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We present an efficient method to simulate a quantum process subject to dissipation and noise. To describe
the effect on any input state we evolve Monte Carlo wave functions for a principal and ancilla system, prepared
initially in an entangled state. In analogy to experimental process tomography, the simulated propagator for the
system density matrix is conveniently described by a process χ matrix - directly determined from the stochastic
state vectors. Our method significantly reduces the computational complexity compared with standard theoretical
characterization methods. It also delivers an upper bound on the trace distance between the ideal and simulated
process based on the evolution of only a single wave function of the entangled system.

DOI: 10.1103/PhysRevA.88.052129 PACS number(s): 03.65.Wj, 32.80.Qk, 42.50.Dv

I. INTRODUCTION

Characterization of quantum-dynamical systems is a pre-
requisite for high-fidelity quantum computing and information
protocols. Two tools created for this purpose are quantum-state
and quantum-process tomography. Quantum-state tomogra-
phy takes the measurement data of a quantum system’s
unknown state and identifies the representative density
operator ρ. Quantum-process tomography is concerned with
experimentally characterizing a process E so that the output
state may be predicted from any given input state, ρ → E(ρ).

To completely characterize an N -qubit process, standard
quantum process tomography (SQPT) [1–3] requires imple-
mentation on a number of input states that scales exponentially
with the number of qubits. Avoiding the preparation of
many different input states ancilla-assisted quantum process
tomography (AAPT) [4–7] was proposed as an alternative.
Here the information of all input states is encoded into a
single maximally entangled system-ancilla state in a doubled
Hilbert space. While both SQPT and AAPT rely on state
tomography of the output state, direct characterization of
quantum dynamics [8,9] addresses features of the underlying
dynamics via suitable “probe” systems and corresponding
measurements. For more details and an investigation of
resource demands for each of these strategies see Ref. [10].

If a quantum system is subject to unitary and dissipative
dynamics, it is a nontrivial task to theoretically determine
the resulting process E from a general input state to its
corresponding output state. Solving that problem is highly
relevant in quantum information science, as it quantifies not
only the fidelity of gates for different input states but also
the dominant error mechanisms. This may in turn eventually
point to improved gates by appropriate control schemes. In
this paper we distinguish between (experimental) process
tomography and (theoretical) characterization of a process
by solution of the master equation. A theoretical χ matrix
may be compared with experiments to validate interaction
parameters [11,12]. It may also be applied to investigate how
errors accumulate when processes are applied to states, which
are themselves the outcome of previous interactions, e.g., in
a quantum computer algorithm.

This article will present a procedure to numerically de-
termine the quantum process E from the master equation

governing time-dependent system dynamics. Monte Carlo
wave functions [13–16] have allowed a numerically efficient
alternative to the ordinary master equation approach to obtain
the time-dependent density matrix ρ(t). Indeed, a Monte Carlo
simulation of a quantum system with a Hilbert space of size
D (D � 1) involves far fewer variables (∼D) than its master
equation counterpart (∼D2). In this paper we simulate the evo-
lution of our system from an initial maximally entangled state
with a nonevolving ancilla system, and we show that the Monte
Carlo wave functions for this combined system can be directly
processed to yield information about the quantum process E .

The paper is organized as follows. In Sec. II we introduce
the system master equation as well as the general problem
of characterizing the time evolution as a quantum process
applied to any initial state. In Sec. III we introduce part of the
formalism needed for process characterization and describe
density matrix schemes that yield the process matrix χ . In
Sec. IV we briefly recall the Monte Carlo wave function
method and relevant aspects of its implementation in this work.
In Sec. V we show how the time-evolved Monte Carlo wave
functions can be used to yield stochastic “process vectors” ζ

that directly average to the process matrix χ . In Sec. VI we
show how the no-jump, single wave function trajectory yields a
readily accessible upper bound on the trace distance between
the actual process matrix and any desired process matrix, a
useful measure of process fidelity. In Sec. VII we apply our
method to the simulation of a Rydberg blockade C-PHASE
gate, subject to realistic decay and dephasing mechanisms.
Section VIII concludes the paper.

