

and a causal conditional state �Y |A (describing the measured
POVM). To condition A on a value y of Y , Bayes’ theorem
must be applied to determine �A|Y , and then the component
�A|Y=y gets picked out by conditioning. This gives

ρA → �A|Y=y = �Y=y|A �
(
ρAρ−1

Y=y

)
, (169)

or in conventional notation

ρA → ρA,retr
y = ρ

1
2
AEA

y ρ
1
2
A

TrA
(
EA

y ρA

) . (170)

The state �A|Y=y represents the state of a region A prior to
the measurement, given the outcome of the measurement; i.e.,
it is a retrodictive state. Its operational significance is that it
allows one to make inferences about variables involved in the
preparation of A.

To see this, consider again the prepare-and-measure exper-
iment, where now we are interested in making a retrodictive
inference from the measurement outcome to the preparation
variable, as depicted in Fig. 14.

Recall from Sec. IV C that there is complete symme-
try between the predictive and retrodictive expressions for
a prepare-and-measure experiment under exchange of the
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X

A

Y = y

Conditioning rule:

ρA → ρA|Y =y

Conventional notation:

ρX → X|Y =y = TrA
⎛
⎝

X|A A|Y =y

⎞
⎠

Conditioning rule for probabilities:

ρA → ρA,retr
y

Conventional notation:

P (X) → P (X|Y = y) = TrA
⎛
⎝EA,retr

x ρA,retr
y

⎞
⎠

direction
Inference

FIG. 14. Retrodictive inference in a prepare-and-measure experi-
ment. We are interested in inferring the probability of the preparation
variable given knowledge of the measurement outcome.

preparation variable X with the measurement variable Y . Thus,
everything that was said regarding the probability distribution
for the measurement outcome in the previous example, applies
here to the probability distribution for the preparation variable.
In particular, the marginal probability distribution for X is

ρX = TrA(�X|AρA), (171)

and conditioning this on Y = y gives

ρX|Y=y = TrA(�X|A�A|Y=y). (172)

Both of these expressions are belief propagation represen-
tations of the Born rule, with respect to the retrodictive
POVM for X. Thus, conditioning A on the outcome of the
measurement can be used as an intermediate step in updating
the probability distribution for the preparation variable in light
of the measurement outcome. The retrodictive state appearing
in the retrodictive Born rule simply gets updated by Bayesian
conditioning.

As in the previous example, nothing changes if there are
intermediate channels between the preparation and the mea-
surement. We can simply use conditional belief propagation
to eliminate the additional regions.

3. Conditioning on the outcome of a remote measurement:
Quantum steering

Finally, consider the case of a measurement made on a
region B that is acausally related to a region A, as depicted
in Fig. 8. This experiment is described by an acausal joint
state ρAB , and a conditional state �Y |B , corresponding to the
POVM measured on B. We are interested in how the state of
the remote region A is updated when we learn the outcome
of the measurement made on B. The updated state of A

could then be used to predict the outcome of a measurement
made on A, corresponding to a causal conditional state �X|A.
This scenario is depicted in Fig. 12. The results of Sec. IV D
establish that the mathematical description of this experiment
is formally equivalent to a prepare-and-measure experiment
with an intervening channel, the only difference being that
the causal conditional state �B|A is replaced by an acausal
conditional state ρB|A. This symmetry is enough to establish
that, as in the previous example, conditioning the state of A

on Y = y must be the correct way of updating the Born rule
probabilities for X.

However, it is worth developing this example in a little
more detail, since the “remote collapse” at A that occurs upon
measuring B is at the core of the EPR argument. This has led
to a study of the ensembles of states for A that can be obtained
by measuring B, a problem known as quantum steering
[25,30,44–49]. The conditional states formalism provides an
elegant approach to this problem.

Recall from Sec. IV D that the joint probability for X and Y

can be computed via leftward belief propagation, which yields
Eq. (154), i.e.,

ρXY = TrA(�X|AρA|Y ) � ρY . (173)

This formula is obtained by first applying Bayesian inversion
to �Y |B to determine

�B|Y = �Y |B �
(
ρBρ−1

Y

)
, (174)

where ρY = TrB(�Y |BρB) is the Born rule probability distri-
bution for the measurement outcome. Then, conditional belief
propagation is used to obtain ρA|Y = TrB(ρA|B�B|Y ).

Equation (173) is formally equivalent to the retrodictive
expression for a prepare-and-measure experiment, so the
rationale for conditioning is exactly the same as in the previous
example. Specifically, the marginal probability distribution
for X is

ρX = TrA(�X|AρA), (175)

and conditioning on Y = y gives

ρX|Y=y = TrA(�X|AρA|Y=y). (176)

Thus, conditioning the state of A on Y = y is an appropriate
intermediate step for updating the Born rule probabilities
for X.

The following proposition summarizes this result and
translates it into conventional notation.

Proposition 6. Let ρAB be the joint state of two acausally
related regions. Suppose that the POVM corresponding to the
conditional state �Y |B is measured on B and the outcome Y = y

is obtained. Then, the state of region A should be updated from
the prior ρA = TrB(ρAB) to ρA|Y=y , where

ρA|Y = TrB(ρA|B�B|Y ), (177)

ρA|B = ρAB � ρ−1
B , and

�B|Y = �Y |B �
(
ρBρ−1

Y

)
. (178)

Let the components of the conditional state �Y |B be the
elements of the POVM {EB

y } and let EA|B be the map that
is Jamiołkowski-isomorphic to ρA|B . Then the updated state of
A is

ρA
y = EA|B

(
ρB

y

)
, (179)

where

ρB
y = ρ

1/2
B EB

y ρ
1/2
B

TrB
(
EB

y ρB

) . (180)

In the above analysis, the method used to compute ρA|Y=y is
to first apply Bayes’ theorem to �Y |B and then apply conditional
belief propagation. This is the acausal analog of performing the
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calculation in the retrodictive formalism. However, we could
equally well apply belief propagation first to obtain

ρY |A = TrB(�Y |BρB|A) (181)

and then apply Bayes’ theorem to obtain

ρA|Y=y = ρY=y|A �
(
ρAρ−1

Y

)
. (182)

This is the acausal analog of performing the calculation in the
Heisenberg picture, and it is straightforward to check that it
gives the same result.

In conventional notation, this amounts to first determining
the effective POVM on A that is performed when B is
measured via

EA
y = E

†
A|B

(
EB

y

)
(183)

and then determining the updated state via

ρA
y = ρ

1
2
AEA

y ρ
1
2
A

TrB
(
EA

y ρA

) . (184)

Expressions equivalent to these conventional formulas have
appeared previously in [25], the only difference being the
appearance of a transpose, due to the use of the Choi
isomorphism rather than the Jamiołkowski isomorphism
in [25].

We have seen that the remote collapse ρA → ρA|Y=y

is an instance of quantum Bayesian conditioning. Within
interpretations of quantum theory wherein quantum states are
considered to describe reality completely, the change of the
state of A as a result of a distant measurement upon B is
sometimes considered to be an instance of action at a distance.
Indeed, Einstein criticized the Copenhagen interpretation on
exactly these grounds. On the other hand, the analysis above
shows clearly that if one views quantum theory as a theory
of Bayesian inference, then upon learning the outcome of
a measurement on B, all that occurs is that one’s beliefs
about A are updated. No change to the physical state of A

is required within such an approach. This interpretation is
bolstered by the formal equivalence to the case of conditioning
a region on the outcome of a subsequent measurement, which
does not seem to imply retrocausal influences (although for
realist interpretations it has been argued that a imposing a
particular symmetry principle does imply retrocausality in this
scenario [5,6]).

Einstein anticipated such an epistemic interpretation of
remote collapse in his writing, as is argued in [50]. However,
he most likely thought that the probabilities represented by
quantum states could be probabilities for the values of physical
variables (possibly hidden) and that these could satisfy clas-
sical probability theory. However, by virtue of Bell’s theorem
[51], such an interpretation of remote collapse is not possible
within the standard framework for hidden variable theories. We
evade this no-go result here by understanding remote collapse
as Bayesian updating within a noncommutative probability
theory rather than within classical probability theory. In itself,
this does not provide a viable realist interpretation of quantum
theory, but it does suggest that an acceptable ontology for
quantum theory ought not to include the quantum state.
Finally, note that our interpretation of remote steering is

broadly in harmony with that of Fuchs [24]. However, the
view of quantum theory presented here differs from that of
Fuchs in that he views quantum theory as a restriction upon
classical probability theory, whereas we consider it to be a
generalization thereof.

