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Operational approach to indirectly measuring the tunneling time
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The tunneling time through an arbitrary bounded one-dimensional barrier is investigated using the dwell-time
operator. We relate the tunneling time to the conditioned average of the dwell-time operator because of the
natural postselection in the case of successful tunneling. We discuss an indirect measurement by timing the
particle and show that we are able to reconstruct the conditioned average value of the dwell-time operator
by applying the contextual values formalism for generalized measurements based on the physics of Larmor
precession. The experimentally measurable tunneling time in the weak interaction limit is given by the weak
value of the dwell-time operator plus a measurement-context-dependent disturbance term. We show how the
expectation value and higher moments of the dwell-time operator can be extracted from measurement data of the
particle’s spin.
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I. INTRODUCTION

One of the oldest, unsettled problems of quantum me-
chanics is that of the tunneling time [1,2]. The seemingly
simple question concerns how long a tunneling particle stays
in the classically forbidden region. The question has generated
continuous interest both in theory and in experiment and
still remains controversial [3–13]. One source of difficulty in
dealing with this problem is the fact that there is no generally
accepted time operator in quantum mechanics that obeys a
canonical commutation relation with the Hamiltonian. This
was shown by Pauli to be impossible for bound systems
because such a time operator would generate energy trans-
lations lower than the ground state [14]. Numerous works
have defined nonstandard time operators that work around the
Pauli objection [15,16], such as restricted non-self-adjoint time
operators [17] or generalized measurement [18]. In this work
we are concerned with another kind of time operator, which
measures time differences, rather than absolute time [19]. Such
a dwell-time operator commutes with the Hamiltonian and
represents how long a particle spends in a region of space [20].
We argue this operator is more appropriate to the question of
tunneling time. The issue remains, however, of how such an
operator can be measured in an operational way in a laboratory:
If one prepares an incident wave packet, how does one know
when to start the clock or how to stop it?

There have been direct methods proposed for measuring
the tunneling time for a particle prepared in a Gaussian wave
packet. In this situation, it is the group delay, or shift of
the peak of the wave packet that is used. However, such
an approach has been criticized because the tunneling time
is defined as the peak of the wave packet after the barrier,
which has no special physical significance [8,21]. This leads
us to consider other definitions. An ingenious indirect way to
measure the tunneling time was proposed by Büttiker [22]
by refining Rybachenko’s Larmor clock idea [23,24]. The
idea is to attach a stopwatch to the particle that would turn
on when the particle was in the tunneling region and turn
off again when it emerged. This is accomplished by using
a particle with spin and the physics of Larmor precession:
By applying a small magnetic field only in the classically

forbidden region, the spin will precess, and the ratio of the
subtended spin angle to the Larmor frequency defines the
tunneling time, τy . Despite the conceptual clarity of this
idea, the fact the spin experiences different barrier heights
depending on its orientation leads also to spin rotation in a
direction perpendicular to the precession plane, which when
divided by the Larmor frequency gives another time, τz. This
effect provides an interpretational difficulty of which angle to
use (if this is indeed the correct procedure). Büttiker suggested
using a combination of both times,

√
τ 2
y + τ 2

z , while others
advocated both times being used separately as time scales,
despite the fact that τz can be negative [7]. While these times
are intuitive, the argument is heuristic since they are not derived
from an operator.

Steinberg stressed the fact that the tunneling time can
only be defined for the particles that actually tunnel through
the barrier, and consequently this definition only applies
to a small fraction of all particles in the system that are
naturally postselected [25]. Such a postselected average can be
calculated as a weak value of a time operator [26–31], where
the spin functions as a meter. Steinberg considered a projection
operator on the tunneling region scaled by the inverse particle
current as the system operator. He found that the Larmor times
τy and τz could be understood as the real and imaginary parts
of the weak value expression.

The connection between the results of a generalized mea-
surement and the measured operator is quite subtle. To further
understand this interplay, Dressel et al. [31,32] proposed the
use of generalized eigenvalues of an operator, called contextual
values (CVs), which would be weighted with the frequencies
of detector outputs in order to calculate averages and moments
of system operator.

The purpose of the present paper is to reconsider the Larmor
clock system which introduces a natural way to approach the
tunneling problem. However, we deal with it by introducing a
Hermitian observable for the dwell-time operator. We consider
the Larmor clock system as a generalized detector and use
the Larmor times as detector outputs, rather than as system
tunneling times, which will enable us to reconstruct the
average and higher moments of the dwell-time operator. This
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formalism also allows us to define the tunneling time as the
conditioned average of the dwell-time operator, and we find
results which are related, but not identical to, the weak value
results of Steinberg [25]. The discrepancy originates from the
use of a different starting operator, and the noncommutativity
of the unitary part of the measurement operator with the
postselection when the full dwell-time operator is considered
[33]. This approach also gives a pragmatic prescription for
experimental implementation of this idea.

The rest of the paper is organized as follows. In Sec. II, we
introduce some elementary properties of the one-dimensional
scattering system, the dwell-time operator, and the weak
value. In Sec. III, we analyze the Larmor system based on
the generalized measurement and CV approach in detail.
We discuss the spin rotated by the interaction in Sec. III A
and the detailed results of CVs for different shapes of the
potential barrier in Sec. III B. The tunneling time defined as
a conditioned average of the dwell-time operator is shown in
Sec. IV, and we provide the second moment of the dwell-time
operator in Sec. IV A. We compare Steinberg’s approach
[25,34] with ours in Sec. V. Finally, we give our conclusions
in Sec. VI.

II. TUNNELLING-TIME MEASUREMENT

Let us consider a particle of mass m with energy E =
p2/2m in a one-dimensional system with the spatial coordinate
x and a potential barrier centered at x = 0, V (x). To deal with
the tunneling regime, we only consider the positive potential,
V (x) > 0. In the position representation, the complete basis
of scattering stationary states of the Hamiltonian

Ĥ = p̂2/2m + V (x)�B(x) (1)

has the following forms for the left (l) and right (r) incoming
states, k > 0,

〈x|φl(k)〉 = 1√
2π

{
eikx + rl(k)e−ikx, x < −d/2,

t(k)eikx, x > d/2,

〈x|φr (k)〉 = 1√
2π

{
t(k)e−ikx, x < −d/2,

e−ikx + rr (k)eikx, x > d/2,

where �B(x) takes the value 1 in the barrier region [−d/2,d/2]
and is zero elsewhere. The coefficients, t(k) and rl/r (k), are the
transmission and reflection amplitudes of left (or right) coming
states, respectively. Since the reflection phases can depend on
the incident direction, we keep the labels l/r . We omit any
explicit expression for the states in the interval [−d/2,d/2]
because it depends on the details of the potential.