II. CHARACTERIZING OPEN QUANTUM SYSTEMS

The simulation of dissipative quantum systems is important
to quantum information processing as it allows realistic
modeling of quantum gate protocols. Because of dissipation,
the time-evolution is not unitary and the dynamics must be
treated using a master-equation approach. This linear equation,
describing time evolution of the principal system’s density
matrix ρ, is typically obtained by making use of the Born-
Markov approximations and tracing a larger composite density
matrix over the reservoir degrees of freedom associated with
the dissipation processes. Denoting the Hamiltonian for the

052129-11050-2947/2013/88(5)/052129(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.052129


GULLIKSEN, RAO, AND MØLMER PHYSICAL REVIEW A 88, 052129 (2013)

principal system by H , the master equation may be written as

ρ̇ = − i

h̄
[H,ρ] + Lrelax(ρ), (1)

where we consider the relaxation operator Lrelax in Lindblad
form [17]:

Lrelax(ρ) = −1

2

∑
k

(L†
kLkρ + ρL

†
kLk) +

∑
k

LkρL
†
k. (2)

Equation (1) preserves the positivity and normalization of the
density operator ρ, and the Lk operators in Eq. (2) act in the
space of the principal system. Thus by solving Eq. (1) with
the, possibly time-dependent, Hamiltonian corresponding to a
complex quantum gate operation we determine the evolution
of any initial state under the influence of damping and noise.
This evolution from t = 0 to t = τ can be written as a linear
transformation of the input density matrix elements, ρij (τ ) =∑

mn Mij,mnρmn(0).
As a guarantee for trace preservation and positivity the

solution for the density matrix ρ(τ ) = E(ρ(0)) may also be
described in the operator-sum representation [18]

E(ρ) =
∑

i

KiρK
†
i , (3)

where the Kraus operators Ki act on the system’s Hilbert space
and obey

∑
i K

†
i Ki = 1. Picking the Hermitian operators {Em}

as a basis for the set of all operators on the principal system’s
Hilbert space1 we may write any quantum process as

E(ρ) =
∑
mn

χmnEmρE†
n. (4)

The characterization matrix χmn in Eq. (4) is related to the
Kraus form (3) via the expansion of each Ki = ∑

m eimEm,
and the identification χmn = ∑

i eime∗
in.

Suppose a process is simulated with the master equation,
for which the accumulated effect of the unitary and dissipative
dynamics on the quantum system is not known a priori. From
the simulation data, we want an efficient method to obtain the
full information about E . In the next section standard methods
of acquiring χmn, and thus E , will be shown.

III. PROCESS CHARACTERIZATION SCHEMES

In the following discussion we consider a general quantum
system with Hilbert space dimension D. Assuming the map E
is trace preserving, then characterization of E is equivalent to a
determination of the D4 − D2 independent elements of χ [1].

Let Opq = |p〉〈q| for p,q ∈ {1, . . . ,D} be a linearly in-
dependent basis for the space of D × D linear operators.
Cataloging the action of the fixed operator basis {Em} on all
input matrices we create the D4 × D4 matrix K:

EmOrsE
†
n =

∑
pq

Kmn
rs,pqOpq . (5)

1In a multiqubit system, an appropriate operator basis might be
tensor products of the identity and Pauli operators for each qubit.

A. Standard quantum process characterization

In standard quantum process characterization (SQPC) the
effect of the process E is determined: Experimentally, D2

different input states (density matrices) are subjected to the
physical process and the resulting output states are measured
by quantum state tomography. In a theoretical analysis, the
master equation is used to simulate the process, and the
outcome solution E(Ors) for input matrices Opq is expressed
as a linear combination in the same operator basis:

E(Ors) =
∑
pq

�rs,pqOpq. (6)

Combining Eqs. (4)–(6) we obtain
∑

mn Kmn
rs,pqχmn =

�rs,pq , which in matrix form reads

Kχ = �. (7)

Finding {χmn} from the simulated {�rs,pq} is now a linear
algebra problem, although in general it is not uniquely
determined by Eq. (7).