B. Why the projection postulate is not an instance
of Bayesian conditioning

Finally, in this section, we deal with the elephant in the
room: the projection postulate. Some authors have argued
that the projection postulate is a quantum analog of Bayesian
conditioning (see, e.g., [34,35]). However, the projection
postulate is not an instance of quantum Bayesian conditioning
as defined above. In this section, we discuss the relationship
between quantum Bayesian conditioning and the projection
postulate (and quantum instruments in general) at some length,
in order to dispel the misconception that projection is a kind
of conditioning. After pointing out the formal differences
between the two, we explain the different types of update
rule that are associated with a measurement in both classical
probability theory and quantum theory, pointing out where
conditioning and projection fit into this picture. Then, we
explain how, in the conditional states formalism, the projection
postulate should be thought of as a composite operation,
consisting of belief propagation to a later region followed
by Bayesian conditioning. This is broadly in line with the
treatment of quantum measurements advocated by Ozawa
[36,37]. Finally, we deal with the possible objection that,
although the classical analog of the projection postulate is not
just Bayesian conditioning, it can be thought of as conditioning
combined with a simple relabeling of the system variable.
This argument does not apply in quantum theory because,
unlike in a classical theory, any informative measurement
necessarily disturbs the system being measured. Although
this is well known, we present a formulation of information
disturbance in terms of conditional states, which makes it clear
that no quantum instrument can be thought of as conditioning
combined with relabeling. This may be of interest in its own
right, as it emphasizes the similarity between information
disturbance and other trade-offs in quantum theory, such as
the monogamy of entanglement.

In the conventional formalism, when a projective measure-
ment {
A

y } is made on a system A, the Lüders-von Neumann
projection postulate says that, upon learning the outcome y,
the initial state ρA should be updated via

ρA → 
A
y ρA
A

y

TrA
(

A

y ρA

) . (185)

For a general POVM {EA
y }, there is a natural generalization of

the projection postulate, given by

ρA →
(
EA

y

) 1
2 ρA

(
EA

y

) 1
2

TrA
(
EA

y ρA

) . (186)

This generalization has also been proposed as a quantum
analog of Bayesian conditioning [52,53].
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On the other hand, in Sec. V A2 the rule for conditioning a
state on the outcome of a measurement was found to be

ρA → ρ
1
2
AEA

y ρ
1
2
A

TrA
(
EA

y ρA

) . (187)

This is distinct from Eq. (186) because the roles of ρA

and EA
y have been interchanged. Furthermore, Eq. (186) is

not equivalent to an equation of the form of Eq. (187) (even
allowing a different POVM to appear therein) because the map
ρA → (EA

y )
1
2 ρA(EA

y )
1
2 , like all quantum instruments, is linear

on the set of states on HA, whereas the map ρ → ρ
1
2
AEA

y ρ
1
2
A is

nonlinear on the state space.
If you are inclined to view the projection postulate as the

correct quantum generalization of Bayesian conditioning, then
you could take this as evidence against the idea that the
conditional states formalism provides an adequate theory of
quantum Bayesian inference. We therefore go to some length
to defend the claim that neither the projection postulate nor any
other quantum instrument is an analog of classical Bayesian
conditioning.

Consider the scenario depicted in Fig. 15(a). A quantum
system located in region A and described by the state ρA

is subjected to a measurement with outcomes labeled by Y ,
and the system persists after the measurement. At this later
time, it is represented by a region A′ which, as always in the
present formalism, we distinguish from region A, but which
is associated with a Hilbert space of the same dimension.
As discussed in Sec. III K, a quantum instrument, {EA′|A

y },
determines how the state of A′ is related to the state of A,
where EA′|A

y (ρA) is the un-normalized state of A′ obtained
when Y = y.

Y

A

A

Upon learning Y = y

QBC1: ρA → ρA|Y =y
QBC2: ρA → ρA |Y =y
QU: ρA → ρA |Y =y

(a)

Y

R

R

Upon learning Y = y

BC1: P (R) → P (R|Y = y)

BC2: P (R ) → P (R |Y = y)

U: P (R) → P (R |Y = y)

(b)

FIG. 15. Causal diagrams for the state-update rules associated
with quantum and classical measurements. (a) A quantum instrument,
representing how the state of a quantum persistent system changes af-
ter a measurement. (b) The classical analog of a quantum instrument,
representing how the state of a classical persistent system changes
after a measurement.

Now consider the classical analog of this scenario, depicted
in Fig. 15(b). A classical system described by the variable R,
and assigned a distribution P (R), is subjected to a (possibly
noisy) measurement, resulting in the outcome Y , which is
a random variable that depends on R through a conditional
probability distribution P (Y |R). The system persists after the
measurement, where it is described by a random variable R′.
The value of R′ is presumed to depend probabilistically on R,
and the nature of this dependence may vary with the outcome
Y . This is captured by a conditional probability P (Y,R′|R),
which is the classical analog of a quantum instrument.

It is useful to distinguish three kinds of update rules that
might be considered in this scenario, as defined in Fig. 15(b).
To describe the difference between these rules, it is useful
to introduce some terminology. A distribution over R or R′
is said to be a prior distribution if it is not conditioned
on the value of Y , and it is a posterior distribution if it
is conditioned on the value of Y . The temporal ordering
that is implicit in this prior-posterior terminology specifies
whether the distribution characterizes the knowledge you have
before learning the value of Y or the knowledge you have
after learning the value of Y . In other words, it refers to the
time in your epistemological history, relative to the event of
learning Y . On the other hand, the system’s configuration at
the time before the occurrence of the measurement is called its
initial configuration and its configuration at the time after the
occurrence of the measurement is called its final configuration.
R is the initial configuration and R′ is the final configuration.
The temporal ordering implicit in this latter distinction refers
to the time in the system’s ontological history.

Strictly speaking, Bayesian conditioning is a rule that
updates what one knows about one and the same variable
upon the acquisition of new information. In other words, it
maps a prior distribution about some variable to a posterior
distribution for that same variable. Consequently, rule BC1,
which maps the prior distribution of the initial configuration
of the system to the posterior distribution of the initial
configuration of the system, is an instance of Bayesian
conditioning (it is analogous to updating a retrodictive state
as discussed in Sec. V A2). Rule BC2 is also an instance of
Bayesian conditioning: It maps the prior distribution of the
final configuration of the system to the posterior distribution
of the final configuration of the system. However, the rule U
is not an instance of Bayesian conditioning because it maps
the prior distribution of the initial configuration of the system
to the posterior distribution of the final configuration. In other
words, if one considers R and R′ to be distinct variables, then
any map from a distribution over one of them to a distribution
over the other cannot be an instance of Bayesian conditioning.

We now return to the quantum scenario, this time using
the conditional states formalism and paying attention to the
analogy with the classical case. The measurement is associated
with the causal conditional state �YA′|A that corresponds to

the quantum instrument {EA′|A
y }. In the quantum conditional

states formalism, there are analogs of each of the three rules
we considered above. These are specified in Fig. 15(a). The
rule QBC1 corresponds to updating a retrodictive state, as
considered in Sec. V A2. The von Neumann-Lüders projection
postulate is clearly an instance of rule QU. If one stipulates
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that quantum Bayesian conditioning is a rule that updates
the quantum description of one and the same region upon
acquiring new information, i.e., that it maps a prior state for
a region to a posterior state for the same region, then QBC1
and QBC2 are instances of quantum Bayesian conditioning,
but QU is not.

1. State-update rules as a combination of belief
propagation and Bayesian conditioning

If QU is not an instance of Bayesian conditioning, then
what is its status within our framework? We now show that it
is a composite of two operations: belief propagation followed
by Bayesian conditioning.