When we consider the scattering process, there is a
dilemma: On the one hand, in the tunneling problem (before
interaction with the potential barrier) the particle is free. On
the other hand, the free particle eigenfunctions extend over all
space with uniform density, so there is always an interaction
with the potential barrier. To avoid this difficulty, we use a
wave packet to describe the particle. An initial wave packet
prepared at τ0 → −∞, |�in(τ0 → −∞)〉 on the left-hand side
of the barrier, propagates toward the barrier, taking time τ

before interaction with the barrier. We write the initial state by

B

|+n >

|-n >

|+n >

|-n >

Φt=ω Lτ tΦr=ω Lτ r

B
x

FIG. 1. (Color online) The one-dimensional tunneling configura-
tion of our system: A wave packet is traveling toward the potential
barrier from the left-hand side. After interaction with the barrier,
the spin measurement is performed on the reflected and transmitted
portion.

using the left coming positive momentum state |k〉, k > 0, as

|�in(τ )〉 =
∫

dkA(k)|k〉e−iω(k)(τ−τ0), (2)

where ω(k) = h̄k2/2m and A(k) is a sharply peaked momen-
tum distribution at mean momentum kc and ensures only
positive momentum contribution to the integral. Moreover, we
assume the condition kc < k0(x), where k0(x) = √

2mV (x)/h̄,
to make sure the particle is in the tunneling regime.

A. Dwell-time operator

The dwell-time operator for a particle staying in a region
of interest [−d/2,d/2] is defined as

T̂D =
∫ ∞

−∞
dτeiĤ τ/h̄

∫ d/2

−d/2
dx|x〉〈x|e−iĤ τ/h̄, (3)

with Ĥ , the system Hamiltonian [19,20]. For the initial wave
packet (2), the expectation value of this operator gives a
momentum averaged dwell time,

τD =
∫ ∞

−∞
dτ

∫ d/2

−d/2
dx|�in(x,τ )|2 =

∫ ∞

0
dk|A(k)|2τd (k),

(4)

where τd (k) is the dwell time, which is defined within the
context of a stationary state scattering problem as the average
number of particles within a region, [−d/2,d/2], divided by
the average number entering the region per unit time,

τd (k) ≡ 1

jin

∫ d/2

−d/2
|〈x|φl(k)〉|2dx. (5)

Here jin = h̄k/m is the incoming probability current density
and |φl(k)〉 is the left coming scattering state of the time-
independent Schrödinger equation [22]. Thus, we see the
total dwell-time expectation is simply the weighted average
of τd (k) over all k. Since the dwell-time operator commutes
with the Hamiltonian [T̂D,Ĥ ] = 0 [20] (see Appendix A), the
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dwell-time operator can be expressed in the scattering basis,

T̂D =
∫ ∞

0
dk

∑
i,i ′=r,l

Ci,i ′(k)|φi(k)〉〈φi ′(k)|, (6)

by defining four elements of the operator, Ci,i ′(k) =
m
h̄k

∫ d/2
−d/2 dx〈φi(k)|x〉〈x|φi ′ (k)〉, with {i,i ′} ∈ {r,l} for right (r)

and left (l) coming states, respectively. The off-diagonal
elements of the matrix in the scattering basis {|φl(k)〉,|φr (k)〉}
are Cr,l(k) = C∗

l,r (k), which confirm the operator is Hermitian.
When i ′ = i, the element Ci,i(k) = τd (k) is the same as the
definition of the dwell time in Eq. (5) but with incoming state
from the right or left (i = r,l).

We wish to pick a specific wave number k and measure
the expectation value of the dwell-time operator for that wave
number, so we define the k-dependent dwell-time operator

T̂d (k) ≡
∑

i,i ′=r,l

Ci,i ′(k)|φi(k)〉〈φi ′(k)|. (7)

In what follows, we focus on T̂d (k) rather than T̂D . We see in
the next section why k-dependent dwell-time operator is more
relevant for us.

B. Weak value

The weak value, as a result of weakly measuring a operator
Â, is assigned if a system is preselected in an initial state
|ψi〉 and postselected on a final state |ψf 〉. To illustrate this, a
system operator Â is weakly coupled to a detector momentum
operator p̂, and its time-dependent interaction Hamiltonian is

Ĥint(τ ) = g(τ )Â ⊗ p̂, (8)

where the interaction profile g(τ ) gives an effective coupling
parameter g = ∫ τ̃

0 dτg(τ ) over the time interval τ̃ . Then the
result of measuring the operator Â, subject to the pre- and
postselection, is given by

Aw = 〈ψf |Â|ψi〉
〈ψf |ψi〉 . (9)

Now we want to consider a wave-packet tunneling through
the potential barrier and calculate how long it takes to do
so, the tunneling time. In this case, the weak value expression
of the dwell-time operator intuitively gives the solution to this
problem, since the tunneling time is defined by the state which
is initially prepared on the left-hand side of the barrier (for a
case of left coming wave packet), but later is found on the right-
hand side. We consider the initial state |ψi〉 = limτ→−∞ |k(τ )〉,
which describes the right moving free particles in the left
region before interaction with the potential barrier, as well as a
postselected state |ψf 〉 = limτ→∞ |k(τ )〉 describing a particle
moving to the right on the right-hand side of the barrier. In
this case, the weak value of the dwell-time operator T̂d (k) is
calculated to be

T w
d (k) = Cl,l + rr

t
Cr,l, (10)

which involves the sum of dwell time with the off-diagonal
element of dwell-time operator amplified by rr/t .

To gain deeper insight into this result, the CV formalism
[31,32] puts forward a more general starting point and the weak

value is obtained as a special case in this formalism. To more
deeply understand how this pre- and postselected quantity can
be measured, we use the CV formalism to construct the result
that can be measured in the laboratory. This approach gives
a conceptually clear method for constructing the conditional
average of the dwell-time operator. To measure the tunneling
time indirectly by using the physical detector, we use the
Larmor clock [22], which is a particular realization of a von
Neumann-style interaction [35] for a meter corresponding to
a spin- 1

2 particle. The Larmor system is defined in the weak
coupling regime, so we can compare the measurable tunneling
time to the weak value.

III. LARMOR SYSTEM AND GENERALIZED
MEASUREMENT

The Larmor clock measurement scheme is when a small
uniform magnetic field pointing in the z direction, B̂ = B0ẑ,
is confined to the barrier region. Suppose that the quantum
particle has spin h̄/2 and is initially polarized in the +x

direction in the incident beam. To measure the dwell-time
operator inside the tunneling region, we consider the spin as
our detector. The Hamiltonian of the Larmor system is then
given by

HL = p̂2

2m
+

[
V (x) − h̄

2
ωLσ̂z

]
�B(x), (11)

where ωL = gμB0/h̄ is the Larmor frequency, g is the
gyromagnetic ratio, and μ is the absolute value of the magnetic
moment. The stationary solution of this Hamiltonian is a
combination of two plane waves with spin components.
Again, we only consider the incoming scattering stationary
states, which are a complete basis with the following position
representation. The spinful scattering states generalize to
|s,φl/r,±z(k)〉 = | ± z〉|φl/r,±z(k)〉, where the scattering states
of the left and right coming states for the spin ±z in the
position, x, domain are

〈x|φl,±z(k)〉 = 1√
2π

{
eikx + rl

±(k)e−ikx, x < −d/2,

t l±(k)eikx, x > d/2,

〈x|φr,±z(k)〉 = 1√
2π

{
t r±(k)e−ikx, x < −d/2,

e−ikx + rr
±(k)eikx, x > d/2,

(12)

where | ± z〉 are the eigenstates of σ̂z. They are δ function
normalized, 〈s,φi,m(k)|s,φi ′,m′(k′)〉 = δi,i ′δm,m′δ(k − k′). The
transmission and reflection probabilities of left and right
coming particles for spin ±z components are defined as
t
l/r
± and r

l/r
± , respectively. For the spinless case, t

l/r
± (k) and

r
l/r
± (k) merge into t l/r (k) and rl/r (k), and only two eigenstates,

|φl(k)〉,|φr (k)〉, exist.
Even though the tunneling problem is most naturally treated

as a time-dependent wave packet traversing the barrier, it is
possible nevertheless to develop a stationary approach so the
scattering problem can be expressed in terms of the scattering
amplitude at a given energy and we simply focus on the
stationary-state solution at momentum k.