Let us here make an estimate of how the computational
resources needed to perform SQPC scales with Hilbert space
dimension. Simulating a process with the master equation
requires solving D2 coupled differential equations for each
of the D2 input states; that is, we must solve D4 differential
equations. Solution of Eq. (7) requires decomposition of K,
using the Cholesky method for example, followed by forward
and back substitution for χ . The computational complexity
of a straightforward decomposition is O(D12) while the
substitution operations are each O(D8).

For applications to quantum computing on a register
composed of N L-level quantum systems, the product Hilbert
space has the dimension D = LN . If the operators Em are taken
to be SU(L) operator products, the product nature simplifies
decomposition of K into separate O(L12) problems.

B. Ancilla-assisted process characterization

In ancilla-assisted process characterization (AAPC), in-
stead of composing � by propagating separate, initial matrices
Ors , all input states are simultaneously represented in a “super”
operator

O =
∑
rs

Ors ⊗ Ors (8)

on the combined principal (P ) and ancilla (A) system. This
expanded system is now made subject to the quantum process,
EP⊗A(O) → Oout, which acts with the original process E only
on the principal system component:

Oout ≡ (E ⊗ I)(O). (9)

The identity operator I in Eq. (9) acts on the ancilla’s operator
space. From Eq. (8) we have (E ⊗ I)(O) = ∑

rs E(Ors) ⊗
Ors , implying that a single master equation simulation on the
expanded system allows calculation of all E(Ors). The ancilla
system is used to extract separate results,

E(Ors) = TrA[(I ⊗ |s〉〈r|)EP⊗A(O)], (10)

where TrA denotes partial trace on the ancilla’s Hilbert space.
Then in a way equivalent to Eq. (6) we may expand E(Ors)
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into the basis of {Opq} and retrieve the characterization matrix
χ from Eq. (7).

Simulating a quantum process with AAPC involves solving
D4 differential equations for the expanded input state. The
complexity of solving Eq. (7) remains O(D12) and O(D8) for
decomposition of K and forward and backward substitution,
respectively.

IV. MONTE CARLO WAVE FUNCTIONS

We can obtain the predictions made by the master equa-
tion (1) by introducing a stochastic element into the evolution
of so-called Monte Carlo wave functions [14–16]. These are
wave functions |ψ(t)〉 propagated with the non-Hermitian
Hamiltonian Heff = H − ih̄/2

∑
k L

†
kLk . Due to the nonuni-

tary evolution during a small time step dt ,

|ψ0(t + dt)〉 =
(

1 + 1

ih̄
Heffdt

)
|ψ(t)〉, (11)

the square of the norm associated with |ψ0(t + dt)〉 is reduced
by

δp =
∑

k

δpk = dt
∑

k

〈ψ(t)|L†
kLk|ψ(t)〉. (12)

The next step involves a random choice. Either the wave
function |ψ0(t + dt)〉 is renormalized, or, with probability
δp, the wave function is subject to a quantum jump. This
constitutes a collapse of the wave function, and with a
branching ratio of δpk/δp, the final state is chosen among
the states Lk|ψ(t)〉. Thus, at time t + dt we have one of the
following possibilities:

with prob. 1 − δp, |ψ(t + dt)〉 = |ψ0(t + dt)〉√
1 − δp

, (13a)

with prob. δpk, |ψ(t + dt)〉 = Lk|ψ(t)〉√
δpk/dt

. (13b)

An ensemble of wave functions subject to this dynamics will on
average reproduce the time-dependent solution of the master
equation.

The validity of the calculation relies on time steps much
smaller than the time scale of the coherent and incoherent
physical processes. However, the direct implementation dis-
cussed above may be reformulated [16,19] such that quantum
jumps are not decided in terms of expression (12), linear
in the “small” time step dt . Instead, the “no-jump” wave
function |ψ0(t)〉 is allowed to evolve until its norm reaches a
predetermined random number uniformly distributed between
0 and 1. At this time a jump is made in the manner of Eq. (13b).
In this way integration of Eq. (11) can be left to an accurate and
efficient numerical solver. In our implementation to a physical
example below, we use a variant of the Adams-Bashford
method which utilizes adaptive step-size control.