First consider the classical analog. The analog of the
projection postulate (or any state-update rule arising from
an instrument) is given by rule U: P (R) → P (R′|Y = y).
This can be obtained by combining an instance of belief
propagation, namely

P (R) → P (R′) =
∑
R

P (R′|R)P (R), (188)

followed by the rule BC2: P (R′) → P (R′|Y = y), which is
an instance of Bayesian conditioning. It is useful to express
both these steps in terms of the quantities that are given
in the problem, namely, the conditional P (Y,R′|R) and the
prior over R, P (R). The conditional probability distribu-
tion P (R′|R) used in Eq. (188) is simply the marginal of
P (Y,R′|R), i.e., P (R′|R) = ∑

Y P (Y,R′|R). Meanwhile, the
expression for the conditional is P (R′|Y ) = P (R′,Y )/P (Y ),
where P (R′,Y ) = ∑

R P (Y,R′|R)P (R). Setting Y = y gives
the Bayesian conditioning step as

P (R′) → P (R′|Y = y) =
∑

R P (Y = y,R′|R)P (R)

P (Y = y)
.

(189)

The quantum analog of this is straightforward. Quantum
state-update rules, such as the projection postulate, are of
the form QU: ρA → �A′|Y=y . This is simply a sequential
combination of quantum belief propagation,

ρA → ρA′ = TrA(�A′|AρA), (190)

with quantum Bayesian conditioning via QBC2: ρA′ →
�A′|Y=y .

Again, it is useful to express each of these steps in
terms of the quantities that are given in the problem: the
causal conditional state �YA′|A and the prior ρA. The causal
conditional state �A′|A used in Eq. (190) is simply a reduced
state of �YA′|A, i.e., �A′|A = TrY (�YA′|A). To gain some intuition
for this step, we translate it into conventional notation. If the
quantum instrument associated with �YA′|A is denoted {EA′|A

y },
then Eq. (190) becomes

ρA → ρA′ = EA′|A(ρA), (191)

where

EA′|A =
∑

y

EA′|A
y . (192)

The map EA′|A is the nonselective update map. It is the
appropriate map to apply when you know that the measurement

has been performed, but you do not know which outcome
occurred. The standard update map, which is appropriate when
one also knows the outcome, is the selective update map.
The projection postulate and its generalization to POVMs are
instances of selective update maps. Applying the nonselective
update map is just an instance of quantum belief propagation.

Turning to the Bayesian conditioning step, we have �A′|Y =
ρA′Y � ρ−1

Y , where ρA′Y = TrA(�YA′|AρA). Combining these
and setting Y = y gives

ρA′ → �A′|Y=y = TrA(�Y=y,A′ |AρA) � ρ−1
Y=y. (193)

In conventional notation, this translates into

ρA′ → ρA′
y = EA′|A

y (ρA)

P (Y = y)
. (194)

Given the expression for ρA′ in Eq. (191), we see that QBC2
is simply a transition from your prior about the system output
by the measurement, the result of applying the nonselective
update map, to your posterior about the system output by
the measurement, the result of applying the selective update
map and normalizing. That this transition from nonselective to
selective updates should be regarded as analogous to Bayesian
conditioning has previously been argued by Ozawa [36,37].

In fact, the rule QBC2 is a particular example of the kind
of Bayesian conditioning considered in Sec. V A1. Every
measurement with output region A′ can be considered to define
a preparation of A′ for every outcome (assuming a fixed input
state). The set of states prepared is given by the components
of �A′|Y , which we can compute from the causal joint state
�YA′A = �YA′|A � ρA by tracing over A and conditioning on
Y . The rule QBC2 is then just Bayesian conditioning on Y ,
thought of as a classical preparation variable.

2. No information gain without disturbance

We have argued that neither the classical rule U nor the
quantum state-update rule QU are instances of Bayesian
conditioning. However, a skeptic might counter that our
argument is an artifact of our insistence that the system before
and after the measurement should be given different labels. If
the conditional distribution P (R′|R) in the belief propagation
rule of Eq. (188) has the form

P (R′ = r ′|R = R) = δr ′,r , (195)

where δr ′,r is the Kronecker-δ function, then R and R′
are perfectly correlated and consequently P (R′|Y = y) has
precisely the same functional form as P (R|Y = y). In this
case, one could say that the rule U is effectively just Bayesian
conditioning.

If P (R′|R) is just a δ function, then we say that the
measurement is nondisturbing. Recall that for every P (Y |R)
that characterizes the outcome probabilities for a measure-
ment, there are many conditionals (i.e., classical instruments)
P (Y,R′|R) that might characterize its transformative aspect
and are consistent with P (Y |R). It is not difficult to see that,
among all such conditionals, there is always one for which the
measurement is nondisturbing, namely,

P (Y,R′ = r ′|R = r) = P (Y |R = r)δr ′,r . (196)
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Of course, there are also many ways of implementing a mea-
surement of P (Y |R) such that it is disturbing. Therefore, while
the update rule U is not an instance of Bayesian conditioning
for every possible implementation of the measurement, there
is always at least one implementation such that it is effectively
just Bayesian conditioning.

The obvious question to ask at this point is whether
it is possible to implement a quantum measurement in a
nondisturbing way, such that the associated quantum update
rule QU (perhaps the projection postulate, perhaps some other
rule) is effectively just quantum Bayesian conditioning. For
the measurement to be nondisturbing, the causal conditional
state �A′|A in the belief propagation rule of Eq. (190) would
have to be of the form

�A′|A =
∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′, (197)

i.e., it would need to be the partial transpose of the (un-
normalized) maximally entangled state. This corresponds
to perfect correlation between A and A′ because it is
Jamiołkowski-isomorphic to the identity channel. If the belief
propagation step in the rule QU were of this form, then �A′|Y=y

would have the same functional form as �A|Y=y , and the overall
quantum update rule QU would be effectively just Bayesian
conditioning.

Of course, we are only interested in the case where
the measurement is nontrivial. If the measurement gives no
information about A, then the posterior is the same as the
prior and no real conditioning has occurred. Therefore, we
restrict our attention to the case where some information is
gained. In the language of conditional states, the only kind
of measurement that yields no information about the input
state is one associated with a causal conditional state that
factorizes, that is, one of the form �Y |A = ρY (recall that, in
our notation there is an implicit ⊗IA on the right-hand side of
this equation). In conventional notation, this corresponds to a
POVM of the form {P (Y = y)IA}, which generates a random
outcome Y = y from the distribution P (Y ) regardless of the
state of A. We are interested in nontrivial measurements for
which �Y |A does not factorize in this way.

With these definitions in hand, the answer to our question is
a resounding “no”; a quantum state-update rule of the form QU
can never be effectively just Bayesian conditioning because,
unlike the classical case, in quantum theory information gain
necessarily implies a disturbance. This prevents any QU rule,
such as the projection postulate, from being pure Bayesian
conditioning. While this fact is well known, it is instructive to
prove it in the conditional states formalism.

Theorem 8: No information gain without disturbance. Con-
sider a measurement described by an instrument associated
with the causal conditional state �YA′|A. It is impossible for
this measurement to be both informative about A (�Y |A �= ρY )
and nondisturbing (�A′|A = ∑

j,k |j 〉〈k|A ⊗ |k〉〈j |A′).
The proof is a causal analog of the monogamy of entangle-

ment (see [3] for related ideas).
Proof. The operator �YA′|A is the partial transpose over A

of an acausal conditional state ρYA′|A. Combining this with the
maximally mixed state gives a valid tripartite acausal state via

ρYA′A = ρYA′|A � IA/d = ρYA′|A/d, (198)

where d is the dimension of HA. The condition that
the measurement be nondisturbing is equivalent to ρA′|A =∑

j,k |j 〉〈k|A ⊗ |j 〉〈k|A′ , which implies that the tripartite state
ρYA′A should have a reduced state on A′A that is maximally
entangled. Meanwhile, the condition that the measurement be
informative is equivalent to ρY |A �= ρY , which implies that the
reduced state on YA of ρYA′A should not be a product state.
However, by the monogamy of entanglement, any tripartite
state ρYA′A for which ρAA′ is maximally entangled must have
a product state for its reduced state ρYA. Hence, both conditions
cannot be satisfied simultaneously. �

We end with another, less obvious, disanalogy between the
quantum and classical cases that bears on the question of how
to interpret the quantum collapse rule in our framework. In
the previous section, we showed that the classical update rule
U could be decomposed into belief propagation followed by
Bayesian conditioning. We could just as well have decomposed
it in the opposite order: Bayesian conditioning followed by
belief propagation. Specifically, we could first apply BC1:
P (R) → P (R|Y = y), and then propagate the conditioned
state via P (R|Y = y) → P (R′|Y = y) = ∑

R P (R′|R,Y =
y)P (R|Y = y).