We, therefore, consider the free particle state vector of the
Hamiltonian, Ĥ0 = p2/2m, | ± k(τ )〉 = e−(i/h̄)Ĥ0(τ−τ0)|k(τ0)〉,
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for k > 0, where τ0 is the initial time. To describe the
scattering experiment from the potential barrier, we take our
initial incoming state vector to be |k(τ → −∞)〉, which never
experiences the potential barrier and the state we postselect on
after scattering to be |k(τ → ∞)〉. The connection between
pre- and postselection states is given by the scattering matrix
(S matrix) Ŝ, which contains the effect of interaction.

Since the collision conserves energy, the S matrix only
connects momentum states with the same energy. For the 1D
scattering case (including the spin degree of freedom), we can
represent the S matrix for the momentum k as 2 × 2 matrices,

Ŝk =
(

t+ rr
+

rl
+ t+

)
| + z〉〈+z| +

(
t− rr

−
rl
− t−

)
| − z〉〈−z|,

(13)

where the 2 × 2 matrices are in the basis of left
and right movers, (1,0)T = |k〉 and (0,1)T = | − k〉,
respectively.

Now we specialize the results by an approximation based
on the required condition of the Larmor system: The applied
magnetic field is small so the change in potential energy
created by this field is very small compared to both the height
of the barrier and the difference between the height of the
barrier and the kinetic energy. This condition additionally gives
weak interaction between the system and the detector. The
weakness condition allows us to approximate the transmission
and reflection amplitudes to first order in ωL,

t± � t

[
1 ± 1

2
ωL(τzt + iτyt )

]
,

(14)

r
l/r
± � rl/r

[
1 ± 1

2
ωL(τzr + iτ l/r

yr )

]
,

where the times τ(z/y)(t/r) are defined as the derivatives of
the transmitted or reflected probability of the barrier and the
derivative of its phase. For example, if we consider the box
potential V (x)�B(x) = V0�B(x), the expressions of τzt/zr and
τyt/yr are

τzt = −(m/h̄κ)∂ ln T
1
2 /∂κ,

τzr = −(T/R)τzt ,
(15)

τyt = −(m/h̄κ)∂ϕt/∂κ,

τ l/r
yr = −(m/h̄κ)∂ϕl/r

r /∂κ,

where κ =
√

k2
0 − k2 for k0 = √

2mV0/h̄. The amplitude-
related times τzt/zr come from the logarithmic derivative of the
transmitted and reflected probabilities (T and R), and τ

r/l

yt/yr

are phase (ϕt/r )-related times. The times (15) are the Larmor
times that Büttiker defined to represent the tunneling time [22].
The left and right coming dependencies of the amplitudes only
belong to the phase of the reflected amplitude, ϕ

l/r
r , because

the transmitted phase is the same for both directions. Thus,
the superscript l/r of the times only appears in τ

l/r
yr . A more

detailed discussion of Eq. (15) for the arbitrary potential case
is given in Refs. [36,37].

Now we suppose that the initially prepared joint state of the
system and detector is a product state, limτ→−∞ |k(τ )〉| + x〉.
As time goes on, the joint state evolves under a unitary

evolution which contains the system-detector interaction: the
interaction of the system state both with the barrier V (x) and
the spin through the applied infinitesimal magnetic field. As
τ → ∞, the system will again be in scattering states given
from the τ → −∞ scattering states. The unitary interaction
will, then, entangle the system with the detector so that
performing a direct measurement on the detector (spin system)
will lead to an indirect measurement being performed on the
system.

Compared to a von Neumann interaction Eq. (8), σ̂z plays
the role of detector p̂. Consequently, the azimuthal angle
of this axis, which is the phase difference between spin
±z components, will be the conjugate pointer position [38].
Therefore, spin measurement for an arbitrary direction is
analogous to measuring some combination of the free particle
detector’s position and momentum degree of freedom. We
measure, after the barrier, the spin postselecting on the ±n

direction for both the transmitted and the reflected particles.
The two orthonormal spin states (experimentally chosen)
are

| + n〉 = cos
θ

2
| + z〉 + eiφ sin

θ

2
| − z〉,

(16)
| − n〉 = sin

θ

2
| + z〉 + ei(φ+π) cos

θ

2
| − z〉,

with 0 < θ < π and 0 < φ < 2π .
Since the system and detector states are entangled, a

measurement on a particular detector spin | ± n〉 is equivalent
to the measurement operator M̂m on the system,

M̂m ≡ 〈m|Ŝk| + x〉 �
[ (

t rr

rl t

)
〈m| + x〉

+ ωL

2

(
t(τzt + iτyt ) rr (τzr + iτ r

yr )

rl(τzr + iτ l
yr ) t(τzt + iτyt )

)
〈m| − x〉

]

≡ M̂0
m + ωLM̂ (1)

m , (17)

where m = ±n. The measurement of the spin state is simul-
taneously accompanied by the measurement of the position
or momentum of the particle, since our momentum states, | ±
k(τ → ∞)〉, contain the left (or right) position information.
Defining the momentum projection operators

�̂r ≡ lim
τ→∞ |k(τ )〉〈k(τ )| =

(
1 0

0 0

)
,

(18)

�̂l ≡ lim
τ→∞ | − k(τ )〉〈−k(τ )| =

(
0 0

0 1

)
,

permits us to define our measurement operator M̂p,m ≡
�̂pM̂m where p = {r,l} and m = {+n, − n}. For later con-
venience, we introduce two values, given by the overlap of
spin states,

x0
±n = |〈±n| + x〉|2,

x(1)
n = 〈+x| + n〉〈+n| − x〉 = −〈+x| − n〉〈−n| − x〉,

(19)

and the complex times

τt ≡ τzt + iτyt , τ r
r ≡ τzr + iτ r

yr , τ l
r ≡ τzr + iτ l

yr . (20)
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Then the probability operators (or POVM elements) on the
system are defined in the momentum basis as

Êr,±n = M̂†
r,±nM̂r,±n

�
(

T t∗rr

rr∗t R

)
x0

±n ± ωL

2

[(
T τt t∗rrτ r

r

rr∗tτt Rτ r
r

)
x(1)

n

+
(

T τ ∗
t t∗rrτ ∗

t

rr∗tτ r∗
r Rτ r∗

r

)
x(1)∗

n

]
, (21)

Êl,±n = M̂†
l,±nM̂l,±n

�
(

R trl∗

rlt∗ T

)
x0

±n ± ωL

2

[(
Rτ l

r rl∗tτt

t∗rlτ l
r T τt

)
x(1)

n

+
(

Rτ l∗
r r l∗tτ l∗

r

t∗rlτ ∗
t T τ ∗

t

)
x(1)∗

n

]
. (22)

We note that the complex times Eq. (20) are just a bookkeeping
device since the expectation value of the probability operator
in any initial state, 〈Êp,m〉, gives the real probability that the
spin of the particle is measured in the |m〉 spin state on the p

side of the potential barrier (up to the first order of ωL).