V. PROCESS CHARACTERIZATION
WITH MONTE CARLO

Since density matrices in the master equation approach are
replaced by state vectors, simulation by Monte Carlo wave

FIG. 1. (Color online) Implementation of AAPC with Monte
Carlo wave functions: In each trajectory i, the evolution of the
entangled system and ancilla is simulated, subject to the process
E ⊗ I . From the expansion coefficients λj , we determine the vector
of components ζm. Averaging over many simulation outcomes ζ i

mζ i∗
n

the χ matrix is obtained.

functions allows access to larger quantum systems. How this
benefits process characterization is the focus of this section.
We first analyze ancilla-assisted process characterization using
Monte Carlo wave functions (AAWF) and discuss its advan-
tages over standard characterization techniques. We conclude
the section with a discussion of why the ancilla strategy is
preferred over a Monte Carlo treatment of standard quantum
process tomography.

Observe that the super operator in Eq. (8) is a pure
state projection operator, that is, O = |
〉〉〈〈
|, where the
bipartite wave function |
〉〉 = ∑

r |r〉 ⊗ |r〉 describes the
principal system maximally entangled with an identical ancilla
system. Evolution of O is then equivalent to propagation of
|
〉〉 → |
E 〉〉 under the rules of Monte Carlo wave functions;
that is, averaging the outer product of the resulting states over
many simulated outcomes we find |
E 〉〉〈〈
E | = (E ⊗ I)(O).

Next we construct κ , the “‘wave function” analog of
standard tomography’s K matrix. This is a D2 × D2 matrix
matrix of expansion coefficients for the application of the
standard operators {Em} of Sec. II,

(Em ⊗ I )|
〉〉 =
∑

j

κm
j |j 〉〉, (14)

where {|j 〉〉 : j = 1, . . . ,D2} is a linearly independent basis
for the D2-dimensional vectors on the principal-ancilla space
P ⊗ A.

For each simulated Monte Carlo wave function |
E 〉〉 =∑
j λj |j 〉〉 we now define the ζ vector as the solution to

∑
m

κm
j ζm = λj . (15)

The coefficients λj , and hence ζm, carry information about the
process E . Indeed, when averaging the ζ vector coordinates
over a sufficiently large ensemble of Monte Carlo wave
functions we directly obtain the process matrix of Eq. (4),

χmn = ζmζ ∗
n (16)

(see Appendix).
The implementation of the AAWF method is illustrated in

Fig. 1. To propagate |
〉〉 in a single Monte Carlo trajectory
we must solve D × D coupled differential equations. Thus,
averaging over n trajectories requires solving nD × D coupled
differential equations, which may be much less than the D4

equations needed by standard techniques. Even more striking
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TABLE I. Numerical cost of characterizing a quantum process
on a D-dimensional Hilbert space. The first column lists the density
matrix and Monte Carlo approaches to standard (SQPC) and ancilla-
assisted (AAPC) process characterization. The second column (c.d.e.)
lists the number of coupled differential equations needed to simulate
the time evolution. The last column (s.l.e.) lists the cost of solving
the system of linear equations for the χ matrix/ζ vector, assuming a
Cholesky decomposition of the matrix K (κ).

Technique c.d.e. s.l.e.

SQPC
Density matrix D2 × D2 O(D8)
Monte Carlo nD2 × D O(D8)

AAPC
Density matrix D2 × D2 O(D8)
Monte Carlo nD × D n × O(D4)

is the reduction in cost associated with the decomposition of
κ , which scales as a O(D6) problem, compared to the O(D12)
problem of decomposing the K matrix. Each of the n Monte
Carlo simulations at output creates a size O(D4) problem
when using forward or backward substitution to solve for the
ζ vector.