It is natural to ask whether such a reverse-order decom-
position is possible in the quantum case. That is, can QU:
ρA → �A′|Y=y be decomposed into QBC1: ρA → �A|Y=y ,
followed by belief propagation �A|Y=y → �A′|Y=y? Perhaps
surprisingly, this cannot be done. The belief propagation
would have to have the form �A′|Y=y = TrA(�A′|A,Y=y�A|Y=y).
However, to compute �A′|A,Y=y from �Y=y,A′ |A we need to
move Y from the left of the conditional to the right while
keeping A on the right. Classical analogy suggests that this
could be done using a conditionalized form of the quantum
Bayes’ theorem, i.e., �A′|A,Y=y = �Y=y,A′ |A � �−1

Y=y|A. Unfor-
tunately, in the conditional states formalism, valid equations
do not necessarily remain valid when we conditionalize each
term (this is discussed further in Sec. VII). In particular, the
conditionalized form of the quantum Bayes’ theorem is not
valid. Not every intuition from classical Bayesian inference
carries over into the conditional states formalism.

VI. RELATED WORK

In this section, quantum conditional states are compared
to other proposals for quantum generalizations of conditional
probability and the conditional states formalism is compared
to several recently proposed operational reformulations of
quantum theory.

A. Comparison to other quantum generalizations
of conditional probability

Several quantum generalizations of conditional probability
have been proposed in the literature, so it is worth comparing
their relative merits to the conditional state formalism devel-
oped here.

First, Cerf and Adami have proposed an alternative defini-
tion of an acausal conditional state [17–19] (their definition
does not extend to the causal case). For a bipartite state ρAB ,
the Cerf-Adami conditional state is

ρ
(∞)
B|A = exp(ln ρAB − ln ρA ⊗ IB). (199)
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This proposal has a close connection to the calculus of quan-
tum entropies, since the conditional von Neumann entropy of
a state ρAB can be succinctly written as

S(B|A) = −TrAB

(
ρAB log2 ρ

(∞)
B|A

)
, (200)

which is analogous to the classical formula for the conditional
Shannon entropy

H (S|R) = −
∑
R,S

P (R,S) log2 P (S|R). (201)

Similar compact formulas hold for other information theoretic
quantities, such as the quantum mutual information and
conditional mutual information.

In [54], Leifer and Poulin introduced a family of conditional
states, again restricted to the acausal case, indexed by a positive
integer n and given by

ρ
(n)
B|A = (

ρ
1
n

AB � ρ
− 1

n

A

)n
. (202)

This unifies the Cerf-Adami conditional state with the defini-
tion used in the present work in the sense that ρB|A = ρ

(1)
B|A and

ρ
(∞)
B|A = limn→∞ ρ

(n)
B|A.

The main concern of [54] was the generalization of graph-
ical models and belief propagation algorithms to quantum
theory and their use in simulating many-body quantum systems
and decoding quantum error correction codes. In this context,
the n = 1 and n → ∞ cases are particularly interesting. The
n → ∞ case is the natural one to use for simulating many-body
systems and it allows for a simple generalization of one
direction of the classical Hammersley-Clifford theorem, which
characterizes the states on Markov networks. On the other
hand, the n = 1 case is more useful for decoding quantum
error correction codes and, as outlined in the present paper,
it extends to the causal case and has close connections to
quantum preparations, measurements and dynamics that are
lacking for other values of n. Given that different applications
work better with different definitions of the conditional state,
it is probably fair to say that there is no uniquely compelling
quantum generalization of conditional probability.

With this in mind, note that Coecke and Spekkens have
outlined a broad framework for generalizations of conditional
probability within the category theoretic approach to quantum
theory [55]. Encouragingly, it is possible to derive general-
izations of Bayes’ theorem and conditioning abstractly within
this framework, but it is not yet clear what axioms within this
framework are sufficient to capture all the important aspects
of conditioning.

The final quantum generalization of conditional probability
to be considered here is the quantum conditional expectation
(see [13] for the original paper and [14–16] for reviews).
This was proposed in the context of quantum probability
theory, which is a noncommutative generalization of classical
measure-theoretic probability within the framework of oper-
ator algebras. As such, it is well defined for systems with
infinite-dimensional Hilbert spaces as well as for systems
with an infinite number of degrees of freedom, for which
there is more than one unitarily inequivalent Hilbert space
representation. Also, it describes conditioning on an arbitrary
algebra of observables, rather than just on a tensor factor, as
has been considered here. Importantly for the present work,

Rédei has proposed an argument based on quantum condi-
tional expectations purporting to show that quantum theory
cannot be understood as a theory of Bayesian inference [56]
(see also [57]).

However, quantum conditional expectations have a major
flaw that is not shared by the conditional states formal-
ism presented here. Fortunately, the full operator-algebraic
machinery is not necessary to make the point; the case of
finite-dimensional Hilbert spaces and conditioning on a tensor
factor suffices. Further details of the general case and how the
formalism used below follows from it can be found in [14].

Classically, for a pair of random variables, R and S, a
conditional expectation of S given R is a positive map �R|S,R

from functions of R and S to functions of R that satisfies

�R|R,S(f (R)) = f (R) (203)

for all functions f (R) that are independent of S. Any such
map is explicitly given by

�R|R,S(f (R,S)) =
∑

S

P (S|R)f (R,S), (204)

where P (S|R) is a conditional probability distribution.
Starting from a joint state P (R,S), one can obtain a

conditional expectation by plugging the associated conditional
probability P (S|R) into Eq. (204). The main point of this is
that it allows the expectation value of any function f (R,S) to
be computed from the marginal probability distribution P (R)
via ∑

R

�R|R,S(f (R,S))P (R) =
∑
R,S

f (R,S)P (R,S). (205)

The set of functions on R and S can be thought of as the
dual space to the set of probability distributions on R and S,
where the linear functional f̂ associated with f (R,S) is given
by

f̂ (P (R,S)) =
∑
R,S

P (R,S)f (R,S); (206)

i.e., it is the functional that maps the probability distribution
P (R,S) to the expectation value of f (R,S) with respect
to P (R,S). With respect to this identification, a conditional
expectation �R|R,S has a dual map ER,S|R that maps the space
of probability distributions over R to the space of probability
distributions over R and S. This is given by

ER,S|R(P (R)) = P (S|R)P (R) (207)

and is called a state extension because every probability dis-
tribution P (R) gets mapped to a valid probability distribution
P (R,S) = P (S|R)P (R) on a larger space. In addition, state
extensions that are dual to conditional expectations satisfy∑

S

ER,S|R(Q(R)) = Q(R) (208)

for every input distribution Q(R).
In the finite-dimensional, tensor factor case, the quantum

conditional expectation of B given A is a completely positive7

7The definition only calls for positivity, but it is a theorem that all
quantum conditional expectations are completely positive (see [14]).
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linear map �A|AB : L(HAB) → L(HA) that acts on the set of
observables on HAB and satisfies

�A|AB(MA ⊗ IB) = MA (209)

for all operators MA ∈ L(HA). This is analogous to the
condition given in Eq. (203). The dual map EAB|A : L(HA) →
L(HAB) acts on states and is a state extension, which means
that

τAB = EAB|A(τA) (210)

is a valid state for any state τA on HA. In addition, the state
extensions that are dual to conditional expectations satisfy

TrB[EAB|A(τA)] = τA (211)

for every state τA on HA, which is analogous to Eq. (208).
As in the classical case, one would like to associate every

joint state ρAB with a conditional expectation, such that the
dual state extension EAB|A satisfies

EAB|A(ρA) = ρAB ; (212)

i.e., it should give back the state that you started with when
you input the reduced state. The analogous requirement is
a key property of classical conditional probability as it is
what allows an arbitrary joint state to be broken up into a
marginal and a conditional that are independent of one another.
Unfortunately, the fact that Eq. (211) holds for every input
state means that this requirement can only be met for product
states, i.e., states of the form ρAB = ρA ⊗ ρB . This severely
restricts the applicability of quantum conditional expectations
for describing the correlations present in quantum states.
Indeed, they are incapable of representing any correlations
at all. This fact is known in the quantum probability literature
(see [14], Example 9.6), but here is an elementary proof.