A. Spin rotated by the interaction

After the interaction of the particle with the potential barrier,
the initial spin rotates differently whether it is transmitted
or reflected. Not only the spin precession on the x-y plane,
but also rotation out of the plane is experienced by the
spin state [22]. The out-of-plane rotation is caused by the
potential difference V (x) → V (x) ∓ h̄ωL/2 from the effect of
the magnetic field in the σ̂z eigenbasis, leading to a difference
of transmission amplitude. The spin state after the interaction
can be obtained by the unitary Ŝk operating on the initial state.
Taking the initial state to be limτ→−∞ |k(τ )〉| + x〉, the state
after the interaction is

lim
τ→−∞ Ŝk|k(τ )〉| + x〉

= lim
τ→∞

[
1√
2

(
t+
t−

)
|k(τ )〉 + 1√

2

(
rl
+

rl
−

)
| − k(τ )〉

]

= lim
τ→∞[ t |k(τ )〉|sr〉 + rl| − k(τ )〉|sl〉], (23)

where we have defined the rotated spin state on the right (r)-
or left (l)-hand side of the barrier,

|sr〉 = | + x〉 + ωL

2
(τzt + iτyt )| − x〉, (24)

|sl〉 = | + x〉 + ωL

2
(τzr + iτ l

yr )| − x〉, (25)

which are normalized states up to the first order of ωL.
Note that the rotated states are naturally expressed with the
complex times [Eq. (20)]. Therefore, when we postselect the
system state on the right-hand side of barrier, |k(τ → ∞)〉,
the (renormalized) rotated spin state will be Eq. (24). It
shows that the phase is changed by ωLτyt/2, which causes the
in-plane precession, and the amplitude is changed by ωLτzt/2,
which causes out-of-plane rotation as expected for the Larmor
system [22].

B. Decomposition and measurement of the dwell-time operator
with the probability operators

We are now in a position to discuss the measurement of
the system operator T̂d (k) given Eq. (7) in more detail. The
formalism of CV forms a bridge between the observable and
the operations of the generalized measurement. The main idea
of the CV formalism is that an observable can be completely
measured indirectly using an imperfectly correlated detector
by assigning an appropriate set of values to the detector
outcomes. This approach gives the correct average value (ex-
pectation) of the operator for any initial state by construction
and reproduces the generalized weak value formalism in the
minimum disturbance limit and gives an operational way of
computing conditional averages. Therefore, to connect the
system operator T̂d (k) in Eq. (7) with the probability operators
Êp,m(k) in Eqs. (21) and (22), we assign a set of CVs,
{αp,m(k)}, for each outcome of the measurement,

T̂d (k) = αr,+n(k)Êr,+n(k) + αr,−n(k)Êr,−n(k)

+αl,+n(k)Êl,+n(k) + αl,−n(k)Êl,−n(k). (26)

Although T̂d (k) is given as a matrix in the scattering basis
Eq. (7), it has the same expression in the momentum basis
because of the boundary conditions in the distance past and
distant future:

lim
τ→−∞〈φl(k,τ )|k(τ )〉 = 1,

lim
τ→−∞〈φl(k,τ )| − k(τ )〉 = 0,

lim
τ→−∞〈φr (k,τ )|k(τ )〉 = 0,

lim
τ→−∞〈φr (k,τ )| − k(τ )〉 = 1,

(27)
lim

τ→∞〈φl(k,τ )|k(τ )〉 = t∗,

lim
τ→∞〈φl(k,τ )| − k(τ )〉 = rl∗,

lim
τ→∞〈φr (k,τ )|k(τ )〉 = rr∗,

lim
τ→∞〈φr (k,τ )| − k(τ )〉 = t∗.

To solve for the CVs in Eq. (26) more easily, we linearly
transform the dwell-time operator and the probability opera-
tors by defining the unitarily transformed dwell-time operator
and probability operator as T̃d (k) and Ẽp,m, respectively,

T̃d (k) ≡ Ŝ0
k T̂d (k) Ŝ

0†
k =

(
D11 D12

D21 D22

)
, (28)

Ẽp,m(k) ≡ Ŝ0
k Êp,m(k) Ŝ

0†
k , (29)

where the unitary operator Ŝ0
k is the S matrix of the spinless

system,

Ŝ0
k =

(
t rr

rl t

)
. (30)

The detailed matrix elements of T̃d (k), given in terms of Ci,i ′ ,
are

D11 = T Cl,l + RCr,r + 2Re[t∗rrCrl],

D22 = RCl,l + T Cr,r + 2Re[rl∗tCrl],
(31)

D12 = rl∗tCl,l + rl∗rrCr,l + T Cl,r + t∗rrCr,r ,

D21 = D∗
12,
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and the transformed probability operators are now

Ẽr,±n =
(

1 0

0 0

)
x0

±n ± ωL

(
Er11 Er12

E∗
r12 0

)
, (32)

Ẽl,±n =
(

0 0

0 1

)
x0

±n ± ωL

(
0 El12

E∗
l12 El22

)
. (33)

The newly introduced O(ωL) terms of Eq. (32) and (33) are
easily calculated to be

Er11 = T Re[τtx
(1)
n ] + RRe[τ r

r x(1)
n ],

Er12 = −rl∗t
(τ l

r − τt )∗

2
x(1)

n ,

(34)

El12 = rl∗t
(τ l

r − τt )∗

2
x(1)∗

n ,

El22 = T Re[τtx
(1)
n ] + RRe[τ l

r x
(1)
n ].

Then the unitarily transformed Eq. (26) with the same CVs
gives

T̃d (k) =
∑

p = r,l

m = ±n

αp,mẼp,m. (35)

For the weak measurement case, our CVs cannot have poles
of greater order than 1/ωL [32], and we make the ansatz that
the CVs may be expanded as αp,m � α0

p,m + α(1)
p,m/ωL. It is

convenient to define the differences and weighted sums of the
CVs,

ξ 0
r/ l ≡ x0

+n α0
r/ l,+n + x0

−n α0
r/ l,−n,

ξ
(1)
r/ l ≡ x0

+n α
(1)
r/ l,+n + x0

−n α
(1)
r/ l,−n,

(36)
δα0

r/ l ≡ α0
r/ l,+n − α0

r/ l,−n,

δα
(1)
r/ l ≡ α

(1)
r/ l,+n − α

(1)
r/ l,−n.