Analogous to standard process characterization, we might
have used Monte Carlo wave functions to simulate input
states in the original Hilbert space, construct the output
density matrices, and subsequently solve for χ . However,
implementation requires simulating n size D Monte Carlo
wave functions for all D2 input states, which is a larger problem
than its AAPC counterpart (Table I). Also, this method does
not allow for a ζ vector equivalent, meaning no reduction in
the complexity of solving Eq. (7).

Note that the decomposition of K concerns only structural
properties of the chosen operator and state bases of the
quantum system and is independent of the physical process E .
The same is true for the vector variant, applied to the analysis of
Monte Carlo wave functions. Indeed, our vector formulation of
the problem shows that the simpler decomposition of κ offers
an effective reduction of the costs to decompose K, which is
applicable for standard process characterization.

VI. AN UPPER BOUND ERROR ESTIMATE
FROM A SINGLE WAVE FUNCTION

A meaningful measure between the ideal (χ̃) and the actual
(χ ) process matrices in a physical gate operation is the trace
distance [20]. The trace distance is a translationally invariant
metric on the space of Hermitian, positive semidefinite ma-
trices of unit trace, and it is given by T (χ̃ ,χ ) ≡ 1

2‖χ̃ − χ‖tr ,

where ‖A‖tr = Tr(
√

A†A) is the trace norm.
We are interested in the characterization of the effect

of noise and dissipation on gate operations in quantum
computing. To have any relevance for quantum computation
such gates may experience only weak noise. This implies
that in the majority of Monte Carlo simulations, the wave
functions should follow the “no-jump” trajectory (13a) through
the entire duration of the process. With the AAWF method,
the calculation of this single wave function provides a useful
indication of the gate’s performance.

The simulated Monte Carlo wave functions making up a
AAWF calculation of χ may be separated into two parts:
those that never jumped, yielding a single ζ vector and
corresponding χ matrix, χS = ζSζ

†
S , and those that jumped at

randomly assigned times to yield a set of vectors (χi = ζiζ
†
i ).

The fraction S
n

of no-jump wave functions is equal to the
product of the normalization factors (1 − δp) in Eq. (13a)
applied over time. The remaining fraction J

n
of the simulated

ensemble (n = J + S being the total number of trajectories)
yields the sum of terms χJ = 1

J

∑J
i=1 ζiζ

†
i . Finally we see that

χ = S

n
χS + J

n
χJ . (17)

Calculating the trace distance between Eq. (17) and the
ideal process matrix χ̃ we employ the triangle inequality and
translational invariance to obtain

T

(
χ̃ ,

S

n
χS + J

n
χJ

)
� T

(
χ̃ − S

n
χS,0

)
+ T

(
0,

J

n
χJ

)
.

(18)

Since T (0, J
n
χJ ) = 1

2‖ J
n
χJ ‖tr = J

2n
, this provides an upper

bound on the trace distance using the evolution of only a single
no-jump wave functions and its associated χ matrix:

T (χ̃ ,χS + χJ ) � T

(
χ̃ ,

S

n
χS

)
+ J

2n
. (19)

Clearly this upper bound is of limited value if dissipation is
significant and many wave functions jump.

Another typical measure for the effect of error in a process
is fidelity F (χ̃ ,χ ) ≡ ‖√χ̃

√
χ‖tr . However, being a nonlinear

expression it has a more complicated relation with the different
components of the wave function ensemble. We shall return to
both process error measures in the numerical example below.

VII. C-PHASE GATE

As an example of our process characterization, we consider
the controlled-phase (C-PHASE) gate operation between
atoms coupled by the Rydberg blockade interaction (Fig. 2).
Each atom has four levels: two ground levels which comprise
the qubit space, the Rydberg level with which the atoms
interact, and the intermediate level which facilitates transitions
to the Rydberg level via a two-photon process. Thus, even
though the initial state space and resulting process matrix may
be restricted to the qubit space, we are still required to simulate
the system considering all levels. Obtaining the χ matrix even
for the simplest two-qubit gates is nontrivial, and extending it
beyond two atoms becomes computationally challenging for
standard characterization strategies. Meanwhile, the proposed
AAWF method can readily deal with multiqubit process
characterization involving up to 8–10 atoms.