Ironically, the easiest way to show that ρAB has to be
a product state is to use the conditional states formalism
as outlined in this paper. The state extension EAB|A is
Jamiołkowski isomorphic to a causal conditional state �AB|A′ ,
where A′ has the same Hilbert space as A and the ′ is just used
to distinguish the input and output spaces. Then, Eq. (212) can
be rewritten as

ρAB = TrA′(�AB|A′ρA′), (213)

where ρA′ is the same state as ρA. Similarly, Eq. (211) can be
rewritten as

τA = TrA′B(�AB|A′τA′ ) (214)

= TrA′(�A|A′τA′), (215)

for all τA, where τA′ is the same state as τA and �A|A′ =
TrB(�AB|A′). Since, Eq. (215) has to hold for every input
state, �A|A′ has to be Jamiołkowski isomorphic to the identity
superoperator, so �A|A′ = |�+〉〈�+|TA′

A|A′ . Since this is pure,
monogamy of entanglement8 entails that �AB|A′ must be of the

8The monogamy of entanglement is well known for positive
operators. The fact that it also applies to locally positive operators
follows one of the results of [58], which shows that monogamy applies
to more general probabilistic theories, including one in which states
are locally positive operators.

form �AB|A′ = |�+〉〈�+|TA′
A|A′ ⊗ MB for some operator MB on

HB . Substituting this into Eq. (213) gives

ρAB = ρA ⊗ MB, (216)

which shows that ρAB must be a product state and MB = ρB =
TrA(ρAB). Therefore, conditional expectations associated with
joint states only exist for product states ρAB = ρA ⊗ ρB .

It is unclear why quantum probabilists have not regarded
this as a fatal flaw in their definition of quantum conditional ex-
pectation. However, despite this problem, quantum conditional
expectations are still worthy objects of study as they come up
in a variety of contexts. For example, the projection onto the
fixed point set of a completely positive map is a quantum
conditional expectation. The point is just that the terminology
“quantum conditional expectation” is an inaccurate way of
describing the way that these maps relate to quantum states.

For comparison, the acausal conditional state defined in the
present work can also be described as a mapFAB|A : L(HA) →
L(HAB), similar to a state extension, with the crucial difference
that FAB|A is not linear. For a conditional state ρB|A, the map
FAB|A is defined as

FAB|A(ρA) = ρ
1
2
AρB|Aρ

1
2
A. (217)

The nonlinearity allows this map to satisfy Eqs. (211)
and (212) without running into trouble with the monogamy of
entanglement. Crucially though, because this map is nonlinear,
it does not have a dual map that could be regarded as
a conditional expectation. Therefore, the close connection
between conditional probabilities and conditional expectations
breaks down within this formalism.

Rédei’s argument against a Bayesian interpretation of quan-
tum probabilities is based on a variant of Jeffrey conditioning
with respect to a quantum conditional expectation. In the
present context, if the state of a region A is updated from
ρA to ρ

post
A , then Rédei asserts that the state for AB should

be updated to ρ
post
AB = EAB|A(ρpost

A ), where EAB|A is a state
extension derived from the prior state ρAB . He then shows
that this update rule fails to satisfy an important stability
criterion in the infinite-dimensional case. Since his argument
is crucially based on the linearity of conditional expectations
and their duality with state extensions, it does not apply to the
nonlinear maps FAB|A associated with quantum conditional
states. However, since the failure only occurs for infinite-
dimensional systems, a full refutation will have to wait until
the conditional states formalism has been extended beyond the
finite-dimensional case treated here.

To reiterate, it seems unlikely that there is a unique quantum
generalization of conditional probability that has properties
analogous to every single property of classical conditional
probability that is traditionally regarded as important. For
this reason, it is important to keep applications in mind when
defining quantum conditionals, rather than working in a formal
mathematical vacuum.

B. Operational formalisms for quantum theory

Recent efforts to replace the conventional formalism of
quantum theory with a new operational formulation—typically
in an effort to provide an axiomatic derivation of quantum
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theory—have much in common with the work presented here.
Particularly cognate to our approach is the work of Hardy
[59–61], the Pavia group [62,63], Oreshkov et al. [64], and
Coecke’s group [65,66].

The reformulation of quantum theory presented by the Pavia
group makes heavy use of the Choi isomorphism between
quantum operations and bipartite states and leverages this to
represent quantum operations by operators rather than maps.
Mathematically, this is also how we achieve a unification
of the treatment of acausally related and causally related
regions. In particular, our Proposition 1, which specifies
how to represent a quantum channel in terms of conditional
states, is the counterpart to the expression of the action of a
quantum channel in terms of the link product. Note that the
Pavia group uses the Choi isomorphism, whereas we use the
Jamiołkowski-isomorphism. The latter has the advantage of
being basis independent, so that the partial transposes that
appear in the link product are absent in our approach.

Hardy’s latest work on reformulating quantum theory,
using the duotensor framework [61], also represents quantum
operations as operators in much the same way as is done in
the quantum combs framework and our own. Furthermore,
Hardy’s notion of circuit trace (an example of the causaloid
product introduced in [59,61]) provides a unified way of
representing a composition of maps as well as tensor products
of system states, which is to say a unified way of representing
correlations between acausally related and causally related
regions. The motivation for Hardy’s work on the causaloid
product is very similar to the motivation for our own, namely,
to formulate quantum theory in a manner that is even handed
with regard to possible causal structures.

Recent work by Oreshkov, Costa, and Brukner [64] also
represents correlations between acausally related and causally
related regions is a uniform manner by appealing to the Choi
isomorphism.

One notable way in which we depart from all of these
approaches is that we treat classical systems internally to the
formalism, on a par with quantum systems, rather than as
indices on operators representing preparations and measure-
ments.

Finally, we compare our approach to the categorical
approach of Coecke, where much of quantum theory (in
particular the nonmetrical parts) is reformulated using the
mathematical framework of symmetric monoidal categories
and the graphical calculus that can be defined for these [65,66].
Systems are the objects of the category, while quantum states
and quantum operations are the morphisms. The isomorphism
between bipartite states and operations also features promi-
nently in this approach and arises from having a compact
structure in the category. Furthermore, classical systems can be
treated internally within this framework. It should also be noted
that although Coecke’s categorical framework is typically used
to formulate quantum theory as a theory of physical processes,
it can also be used to express our formulation of quantum
theory as a theory of inference. For inference among acausally
related regions, this was done in [55]. An extension of this
work to the case of inference among causally related regions
should be instructive.

The mathematics of all of these approaches and our own
are quite analogous. It is in the interpretational aspect that

the greatest differences are to be found. In the reformulations
considered above, quantum theory is given a rather minimalist
interpretation; it is viewed as a framework for making
predictions about the outcomes of certain measurements
given certain preparations. Quantum states—however they are
reformulated mathematically—are taken to be representations
of preparation procedures, while quantum operations are
taken to be representations of transformation procedures.
These approaches follow the interpretational tradition of
operationalism. By contrast, our work takes quantum states to
represent the beliefs of an agent about a spatiotemporal region
and takes quantum operations to represent belief propagation;
it has an epistemological flavor rather than an operational one.
For instance, the notions that we deem to be most promising for
making sense of the quantum formalism are those one finds in
textbooks on statistics and inductive inference, such as Bayes’
theorem, conditional probabilities, statistical independence,
conditional independence, and sufficient statistics and not the
notions that are common to the operational approaches, such
as measurements, transformations, and preparations. In this
sense, our approach is more closely aligned in its philosophical
starting point with quantum Bayesianism, the view developed
by Caves, Fuchs, and Schack [24,67–70].9

The particular merit of our epistemological approach is
the strong analogy that it affords between quantum inference
and classical probabilistic inference. It makes the conceptual
content of various quantum expressions more transparent than
they would otherwise be. It also bolsters the view that quantum
states ought to be interpreted as states of knowledge.