To solve Eq. (35) with this ansatz, we can rewrite the matrix
elements of T̃d (k), Dii ′ , up to the first order of ωL and
ω−1

L :

D11 = ξ 0
r + Er11δα

(1)
r + 1

ωL

ξ (1)
r + ωL

[
Er11δα

(0)
r

]
,

D22 = ξ 0
l + El22δα

(1)
l + 1

ωL

ξ
(1)
l + ωL

[
El22δα

(0)
l

]
,

D12 = Er12δα
(1)
r + El12δα

(1)
l + ωL

[
Er12δα

0
r + El12δα

0
l

]
,

D21 = D∗
12. (37)

For the weak interaction case, ωL → 0, which is the case
that we are considering, the O(ω−1

L ) terms should vanish to
prevent a divergence in the weak limit. This indicates that two
quantities must vanish,

ξ
(1)
r/ l = x0

+n α
(1)
r/ l,+n + x0

−n α
(1)
r/ l,−n = 0. (38)

Moreover, the elements of the dwell-time operator do
not depend on the measurement strength, so the O(ωL)
terms should also vanish for finite ωL. This gives the
condition

δα0
r/ l = α0

r/ l,+n − α0
r/ l,−n = 0, (39)

so α0
r,+n = α0

r,−n and α0
l,+n = α0

l,−n. From Eqs. (38) and (39),
we define

α0
r/ l ≡ α0

r/ l,+n = α0
r/ l,−n, (40)

α
(1)
r/ l ≡ x0

+n α
(1)
r/ l,+n = −x0

−n α
(1)
r/ l,−n, (41)

and the CVs can be expressed in a simpler way,

αr/l,±n = α0
r/ l ± 1

ωLx0±n

α
(1)
r/ l . (42)

The CVs start from the same spinless values, and then separate
by the O(ω−1

L ) terms we defined as ±α
(1)
r/ l/x

0
±n.

With these general considerations out of the way, we turn
to the specific form of the CVs. The remaining nonzero
conditions form four equations for four unknowns; we write it
in matrix form:⎛

⎜⎜⎜⎝
D11

D12

D21

D22

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 Er11 0

0 0 Er12 El12

0 0 E∗
r12 E∗

l12

0 1 0 El22

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ξ 0
r

ξ 0
l

δα(1)
r

δα
(1)
l

⎞
⎟⎟⎟⎠ . (43)

From Eqs. (40) and (41), we deduce ξ 0
r/ l = α0

r/ l and δα
(1)
r/ l =

α
(1)
r/ l/x

0
+nx

0
−n. Once we solve the matrix equation (43), there-

fore, we produce the exact values of α0
r/ l and α

(1)
r/ l in Eq. (42).

Note from Eq. (43) that when the spin postselection
direction n̂ is in the x-z plane of the spin Bloch sphere, x(1)

n is
a real value and the 4 × 4 matrix in Eq. (43) does not have an
inverse because the determinant of the 4 × 4 matrix is zero. In
this case, there are no solutions to the four quantities ξ 0

r/ l and

δα
(1)
r/ l . To see the physical reason for this, when we look at the

diagonal elements of the probability operator of Eqs. (21) and
(22), they contain only τzt/zr , which is the amplitude deviation,
and we lose the phase deviation τyt/yr in the x-y plane. In
the other extreme, when we choose the spin polarization n̂

in the x-y plane, x(1)
n is purely imaginary and there are also

no solutions for ξ 0
r/ l and δα

(1)
r/ l . This case deletes the τzt/zr

information from the probability in Eqs. (21) and (22) and
we lose the amplitude deviation from the interaction with the
potential barrier. Therefore, to reconstruct the full dwell-time
operator in this measurement setup, we need to have all four
times τzt/zr and τyt/yr at hand. Since the dwell-time operator
contains reflected and tunneled information, the complete
solution of the CVs comes only when the related probability
depends on both τzt/zr and τyt/yr .

When the spin postselection is neither in the x-z plane nor
in the x-y plane, we can invert the matrix Eq. (43) and find the
unique solutions of α0

r/ l and α
(1)
r/ l ,

α0
r = D11 + Re

[
(T τt + Rτr

r )x(1)
n

]
fr (n,δτ ),

α0
l = D22 − Re

[
(T τt + Rτ l

r )x(1)
n

]
fl(n,δτ ),

(44)
α(1)

r = −x0
+nx

0
−n fr (n,δτ ),

α
(1)
l = x0

+nx
0
−n fl(n,δτ ),
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where we defined the functions

fr (n,δτ ) = Im
[
D12 trr∗ δτ x(1)

n

]
RT |δτ |2 Re

[
x

(1)
n

]
Im

[
x

(1)
n

] , (45)

fl(n,δτ ) = Im
[
D12 t∗rl δτ x(1)∗

n

]
RT |δτ |2 Re

[
x

(1)
n

]
Im

[
x

(1)
n

] , (46)

and δτ ≡ τt − τ l
r = (τt − τ r

r )∗ is the difference of the complex
times Eq. (20). Results (42) and (44) formally solve the CVs
in the weak limit case. To understand the results physically, let
us consider the potential barrier for several cases.

CVs for a square barrier potential. As an example of the
most simple case, we consider a square barrier potential,
V (x) = V0. In this case, the CVs in Eq. (44) are simplified
by the symmetry of the system, Cr,r = Cl,l , rr = rl , and
τyt = τyr . The transmitted and reflected amplitudes can be
decomposed t = |t |eiφt and r = |r|eiφt+iπ/2. The phase differ-
ence between them is just π/2, so the ratio of reflection and
transmission amplitudes becomes r/t = i|r|/|t |. Moreover,
Cr,l is a real value for the symmetric barrier. Therefore, we
can simplify α0

r/ l and fr/l(n,δτ ) as

α0 ≡ α0
r/ l = Cl,l − τyt |r|

τzt |t | Cr,l, (47)

fr (n,δτ ) = −fl(n,δτ ) = |r|Cr,l

|t |τzt

1

Im
[
x

(1)
n

] . (48)

In this special case, we find the following simple relationship
between the elements of the dwell-time operator and the
Larmor times:

Cl,l(k) = τd (k) = τyt (k),
(49)

Cr,l(k) = m

h̄k

∫ d/2

−d/2
dxφr (k,x)∗φl(k,x) =

√
T (k)

R(k)
τzt (k),

where the first equality can be explained by the fact that the
in-plane precession of the spin is the same as the average
dwell time of the particle in the barrier [22]. In contrast to
the first relation, the second one, Eq. (49), works only for
the square barrier case, which is not a general relation. This
effect further simplifies Eqs. (47) and (48) to α0 = 0 and
fr (n,δτ ) = −fl(n,δτ ) = 1/Im[x(1)

n ], which is momentum
independent. Therefore, we see that the CVs have a simple
form and only depend on the spin postselection parameters,

αr,+n = αl,+n = − x0
−n

ωLIm
[
x

(1)
n

] ,

(50)

αr,−n = αl,−n = x0
+n

ωLIm
[
x

(1)
n

] .