A C-PHASE gate on the 5s1/2 hyperfine states |0〉 ≡
|F = 1,mF = 0〉 and |1〉 ≡ |F = 2,mF = 0〉 involves single-
qubit rotations between |1〉 and the Rydberg state |r〉 =
|97d5/2,mj = 5/2〉. This is a two-photon process, achieved
with σ+ polarized 780 and 480 nm beams. The 780 nm beam
is tuned by an amount 
 to the red of the |1〉 → |p〉 ≡
|5p3/2,F = 3〉 transition while the 480 nm beam is also tuned
an amount 
 to the blue of the |p〉 → |r〉 transition. The

052129-4



PROCESS CHARACTERIZATION WITH MONTE CARLO . . . PHYSICAL REVIEW A 88, 052129 (2013)

FIG. 2. (Color online) Rydberg-mediated controlled phase gate.
(a) Illustration of (1) a resonant transfer between |1〉 and |r〉 of the
control atom c, (2) subsequent coherent excitation and de-excitation
between |1〉 and |r〉 of the target atom t , yielding the controlled phase
shift on the |1〉 component, unless the control atom is excited and
providing the Blockade shift B, and (3) de-excitation of the control
atom. (b) Illustration of the pulse sequence and listing the Hamiltonian
and driving terms. The identity operator I signifies individual
addressing of atoms, L⊗2 = − ih̄

2 (
∑

m L†
mLm ⊗ I + I ⊗ ∑

m L†
mLm)

describes decoherence in the system, and the two-atom interaction
B|rr〉〈rr| prevents both atoms from occupying the Rydberg state.
The single-qubit Hamiltonian Ĥ is discussed in detail in the text.

resulting Rabi frequencies are �R (�B) for the red (blue)
detuned laser. After adiabatically eliminating |p〉 from the
Hamiltonian describing this process for numerical efficiency,
we find in the rotating-wave approximation [21]:

Ĥ = (2
 − δEr )�R�B

8
(
 − δEr ) + 2γ 2︸ ︷︷ ︸
�eff/2

|1〉〈r| + H.c.

+
(

δE0 − 
�2
R

4
2 + γ 2

)
|0〉〈0|. (20)

Here

δEr 
 16
2
(
�2

B − �2
R

) − �4
R

64
3
(21)

is subtracted from the “blue” detuning to compensate for
suboptimal Rabi-oscillations due to Stark shifts arising from
power differences between the red and blue detuned lasers.
Similarly, δE0 may be used to balance the |0〉〈0| term, ensuring
no phase contributions from |0〉 caused by the red laser. Finally,
γ is the decay rate from |p〉.

The effective operator formalism [21] provides us with a
mechanism to simulate decay from |p〉, viz.,

L̂γp,j =
√

cjγp �R

2
 − iγ
|j 〉〈1| +

√
cjγp �B

2(
 − δEr ) − iγ
|j 〉〈r|, (22)

where j ∈ {0,1,g} and cj are the branching ratios
{0.12,0.32,0.56} for decay from |p〉, that is, γ = ∑

j cj γp.

It is appropriate here to discuss L̂γp,g because |g〉 does not
feature in the system Hamiltonian. Decay events into the “loss
state” |g〉 do not couple back into the system, and a Monte
Carlo trajectory is merely disposed when a jump of this sort is
simulated.

Magnetic field noise and atomic motion are important
dephasing sources that we describe in Monte Carlo simulation
by the jump operator [15]

L̂γd
= √

γd (1 − 2|r〉〈r|), (23)

FIG. 3. (Color online) For numerical efficiency the short-lived,
intermediate state |p〉 is adiabatically eliminated and yields an
effective description with couplings (�eff ) and dissipation terms
(L̂γd

,L̂γp,j ) shown in the left part of the figure. For convenience,
|p〉 is formally reintroduced to represent decay events from |r〉 (see
text).

where 1 is shorthand for the identity operator. Spontaneous
emission from |r〉, described by the jump operator

L̂γr
= √

γr |p〉〈r|, (24)

populates the eliminated state |p〉. Temporarily reintroducing
|p〉 at jump times, followed by immediate jumps to the
lower lying states by L̂

γp,j

temp = √
cjγp|j 〉〈p|, allows accurate

simulation of the decay processes. Our system is depicted
in Fig. 3 and the parameters chosen for simulation are
summarized in Table II.