Our take on how to incorporate causal assumptions into
quantum theory also has a rather different starting point than
the works described above. The relation we posit between
the notions of causation and correlation is most informed
by the work on causal networks (also known as Bayesian
networks), summarized in the textbooks of Pearl [71] and
of Glymour, Scheines, and Spirtes [72]. We ultimately hope
to generalize this analysis of causality by replacing classical
probability theory with quantum theory, understood as a
theory of Bayesian inference [54]. If the goal is to develop
a formalism for quantum theory that is causally neutral,
then we argue that the causal network approach holds an
advantage over the operational approach. Specifically, the
problem with taking experimental operations as a primitive
notion is that they already have a notion of causal structure
built into them insofar as the output of an operation is causally
influenced by the input, but not vice versa (similarly, if the
operation is a measurement, then the outcome is causally
influenced by the input but not vice versa). On the other
hand, elementary regions—the primitive notion of the causal
network approach—are precisely the sorts of thing that can
enter into arbitrary causal relations with one another, while
not having any intrinsic causal structure themselves.

9Unlike the quantum Bayesians, however, we are not committed to
the notion that the beliefs represented by quantum states concern the
outcomes of future experiments. Rather, the picture we have in mind
is of the quantum state for a region representing beliefs about the
physical state of the region, even though we do not yet have a model
to propose for the underlying physical states.
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VII. LIMITATIONS OF THE � PRODUCT

Using the � product makes the conditional states formalism
look very similar to classical probability theory. Often, by
replacing probabilities with operators and ordinary products
with � products, one can obtain an equation that is valid in the
conditional states formalism from one that is valid for classical
conditional probabilities. However, because the � product is
nonassociative and noncommutative, this does not always
happen. In this section, the limitations of the � product and
the disanalogies between classical conditional probabilities
and quantum conditional states are discussed.

A. Conditionalized equations

In classical probability theory, if one takes a universally
valid10 equation relating conditional, joint, and marginal
probability distributions over a set of variables R,S, . . . and
conditionalizes every term on a disjoint variable T , then the
equation that results is still universally valid. For example, the
equation

P (R,S) = P (S|R)P (R) (218)

generalizes to

P (R,S|T ) = P (S|R,T )P (R|T ), (219)

where a T has been placed on the right of the | in each term.
Unfortunately, the analogous property does not hold in the

conditional states formalism. For example, for acausal states
the analog of Eq. (219) would be

ρAB|C = ρB|AC � ρA|C. (220)

Writing this out explicitly, the left-hand side is

ρ
− 1

2
C ρABCρ

− 1
2

C , (221)

whereas the right-hand side is
(
ρ

− 1
2

C ρACρ
− 1

2
C

) 1
2 ρ

− 1
2

AC ρABCρ
− 1

2
AC

(
ρ

− 1
2

C ρACρ
− 1

2
C

) 1
2 . (222)

Because the � product is noncommutative, the terms involving
ρAC and ρ−1

AC cannot be brought together and made to cancel as
they would in the classical case. Therefore, counterexamples
to this rule can occur when ρAC and ρC do not commute. For
example, it is straightforward to verify that a generalized W
state of the form

|ψ〉ABC = 1

2
(|001〉ABC + |010〉ABC) + 1√

2
|100〉ABC

(223)

does not satisfy this rule. The calculation is not especially
instructive, so it is omitted.

Note that a universally valid equation relating quantum
conditional, joint, and marginal states is still universally valid
if one conditionalizes every term on a classical variable. This

10Universal validity means that the equation holds for the joint,
marginal, and conditional probability distributions derived from any

joint probability distribution P (R,S, . . .), rather than holding only in
special cases, e.g., due to symmetries or degeneracies of a particular
distribution.

follows from the equality of the expressions for the left-hand
and right-hand sides of Eq. (220) when C is replaced with a
classical variable T .

B. Limitations of causal joint states

In Sec. III E, a causal joint state was defined as an operator
of the form �B|A � ρA. This representation of two causally
related regions highlights the symmetry with the acausal case,
since, up to a partial transpose, it is the same sort of operator
that would be used to represent two acausally related regions.
Based on this, the quantum Bayes’ theorem was developed in
a way that is formally equivalent for acausally and causally
related regions. For this to work, we only needed causal joint
states for two causally related regions. However, since acausal
states are not limited to just two regions, it is natural to ask
whether causal joint states can be defined for more than two
regions. Unfortunately, the naive generalization does not work
for scenarios with mixed causal structure, e.g., two causally
related regions that are both acausally related to a third regions,
and it also does not work for multiple time steps.

In the remainder of this section, these limitations are
discussed and a different definition of a causal joint state is
suggested, which works more generally, but does not exhibit
the symmetry between the acausal and causal scenarios for
two regions.

1. Mixed causal scenarios

If region B is in the causal future of region A, then they can
be assigned a causal joint state �AB = �B|A � ρA. The causal
conditional state is Jamiołkowski isomorphic to the dynamical
CPT map EB|A and ρA is the input state. Now suppose that
there is a third region, C, that is acausally related to both A

and B; i.e., we start with a joint state ρAC of A and C and
apply EB|A to region A, while doing nothing to C, to obtain B

and C in a joint state ρBC = (EB|A ⊗ IC)(ρAC).
One might think that a joint state of ABC could be defined

via �ABC = ρB|A � ρAC . We would like this state to have the
correct input and output states as marginals, so, in particular,
it should satisfy

ρBC = EB|A(ρAC) = TrA(�ABC). (224)

Unfortunately, this fails because Theorem 1 implies that

ρBC = TrA(�B|AρAC), (225)

whereas

TrA(�ABC) = TrA(�B|A � ρAC). (226)

Because there is no trace over C, the cyclic property of the
trace cannot be used to equate these two expressions.

In fact, in addition to not having ρBC as a reduced
state, �ABC fails to correctly represent the correlations
between the causally related regions A and B as well, i.e.,
TrC(�ABC) �= �AB .

To see the failure of both these conditions explicitly,
consider an example in which HA, HB , and HC are all of
dimension d, the input state ρAC = 1

d
|�+〉〈�+|AC is a maxi-

mally entangled state, and EB|A is the identity superoperator.
Then, the output state is ρBC = 1

d
|�+〉〈�+|BC , and the causal

joint state is �AB = 1
d
|�+〉〈�+|TA

AB .
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In this case, explicitly calculating the operator �ABC =
�B|A � ρAC gives

�ABC = 1

d
|�+〉〈�+|AC ⊗ IB

d
. (227)

While the reduced state ρAC gives the correct input state, ρBC is
not the output state and �AB is not the causal joint state. In fact,
no operator of the form �ABC = �B|A � ρAC can ever satisfy all
three conditions ρAC = 1

d
|�+〉〈�+|AC , �AB = 1

d
|�+〉〈�+|TA

AB

and ρBC = 1
d
|�+〉〈�+|BC simultaneously. This is because

�ABC is a locally positive operator, and hence it must satisfy
the monogamy of entanglement, but requiring all three
bipartite reduced states to be maximally entangled would
violate monogamy and, in fact, only one of the three conditions
can be satisfied. Because of this, we have to move beyond
locally positive operators in order to faithfully represent all
the correlations.

The validity of Eq. (225) suggests that using an ordinary
product instead of a � product could be a better way of defining
a joint state in this scenario. Indeed, the operator �B|AρAC

does have all the correct bipartite marginals. For example, in
our example of maximally entangled input and identity map
dynamics, explicit calculation gives

�B|AρAC = 1

d

d∑
j,k,m=1

|j 〉〈k|A ⊗ |m〉〈j |B ⊗ |m〉〈k|C. (228)

This violates the monogamy of entanglement, which is allowed
because it is not a locally positive operator. In fact, it is not
even Hermitian.

While this may turn out to be a useful representation, it has
a number of disadvantages compared to the � product. First
of all, it is nonunique because the operator ρAC�B|A gives an
equally good account of all the correlations. One could even
take combinations of the two operators, such as

1
2 (�B|AρAC + ρAC�B|A), (229)

which might be useful because it is Hermitian.
Second, given an arbitrary operator MAB , it is not clear how

to check whether it is of the form �B|AρA without running over
all possible input states ρA and checking whether MABρ−1

A is
a valid causal conditional state. In contrast, when using the �

product, we know that an operator is of the form �B|A � ρA if
and only if it is the partial transpose of a valid acausal state on
AB, which is a straightforward condition to check.