In Fig. 1, we plot the CVs times ωL as a function of
incident momentum k. It shows the momentum-independent
constant behavior of αr,±n, whose values are determined
by the spin postselection. Moreover, the weakness of the
measurement, controlled by the smallness of ωL, indicates
that the measurement is ambiguous: The CVs diverge in order
to give the correct average dwell time and tunneling time.

The negative sign of αr,+n in Eq. (50) can be understood
in the sense that the CVs are determined by the measurement
context which is assigned by the experimenter. The negative

FIG. 2. (Color online) Contextual values times Larmor frequency
ωL are shown as a function of incident wave vector, for square (a),
symmetric (b), and antisymmetric (c) potential barriers. The values
of the parameters are h̄ = 1, m = 1/2, dk0 = 3π , a = k2

0/d
2, and

ε = 0.5k2
0 . The plots correspond to the spin postselection in θ =

π/2 − π/8 and φ = π/4 in Eq. (16).

CVs compensate the ambiguity of the detection to make the
average value of the dwell-time operator equal to the weighted
average of the CVs.

CVs for a nonsquared symmetric barrier potential. For
more general symmetric potential barrier, we consider a
potential barrier, V (x)�B(x) = (V0 + ax2)�B(x), where a is
a real constant. Unlike the square barrier case, α0

r/ l in Eq. (47)
is not zero anymore and depends also on momentum k because
the second relation in Eq. (49) is no longer valid. Therefore,
the CVs in this case are

αr,+n = αl,+n = α0 − x0
−n

ωLIm
[
x

(1)
n

] |r|Cr,l

|t |τzt

,

(51)

αr,−n = αl,−n = α0 + x0
+n

ωLIm
[
x

(1)
n

] |r|Cr,l

|t |τzt

.

The ωL-dependent deviations of the CVs for ±n varies for the
different spin and momentum.
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The CVs are shown in Fig. 2(b) for a choice of a = k2
0/d

2,
θ = π/2 − π/8, and φ = π/4 in Eq. (16). They now have k

dependence, and the shape is determined by the momentum-
dependent factor (|r|Cr,l)/(|t |τzt ).

CVs for an asymmetric potential barrier. Now we apply our
result to a trapezoidal barrier, V (x)�B(x) = [V0 + ε(1/2 +
x/d)]�B(x). Since the potential barrier is not symmetric
anymore, α0

r and α0
l are not the same and depend both on

the spin postselection ±n and momentum k. The different
momentum postselection leads to all four CVs having different
behavior [Fig. 2(c)].

IV. CONDITIONED AVERAGE OF THE
DWELL-TIME OPERATOR

The expectation value of the dwell-time operator in the
initial state |ψin〉 incident from the left is independent of the
measurement context. The values assigned to αp,m outcomes
p = r,l and m = ±n, when averaged with the outcome
probabilities Pl,p,m, will, by construction, give the correct
average,

〈T̂d (k)〉 =
∑

p = r,l

m = ±n

αp,m(k)Tr[Êp,m(k)ρ̂in] = Cl,l(k) = τd (k),

(52)

guaranteed from Eq. (26), where ρ̂in = |ψin〉〈ψin| is the initial
state from Eq. (2). The probability that the particle is prepared
initially on the left-hand side (l) and measured in spin |m〉
state on the p side of the barrier, is Pl,p,m(k) = Tr[Êp,m(k)ρin].
Although we have considered an incident scattering particle
from the left here, we stress that this relation would be equally
valid for a particle incident from the right, or indeed, for any
coherent combination of left and right initial incoming states.
As an illustration of this check on the derived CVs, we give
a detailed derivation of Eq. (52) for the simplest case of a
square barrier. Weighting the probabilities Pl,p,m(k) by the
CVs Eq. (50), the average of the dwell-time operator is given
by

〈T̂d (k)〉 = −x0
−n

ωLIm
[
x

(1)
n

] (
x0

+n − ωLτyt Im
[
x(1)

n

])

+ x0
+n

ωLIm[x(1)
n ]

(x0
−n + ωLτyt Im

[
x(1)

n

]
)

= τyt (k). (53)

From this simple example, we see why the negative CVs must
be there and how the measurement-context-dependent part of
the probabilities and the CVs will cancel out. The probabilities
Pl,p,±n are given by Pl,p,±n = (T orR)[x0

±n ∓ ωLτyt Im[x(1)
n ]]

for p = r,l, while the CVs for the same spin postselection are
the same, αr,±n = αl,±n. Consequently, the left-right sum in
Eq. (52) gives the ±n CVs multiplied by Pl,l,±n + Pl,r,±n =
x0

±n ∓ ωLτyt Im[x(1)
n ]. In the spin sum, Eq. (53), the negative

CV for the +n outcome is responsible for the cancellation
of the leading-order term. The ωL dependence drops out of
the remaining term, leaving τyt (x0

+n + x0
−n) = τyt , since x0

±n

are the leading-order probabilities of the spin being found to be

±n. The average in this measurement context gives the same
result as the dwell time τd (k) shown in Eq. (49).

Now that we see how to construct the normal averages, it
is straightforward to postselect the particle. Our concern is
the time taken by the subset of particles that tunnel, and we
consider the initially prepared wave packet propagating from
the left toward the potential barrier and eventually measured on
the transmitted side (p = r). This quantity can be formulated
by conditioning the average of the CVs. Since our probability
operators already contain the system postselection, measured
on the left- or right-hand side of the barrier, the conditioned
average (for the tunneling case) of the dwell-time operator
T̂d (k) is defined simply by choosing the p = r case,

t 〈T̂d (k)〉in =
∑

m=±n

αr,m(k)Pm|l,r (k)

=
∑

m=±n

αr,m(k)
Pl,r,m(k)

Pl,r

, (54)

where we use the traditional notation of the conditional
probability Pm|l,p = Pl,p,m/Pl,p, Bayes’ rule. The probability
Pl,r = Pl,r,+n + Pl,r,−n = Tr[Êr,+nρin] + Tr[Êr,−nρin] is the
total transmission probability for the initially left coming
wave packet. That is, we define the tunneling time as
the conditioned average of the CVs. The reflected case is
easily calculated analogously to the transmitted one. We
note that others [5] have stressed that the definition of
the tunneling and reflected time should satisfy t 〈T̂d〉T +r

〈T̂ 〉R = 〈T̂d〉 = τd . The CV formalism imposes this condition
automatically.