The Monte Carlo wave functions on average yield the
density matrix. This is true for any ensemble size, while
the statistical errors on the estimate decrease with large n.
The trace distance and the fidelity measures are not linear
functions in the density matrix elements. Hence sampling
their values with a finite wave function ensemble may provide
a systematic error in addition to the statistic uncertainty of
the method. In Ref. [24] a nonlinear master equation was
analyzed and the systematic error was estimated to scale as
1/n, thus becoming less important than the statistical error
(∼1/

√
n) for large ensembles. Convergence of the AAWF

method is illustrated in Fig. 4 where trace distance T (χ̃ ,χ )
and fidelity F (χ̃ ,χ ) are recorded for different Monte Carlo
wave function ensemble sizes. For each ensemble size, we
have made 50 simulations and at n = 500 sample-to-sample

TABLE II. Physical parameters for our simulations based on
values discussed in Refs. [22,23].

Experimental parameter Symbol Value

Detuning 
/2π 2.0 GHz
Red Rabi frequency �R/2π 118 MHz
Blue Rabi frequency �B/2π 39 MHz
Rydberg blockade B/2π 20 MHz
Decay rate (|p〉) γp/2π 6.07 MHz
Decay rate (|r〉) γr/2π 0.53 kHz
Dephasing rate (|r〉) γd/2π 1.0/2.0 kHz

052129-5



GULLIKSEN, RAO, AND MØLMER PHYSICAL REVIEW A 88, 052129 (2013)

0.984

0.989

0.994

F
(χ̃

,χ
)

101 102 103

number of trajectories (n)

0.028

0.035

0.042

T
(χ̃

,χ
)

FIG. 4. (Color online) Convergence of the process fidelity and
trace distance determined by the ancilla-assisted wave function
characterization method. For selected values of n the mean value and
standard deviation of the fidelity (top) and trace-distance (bottom) is
obtained using 50 samples. Each sample involves a process matrix
simulation with n trajectories. The solid lines represent calculations
using the parameters in Table II with γd/2π = 1.0 kHz. The dashed
lines are obtained with the higher dephasing rate γd/2π = 2.0 kHz.

variations are small enough to consider the output results
satisfactorily converged.

In Figs. 5(a) and 5(b), we show the real and imaginary
part of the difference between the process matrix elements
obtained by our simulations and the ideal C-PHASE gate.
Figure 5(c) shows the trace distance between the gates as
function of the blue laser Rabi frequency for different values
of the Rydberg blockade shift. The solid curves are based
on our simulations with ensembles of n = 500 Monte Carlo
wave functions, while the dashed curves are upper bound

FIG. 5. (Color online) Simulating the χ matrix with AAWF. (a)
Real and (b) imaginary part of the difference between the ideal and
simulated process matrix for a C-PHASE gate [N.B. Sub-tick labels to
the right of eachWI readWX,WY,WZ, whereW ∈ {I,X,Y,Z}]. (c)
Trace distance as a function of the blue laser Rabi frequency for three
experimental realizations of blockade strength: full AAWF treatment
(solid line) and “no-jump wave function” upper bound (dotted line).
The (red) dot on the solid B = 20 MHz line indicates the parameters
used in parts (a) and (b) of the figure. We use the parameters listed in
Table II with γd/2π = 1.0 kHz.

calculations using a single no-jump trajectory for each set
of parameters; cf. Sec. VI. The figure confirms that the
upper bound indeed exceeds simulation results and, given its
simplicity, provides a reasonable characterization of the errors.
To understand the variation of the trace distance for small
values of �B we recall that the gate time tgate ∝ 1/�eff . As
�B → 0 the gate time lengthens, and errors due to intermediate
state decay and dephasing increase. On the other hand, as
�eff 
 �B�R/
 → B from below, the gate errors increase
due to population leakage into the |rr〉 state. We thus find an
optimum value for �B between these two regimes. Although
certain to pose experimental challenges, the simulation also
records advantages to gate quality by increasing B to 30 MHz.