Finally, a related issue is that, when using the ordinary
product instead of the � product, the set of possible causal
joint states depends on the causal direction. For an evolution
from A to B, a causal joint state would be of the form �B|AρA,
but for an evolution from B to A it would be of the form
�A|BρB . These define two different sets of operators, so we
lose the symmetry that was used to obtain Bayes’ theorem in
the causal case.

2. Multiple time steps

For three spacelike separated regions, a Markovian joint
state ρABC , where A and C are conditionally independent given

B, can always be decomposed via the chain rule into

ρABC = ρC|B � (ρB|A � ρA). (230)

For three timelike separated regions, the analog of Marko-
vianity is a two time-step dynamics where the first CPT map
is EB|A : L(HA) → L(HB) and the second is EC|B : L(HB) →
L(HC); i.e., it has no direct dependence on A. It is natural to
ask whether this situation can be represented by a tripartite
causal joint state that can be decomposed in a manner similar
to Eq. (230).

Suppose that the causal conditional states isomorphic to
EB|A and EC|B are �B|A and �C|B . If the input state is ρA then
the first time step is represented as

ρB = EB|A(ρA) (231)

= TrA(�B|AρA) (232)

and the second time step is represented as

ρC = EC|B(ρB) (233)

= TrB(�C|BρB). (234)

It follows that

ρC = EC|B ◦ EB|A(ρA) (235)

= TrB[�C|BTrA(�B|AρA)], (236)

The question is whether the complete dynamics might also be
representable as

ρC = TrAB[�C|B � (�B|A � ρA)], (237)

which in turn would suggest that �ABC = �C|B � (�B|A � ρA)
might be a good candidate for a tripartite causal joint state.

This fails because the expression �ABC = �C|B � (�B|A �

ρA) is not well defined. To see this, expand the first � product
to obtain

�ABC = √
�B|A � ρA�C|B

√
�B|A � ρA. (238)

The term
√

�B|A � ρA is not well defined because �B|A � ρA

is not a positive operator, but only locally positive, so it
may have negative eigenvalues. Hence, it does not have a
unique square root. This could be remedied by adopting a
convention for square roots of Hermitian operators, such as
demanding that the square root of each negative eigenvalue
has positive imaginary part. The resulting tripartite operator
�ABC would then have the correct reduced states, ρA, ρB , and
ρC , representing the state of the system at each time step.
However, it is not related to a tripartite state of three acausally
related regions via partial transposes, so the symmetry that
motivates the use of the � product representation is lost. This
loss of symmetry resonates with previous work showing that
tripartite “entanglement in time” is not isomorphic to ordinary
tripartite entanglement [2].

As with the evolution of a subsystem, these problems can
be remedied by using the ordinary product instead of the �

product to represent time evolutions, but it is subject to the
same disadvantages that were discussed in that context.
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VIII. OPEN QUESTIONS

A. The quantum conditionals problem

Monogamy of entanglement is a key feature that dis-
tinguishes classical from quantum information. There is
a closely related difference between classical conditional
probability distributions and acausal quantum conditional
states that deserves further investigation. Classically, if P (R)
is a probability distribution and P (S|R) and P (T |R,S) are
conditional probability distributions, then

P (R,S,T ) = P (T |R,S)P (S|R)P (R) (239)

is always a valid probability distribution. Furthermore, the
distribution so defined has the correct marginal and conditional
states in the sense that∑

S,T

P (R,S,T ) = P (R), (240)

∑
T P (R,S,T )∑

S,T P (R,S,T )
= P (S|R), (241)

P (R,S,T )∑
T P (R,S,T )

= P (T |R,S), (242)

whenever the left-hand sides are well defined.
In the quantum case, the analogous properties do not hold.

Although a tripartite state ρABC can always be decomposed as

ρABC = ρC|AB � ρB|A � ρA (243)

via the chain rule, one cannot start with an arbitrary reduced
state ρA and two arbitrary conditional states, ρB|A and ρC|AB ,
and expect there to be a joint state ρABC that has these
conditional and reduced states.

For example, suppose that B and C are conditionally
independent of A, i.e., ρC|AB = ρC|A. Now, suppose that ρA is
chosen to have more than one nonzero eigenvalue and ρB|A is
chosen to be maximally entangled, e.g., ρB|A = |�+〉〈�+|B|A.
This implies that the reduced state ρAB = ρB|A � ρA is
pure and entangled. If, in addition, ρC|A is chosen to be
ρC|A = |�+〉〈�+|C|A, then the reduced state ρAC = ρC|A � ρA

should also be pure and entangled. However, monogamy of
entanglement says that this is impossible, so these choices
of conditional state are not compatible. Determining the full
set of constraints on coexistent conditional states for three
acausally related regions would be an interesting problem,
as would determining the computational complexity of the
n-party generalization.

IX. CONCLUSIONS

The formalism of quantum conditional states presented in
this paper provides a step towards a formalism for quantum
theory that is independent of causal structure, as a theory
of probabilistic inference ought to be, and provides a closer
analogy between quantum theory and classical probability
theory. There is significant potential to use these results
to simplify and generalize existing approaches to problems
in quantum information theory. As an example of this, in
a companion paper [73] we provide an approach to the
problems of compatibility and pooling of quantum states that
is based on a principled application of Bayesian conditioning

and is a direct generalization of existing approaches to the
classical versions of these problems. It seems unlikely that
the possibility of this approach would have been noticed
within the conventional quantum formalism. However, this is
only the beginning and we anticipate applications to quantum
estimation theory and to quantum cryptography, such as
studying the relationship between cryptography protocols that
employ different causal arrangements to achieve the same
task. As it stands, the formalism is limited to two disjoint
elementary quantum regions and the most pressing problem is
to generalize it to arbitrary causal scenarios. This is a topic of
ongoing work.
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APPENDIX: PROOFS OF THEOREMS

Theorem 1: Jamiołkowski isomorphism. Let EB|A :
L(HA) → L(HB) be a linear map and let MAC ∈ L(HAC) be
a linear operator, where HC is a Hilbert space of arbitrary
dimension. Then the action of EB|A on L(HA) [tensored with
the identity on L(HC)] is given by

(EB|A ⊗ IC)(MAC) = TrA(ρB|AMAC), (A1)

where ρB|A ∈ L(HAB) is given by

ρB|A ≡ (EB|A′ ⊗ IA)

( ∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′

)
. (A2)

Here A′ labels a second copy of A, IA is the identity
superoperator on L(HA), and {|j 〉} is an orthonormal basis
for HA.

Furthermore, the operator ρB|A is an acausal conditional
state; i.e., it satisfies Definition 1, if and only if EB|A ◦ TA

is CPT, where TA : L(HA) → L(HA) denotes the linear map
implementing the partial transpose relative to some basis.

To prove this theorem, it is useful to make use of the con-
nection between the Choi and the Jamiołkowski isomorphisms.
The map that is Choi-isomorphic to an operator ρB|A is given
by

(EB|A ⊗ IC)(MAC) = 〈�+|AA′ρB|A′MAC |�+〉AA′ , (A3)

where |�+〉AA′ = ∑
j |jj 〉AA′ is a canonical maximally entan-

gled state defined with respect to a preferred basis {|j 〉} for
HA.

The operator is recovered from the map via

ρB|A ≡ (EB|A′ ⊗ IA)(|�+〉〈�+|AA′). (A4)
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Because
∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′ = (|�+〉〈�+|AA′)TA, (A5)

Eqs. (A4) and (A2) differ only by whether one uses the
projector onto the maximally entangled state (Choi) or the
partial transpose thereof (Jamiołkowski) and the two isomor-
phic maps to ρB|A are related by EB|A = EB|A ◦ TA, where TA

is the partial transpose operation with respect to the basis used
to define the Choi isomorphism.