These probabilities can be expressed with the operators

t 〈T̂d〉in =
∑

p = r,l

m = ±n

αp,m

Tr[M̂†
p,mF̂rM̂p,mρ̂in]∑

p = r,l

m = ±n

Tr[M̂†
p,mF̂rM̂p,mρ̂in]

,

(55)

where the F̂r operator is a projector on the transmitted side
that will pick out the p = r term. The detailed calculation up
to the first order of ωL of the conditional probability for the
weak limit lets us understand the conditioned average in terms
of known and measurable properties,

t 〈T̂d〉in =
∑

m=±n

αr,m[|〈m| + x〉|2

+ωLRe[(τzt − iτyt )〈m| + x〉〈−x|m〉]]

= α0
r + α(1)

r

x0+nx
0−n

Re
[
(τzt − iτyt )x

(1)∗
n

]
= T11 − R Re

[
δτ ∗x(1)

n

]
fr (n,δτ ). (56)

The second equality comes from substituting the CVs from
Eq. (42), and we see that the result is ωL independent
but unlike the weak value still depends on the measure-
ment context, as evidenced by the appearance of detector
parameters.
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To understand Eq. (56) physically, let us reformulate
Eq. (55) as a sum of two terms,

t 〈T̂d (k)〉in =
∑

p = a,b

m = ±n

αp,m

Tr
[

1
2 {F̂r ,Êp,m}ρ̂in

]
Tr

[
F̂r ρ̂in

] + Dn

= Tr
[

1
2 {F̂r ,T̂d (k)}ρ̂in

]
Tr

[
F̂r ρ̂in

] + Dn, (57)

where first term is the (context-independent) weak limit of
the conditioned average and Dn is the context-dependent
disturbance

Dn =
∑

p = a,b

m = ±n

αp,m

Tr
[
F̂r ρ̂in

]Re
(
Tr

[[
M̂0†

p,m,F̂r

]
M̂0

p,mρ̂in

+ωL

{[
M̂0†

p,m,F̂r

]
M̂(1)

p,mρ̂in + M̂0†
p,m

[
F̂r ,M̂(1)

p,m

]
ρ̂in

}])
,

(58)

where we defined the operators

M̂0
p,m ≡ �̂pM̂0

m, (59)

M̂(1)
p,m ≡ �̂pM̂ (1)

m , (60)

from Eqs. (17) and (18). For a pure initial state ρ̂in and the
postselection projector F̂r , the first term of Eq. (57) simplifies
to the real part of the weak value, Re

[
T w

d (k)
]
, which is a

general property of the CV formalism in [31],

Re
[
T w

d (k)
] = Tr

[
1
2 {F̂r ,T̂d (k)}ρ̂in

]
Tr

[
F̂r ρ̂in

]
= lim

τ→∞ Re

[
〈k(τ )|T̂d (k)|k(−τ )〉

〈k(τ )|k(−τ )〉

]
. (61)

The disturbance term Dn, on the other hand, comes from the
noncommutativity of the measurement operator M̂p,m and the
postselection projector F̂r . The joint probability in Eq. (55)
contains information not only about the measurement and the
initial state, but also about the postselection and the disturbance
to the initial state due to the measurement. Therefore, due to
the freedom of postselection basis, the disturbance Dn could
be maximized or minimized as the experimenter desires.

As a special case, when we consider the symmetric potential
barrier, the phases of the reflected amplitude from the right-
and left-hand sides of the barrier are the same; some of the
Larmor times become equal τ r

yr = τ l
yr = τyt and the difference

of the complex times δτ = τt − τ l
r = τzt − τzr = τzt /R is real.

Therefore, when we use these properties together with the
relations Eq. (48), the conditioned average Eq. (56) takes a
simple form,

t 〈T̂d〉in = Re
[
T w

d (k)
] − |r|

|t | Cr,l

Re[x(1)
n ]

Im[x(1)
n ]

. (62)

As we expected, the first term of the right-hand side is the
same as the real part of the weak value Eq. (10), Re

[
T w

d (k)
] =

Cl,l = τd because Re[(r/t)Cr,l] = 0. The second term in
Eq. (62) is the detector parameter-dependent disturbance
which has a simple form in terms of the off-diagonal element of
the dwell-time operator Cr,l weighted by the ratio of |r|/|t | and

FIG. 3. (Color online) The real part of the weak value and
the conditioned average are compared for different shapes of the
symmetric potential barrier. Panels (a) and (b) are for the square
barrier, corresponding to the spin postselection, (θ,φ) = (π/2 −
π/8,π/4) and (θ,φ) = (π/2 − π/200,π/4), respectively. Panel (c)
is for the non-square-symmetric potential as in Fig. 2(b) when
(θ,φ) = (π/2 − π/8,π/4). The values of the parameters are h̄ = 1,
m = 1/2, dk0 = 3π , and a = k2

0/d
2.

the postselection amplitudes of the detector Re[x(1)
n ]/Im[x(1)

n ].
The conditioned average is bounded by the CVs in Eq. (51).
Since the range of the CVs is larger than the eigenvalues of T̂d

[20] due to the amplification from the measurement ambiguity,
the conditioned averages can, in principle, lie anywhere within
the CVs range. In the weak coupling limit, ωL → 0, the range
of the CVs in Fig. 2 diverge, and the experimental result could
be obtained even in the negative time region depending on
the choice of the detector parameters, shown in Fig. 3. This
simply corresponds to the conditional probabilities enhancing
the negative CV over the positive one.

In the case of a square barrier potential, we can also use the
relations Eq. (49), so Eq. (62) simplifies further to

t 〈T̂d〉in = τyt − τzt

Re[x(1)
n ]

Im[x(1)
n ]

. (63)
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In this special case, the weak value becomes τyt and the
disturbance correction has a simple form in terms of τzt

weighted by the spin overlap parameters. Note that τyt is
a shift of the detector’s pointer and the τzt is a measure
of the backaction on the particle due to the measurement
interaction [25]. The measurement operator M̂p,m disturbs the
initial system state or the system postselection [in Eq. (58) we
show the disturbance to the postselection], but the choice of the
tuning parameter x(1)

n = 〈+x| + n〉〈+n| − x〉 can control the
disturbance correction to the tunneling time [33]. Therefore,
the proper choice of the tuning parameter can minimize
the disturbance correction. When n̂ approaches the x-y
plane, x(1)

n → 0, we can make the disturbance part negligible
compared to τyt . This causes the system to monitor only the
precession of the Larmor clock and reduces the disturbance.
On the other hand, if we take n̂ approaching the y-z plane,
the correction diverges. In Figs. 3(a) and 3(b), we compare the
weak value Re

[
T w

d (k)
]

with t 〈T̂d〉in for the square barrier. For
the spin postselection θ = π/2 − π/8 and φ = π/4, Fig. 3(a)
shows the negative values of the conditioned average which
comes from the large prefactor (θ,φ) in the postselection. In
the other limit, when the spin postselection approaches the x-y
plane, θ = π/2 − π/200 and φ = π/4, Fig. 3(b) shows that
the disturbance part is negligible and the conditioned average
is almost same as the weak value.