VIII. DISCUSSION AND CONCLUSION

In conclusion we have presented a numerically efficient
method to obtain the χ matrix for an arbitrary quantum process
from a solution to the system’s master equation. Monte Carlo
wave functions present an effective means to simulate the
system density matrix and extend in a natural way to model
ancilla-assisted process characterization. Parameterizing the
outcomes of the simulated system under a fixed set of
operations we presented a ζ vector representation of the
Monte Carlo wave functions. Because the process matrix
χ results as a simple product of ζ vector components the
numerical effort to both simulate state evolution and represent
the process adequately were significantly reduced. We also
showed why this method is preferred over a straightforward
retrieval of output density matrices from averaged wave
function components. The Monte Carlo wave function method
provides the further insight that, in the case of little dissipation,
a single “no-jump” trajectory is enough to find an upper bound
on trace distance between the ideal χ and the simulated one.
Such upper bound estimates may be helpful in estimating
optimal parameters for experiments. Furthermore, our analysis
showed that the mathematical inversion problem occurring in
standard process characterization can be solved in the much
lower dimensional vector space. Although identified by our
state vector formalism it may be applied to density matrices in
usual process tomography.

Our method was demonstrated on the Rydberg-mediated
two-qubit C-PHASE gate. In future work we plan to address
larger quantum systems for which reliable error estimates
are needed. Multibit gates and the application of consecutive
gates together with realistic simulations of error correction
codes constitute appealing applications of our numerically
efficient method.
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APPENDIX

Let {|j 〉〉 : j = 1, . . . ,D2} be a linearly independent basis
for the D2-dimensional vectors on the principal-ancilla space
P ⊗ A. The initial bipartite system-ancilla state vector |
〉〉 =∑D

r=1 |r〉 ⊗ |r〉 evolves during the Monte Carlo simulation
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of the process E into a (stochastic) state vector that can be
expanded in this basis:

|
E 〉〉 =
∑

j

λj |j 〉〉. (A1)

Averaging the outer product of many of these states yields
the outcome of the master equation evolution of the ini-
tial entangled density operator O = |
〉〉〈〈
|. Since O =∑D

r,s=1 Ors ⊗ Ors [Eq. (8)] we obtain

|
E 〉〉〈〈
E | = (E ⊗ I)(O) =
∑

rs

E(Ors) ⊗ Ors

=
∑

rs

∑
pq

�rs,pqOpq ⊗ Ors, (A2)

where {Opq = |p〉〈q| : p,q = 1, . . . ,D} is a linearly indepen-
dent basis for the space of D × D linear operators.

In Eq. (14) we define

(Em ⊗ I )|
〉〉 =
∑

j

κm
j |j 〉〉, (A3)

and expansion of the outer product of two such states yields

(Em ⊗ I )|
〉〉〈〈
|(E†
n ⊗ I ) = Em|r〉〈s|E†

n ⊗ |r〉〈s|
=

∑
pq

Kmn
rs,pqOpq ⊗ Ors, (A4)

where we have used the notation defined in Eq. (5).
In the text we define ζ as the solution to Eq. (15). By

forming the outer product of
∑

j

( ∑
m

κm
j ζm

)
|j 〉〉 =

∑
j

λj |j 〉〉, (A5)

and averaging over many simulation outcomes, we obtain by
Eqs. (A2) and (A4)∑

mn

Kmn
rs,pqζmζ ∗

n = �rs,pq (A6)

for all r and s. Before Eq. (7) we identified the process matrix χ

as the solution to the same equation
∑

mn Kmn
rs,pqχmn = �rs,pq ,

and we have thus shown that χ is directly obtained from the ζ

vectors, χmn = ζmζ ∗
n .
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