The equivalence of Eqs. (A3) and (A1) is established as
follows:

(EB|A ⊗ IC)(MAC)

= 〈�+|AA′ρB|A′MAC |�+〉AA′

=
∑
j,k

〈jj |AA′ρB|A′MAC |kk〉AA′

=
∑
j,k

〈j |A′ρB|A′ |k〉A′ 〈j |AMAC |k〉A

=
∑
j,k

〈j |AρB|A|k〉A〈k|AM
TA

AC |j 〉A

= TrA
(
ρB|AM

TA

AC

)
= ([EB|A ◦ TA] ⊗ IC)(MAC). (A6)

Proof of Theorem 1. Equation (A1) is derived from Eq. (A2)
as follows:

(EB|A ⊗ IC)(MAC)

= (EB|A′ ⊗ IC)

([ ∑
k

|k〉〈k|A′

]
MA′C

[ ∑
j

|j 〉〈j |A′

])

= (EB|A′ ⊗ IC)

( ∑
j,k

〈k|A′MA′C |j 〉A′ |k〉〈j |A′

)

= (EB|A′ ⊗ IC)

( ∑
j,k

TrA(|j 〉〈k|AMAC)|k〉〈j |A′

)

= TrA

[
(EB|A′ ⊗ IC)

(∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′

)
MAC

]

= TrA(ρB|AMAC). (A7)

Now suppose that ρB|A is an acausal conditional state;
i.e., it is positive and TrB(ρB|A) = IA. To show that the
Jamiołkowski-isomorphic map composed with a partial trans-
pose, EB|A ◦ TA, is trace preserving, note that TA is trace
preserving, so it suffices to show that EB|A is trace preserving.
This proceeds as follows:

TrB[EB|A(MA)] = TrB[TrA(ρB|AMA)] (A8)

= TrA[TrB(ρB|A)MA] (A9)

= TrA(IAMA) (A10)

= TrA(MA). (A11)

To show that EB|A ◦ TA is completely positive, note that it is
equal to the Choi-isomorphic map EB|A, so it suffices to show

that the latter is completely positive. By definition,

EB|A ⊗ IC(ρAC) = 〈�+|AA′ρB|A′ ⊗ ρAC |�+〉AA′ (A12)

and this is a positive operator for arbitrary positive ρAC , where
HC can have any dimension.

Conversely, suppose EB|A ◦ TA is CPT. Then EB|A is also
trace preserving, so

TrB(ρB|A) = TrB

[∑
j,k

|j 〉〈k|A ⊗ EB|A(|k〉〈j |A′)

]
(A13)

=
∑
j,k

|j 〉〈k| ⊗ TrB[EB|A(|k〉〈j |A′)] (A14)

=
∑
j,k

|j 〉〈k|A ⊗ TrA′(|k〉〈j |A′) (A15)

=
∑
j,k

|j 〉〈k|Aδj,k (A16)

=
∑

j

|j 〉〈j |A (A17)

= IA. (A18)

Also,

ρB|A = (EB|A′ ⊗ IA)(|�+〉〈�+|AA′), (A19)

and this is a CPT map acting on a positive operator, so ρB|A is
positive. �

Theorem 3. Let σA|X be a hybrid operator, so that by Eq. (40)
it can be written as

σA|X =
∑

x

ρA
x ⊗ |x〉〈x|X (A20)

for some set of operators {ρA
x }. Then, σA|X satisfies the

definition of both an acausal and a causal conditional state
for A given X, if and only if each of the components ρA

x is a
normalized state on HA.

Proof. Suppose σA|X has the form of Eq. (A20) for a set of
normalized states {ρA

x }. Then it is clearly positive and satisfies
TrA(σA|X) = IX because TrA(ρA

x ) = 1 for every x. Therefore,
σA|X is an acausal conditional state. On the other hand, σA|X
is invariant under partial transpose on X, so it is also a causal
conditional state.

Conversely, suppose that σA|X is an acausal conditional
state. This means that it is positive and satisfies TrA(σA|X) =
IX. Positivity means that 〈ψ |AXσA|X|ψ〉AX � 0 for all
|ψ〉AX ∈ HAX. If σA|X has the form of Eq. (A20), then taking
|ψ〉AX = |φ〉A ⊗ |x〉A gives 〈φ|AρA

x |φ〉A � 0. By varying over
all |φ〉A ∈ HA, this implies that each ρA

x is a positive operator.
To prove that these operators are normalized, note that

TrA(σA|X) =
∑

x

TrA
(
ρA

x

)|x〉〈x|X. (A21)

This is an eigendecomposition of TrA(σA|X) with eigenvalues
TrA(ρA

x ) and if this is the identity operator then each of these
eigenvalues must be 1.

On the other hand, if σA|X is a causal conditional state,
then its partial transpose over X must be positive and satisfy
TrA(�TX

A|X) = IX. However, operators of the form of Eq. (A20)
are invariant under partial transpose on X, so the same
argument applies. �
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Theorem 4. Let σY |A be a hybrid operator so that it can be
written in the form

σY |A =
∑

y

|y〉〈y|Y ⊗ EA
y (A22)

for some set of operators {EA
y }. Then σY |A satisfies the

definition of both an acausal and a causal conditional
state for Y given A if and only if the components EA

y

form a POVM on HA; i.e., each EA
y is positive and∑

y EA
y = IA.

Proof. Suppose σY |A has the form of Eq. (A22) for a POVM
{EA

y }. Then it is clearly positive and satisfies TrY (σY |A) =∑
y EA

y = IA. Therefore, σY |A is an acausal conditional state.
On the other hand,

σ
TA

Y |A =
∑

y

|y〉〈y|Y ⊗ (
EA

y

)TA (A23)

is also positive because the positive operators EA
y remain

positive under the transpose. Also, TrY (σTA

Y |A) = ∑
y(EA

y )TA =
I

TA

A = IA. Therefore, σY |A is also a causal conditional state.
Conversely, suppose that σY |A is an acausal conditional

state. This means that it is positive and satisfies TrY (σY |A) =
IA. By the same argument used in the proof of Theorem 3,
positivity implies that, if σY |A is of the form of Eq. (A22),
then each of the components EA

y must be positive. Since
TrY (σY |A) = ∑

y EA
y , the components must form a POVM.

On the other hand, if σY |A is an acausal conditional state
then, by the argument just given, its partial transpose over A

must be of the form of Eq. (A22) for some POVM {EA
y }. This

means that σY |A itself can be written as

σY |A =
∑

y

|y〉〈y|Y ⊗ (
EA

y

)TA
, (A24)

but since the operators (EA
y )TA form a POVM whenever {EA

y }
is a POVM, σY |A is of the required form. �

Theorem 5. Let EB|A, EC|B , and EC|A be linear maps such
that EC|A = EC|B ◦ EB|A. Then the Jamiołkowski isomorphic
operators, �B|A, �C|B , and �C|A, satisfy

�C|A = TrB(�C|B�B|A). (A25)

Conversely, if three operators satisfy Eq. (A25), then the
Jamiołkowski isomorphic maps satisfy EC|A = EC|B ◦ EB|A.

Proof. By definition, the Jamiołkowski isomorphic operator
to EC|A is

�C|A = (EC|A′ ⊗ IA)

( ∑
j,k

|j 〉〈k|A ⊗ |k〉〈j |A′

)
(A26)

=
∑
j,k

|j 〉〈k| ⊗ [EC|B ◦ EB|A′(|k〉〈j |A′)]. (A27)

Applying Theorem 1 to EB|A′ gives

�C|A =
∑
j,k

|j 〉〈k|A ⊗ EC|B[TrA′(�B|A′ |k〉〈j |A′)]

=
∑
j,k

|j 〉〈k|A ⊗ EC|B(〈j |A′�B|A′ |k〉A′), (A28)

and then applying the same theorem to EC|B gives

�C|A =
∑
j,k

|j 〉〈k|A ⊗ 〈j |A′TrB(�C|B�B|A′)|k〉A′ . (A29)

Since A′ is a dummy label in this expression, it can be changed
to A and then

�C|A =
∑
j,k

|j 〉 〈j |A TrB(�C|B�B|A) |k〉 〈k|A (A30)

= TrB(�C|B�B|A). (A31)

For the converse direction, we have

EC|A(MA) = TrA(�C|AMA) (A32)

= TrA[TrB(�C|B�B|A)MA] (A33)

= TrB[�C|BTrA(�B|AMA)] (A34)

= TrB[�C|BEB|A(MA)] (A35)

= EC|B[EB|A(MA)] (A36)

= EC|B ◦ EB|A(MA). (A37)
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