A. Second moment of an observable

The higher moments of the dwell-time operator can also be
obtained by this measurement process. For instance, the second
moment of the operator can be found from the CV formalism.
It is well known that the square of the weak value is not the
weak value of the square of the operator. From Eq. (26), the
square of the dwell-time operator can be written

T̂ 2
d (k) =

∑
p,p′ = r,l

m,m′ = ±n

αp,mαp′,m′Êp,mÊp′,m′ , (64)

and the second moment is determined by the average of the two
probability operators with the initial state, Tr[Êp,mÊp′,m′ ρ̂in].
However, the measurement operators do not commute with
each other in general, and Tr[Êp,mÊp′,m′ ρ̂in] is not always
a measurable probability. The probability of two consecu-
tive measurements Tr[M̂ (1)

p,mM̂
(2)
p′,m′ F̂rM̂

(2)†
p′,m′M̂

(1)†
p,mρ̂in] can be a

different quantity. Therefore, a sequence of two consecutive
measurements does not generally construct the second moment
of the dwell-time operator. Instead, another strategy can be
employed by changing the CVs to βp,m(k) to define a new
operator that correspond to powers of the original observable,

T̂ 2
d (k) =

∑
p = r,l

m = ±n

βp,m(k)Êp,m(k). (65)

The second moment of the dwell-time operator, then, can
be measured using the same experimental setup without
sequential measurements. The matrix elements of the squared

operator are

T̂ 2
d (k) =

(
C̄1,1 C̄1,2

C̄2,1 C̄2,2

)

=
(

C2
l,l + |Cr,l|2 Cl,r (Cl,l + Cr,r )

Cr,l(Cl,l + Cr,r ) C2
r,r + |Cr,l|2

)
. (66)

Since T̂d (k) and T̂ 2
d (k) are diagonal in the same basis, a set of

CVs, {βp,m(k)} can be easily obtained by putting the matrix
elements C̄ī,j̄ instead of Ci,j into Eq. (43), where (ī,j̄ ) ∈ (1,2)
and (i,j ) ∈ (l,r). As an example, the CVs of T̂ 2

d (k) for the
symmetric potential barrier are

βr,+n = C̄1,1 − τyt |r|
τzt |t | C̄2,1 − x0

−n

ωLIm[x(1)
n ]

|r|C̄2,1

|t |τzt

,

βr,−n = C̄1,1 − τyt |r|
τzt |t | C̄2,1 + x0

+n

ωLIm[x(1)
n ]

|r|C̄2,1

|t |τzt

,

and as we expected βr,±n = βl,±n. These are not simple powers
of αp,m as seen from Eq. (51). A measurement of 〈T̂d (k)〉 and
〈T̂ 2

d (k)〉 permits us to find the uncertainty of the averaged dwell
time expressed as

�T̂d (k) =
√

〈T̂ 2
d (k)〉 − 〈T̂d (k)〉2. (67)

This procedure easily extends to the nth moment using only
data from the spin measurements.

V. COMPARISON WITH STEINBERG’S APPROACH

Since our approach is similar to Steinberg’s paper [25],
we want to compare his result with ours. Let us quickly
review his idea [25,34]. For a symmetric barrier and symmetric
initial conditions, ψt , the state of a transmitted particle is
simply obtained by a parity flip combined with time reversal
ψt (x,τ ) = ψi(−x, − τ )∗, where ψi(x,τ ) is the initial state in
which the particle is prepared. In more practical terms, he
defined ψt (x,τ ) = t∗ψi(x,τ ) + r∗ψi(−x,τ ). Strictly speaking
for a specified k, ψi → φl(x,τ ), where

φl(x,τ ) = 1√
2π

{
(eikx + re−ikx)e−iωτ , x < −d/2,

teikxe−iωτ , x > d/2,

φr (x,τ ) = 1√
2π

{
te−ikxe−iωτ , x < −d/2,

(e−ikx + reikx)e−iωτ , x > d/2,

are the scattering states of the incoming stationary scattering
case and we have defined φl/r (x,τ ) = 〈x|kl/r〉. The transmitted
state is, therefore,

ψt (x,τ ) = t∗φl(x,τ ) + r∗φr (x,τ )

= 1√
2π

{
t∗eikxe−iωτ , x < −d/2,

(eikx + r∗e−ikx)e−iωτ , x > d/2,

= ψi(−x, − τ )∗, (68)

where we use the symmetry φl(−x,τ ) = φr (x,τ ). Now
the weak value of the projector onto the barrier region
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�̂B = ∫ d/2
−d/2 |x〉〈x| is used to define Steinberg’s transmission

time,

τt,s ≡ m

h̄k

〈ψt |�̂B |ψi〉
〈ψt |ψi〉 = m

h̄k

∫ d/2
−d/2 dx φ̃r φ̃l

t

= τd − iτi,s , (69)

where h̄k/m = jin is the incoming current density, and we
easily see 〈ψt |ψi〉 = t . The real part of the transmission time
is τd , which is the dwell time defined in Eq. (5), and we define
τi,s as the imaginary part of it.

To compare our result with Steinberg’s, we do the same pre-
and postselection with the system operator �̂B = ∫ d/2

−d/2 |x〉〈x|
but with the unitary evolution in the region that we are
interested in,

T̂D =
∫ ∞

−∞
dτeiĤ τ/h̄

∫ d/2

−d/2
dx|x〉〈x|e−iĤ τ/h̄

= m

h̄k

∫ ∞

0
dk

[ ∑
i,i ′=r,l

|ki〉〈ki |�̂B |ki ′ 〉〈k′
i |
]

,

T̂d (k) = m

h̄k

[|kl〉〈kl|�̂B |kl〉〈kl| + |kr〉〈kr |�̂B |kl〉〈kl|
+|kl〉〈kl|�̂B |kr〉〈kr | + |kr〉〈kr |�̂B |kr〉〈kr |

]
.

Therefore, the weak value of the operator T̂d is

〈ψt |T̂d |ψi〉
〈ψt |ψi〉 = m

h̄k

[∫ d/2

−d/2
dx φ̃∗

l φ̃l + r

t

∫ d/2

−d/2
dx φ̃∗

r φ̃l

]

= τd + r

t
Cr,l,

where we use the dwell-time definition τd = Cl,l and find the
same result as our weak value Eq. (10).

For the symmetric barrier, the weak value simplifies to

〈ψt |T̂d |ψi〉
〈ψt |ψi〉 = τd + i

|r|
|t | Cr,l . (70)

by applying the properties of the symmetric barrier. The
conditioned average of the dwell time is given by the real
part of the weak value, and the real part of our result is the
same as Steinberg’s result, Eq. (69). However, the imaginary
parts are not equal because we use the dwell-time operator and
not a scaled projector. Since the imaginary part is related to
the backaction of the detector [25,33], these are not expected
to be the same.

VI. CONCLUSION

We have put forward a principled approach to making
indirect measurements of dwell and tunneling times. The
starting point for our work is defining the dwell time as a
self-adjoint time operator which is the observable for the time
spent in a spatial region. An operational approach is then taken,
where this operator is indirectly measured with the help of
measurements made on an auxiliary spin degree of freedom,
which weakly interacts with a magnetic field in the region of
interest. We give a prescription for finding the expectation of
the operator by assigning CVs to all the outcomes of the spin
measurements on the reflected and transmitted sides of the
barrier, focusing on the case of particles at a fixed energy for

simplicity. These CVs encode the physics of the scattering
process. When the CVs are averaged with the outcome
frequencies of their events, they produce the expectation of
the dwell-time operator, regardless of the initial state. We find
their form explicitly for a general one-dimensional barrier of
finite extent. Interestingly, in order to have well-defined CVs,
the postselection angle for the spin must be such that the
probability of detector outcomes depends on both changes in
magnitude and phase of the scattering amplitudes in order to
have a full reconstruction of the dwell-time operator.

To define the tunneling time, that is, the dwell time of
the particles which are postselected on the transmitted side
of the barrier, we average the same CVs, but now with the
conditional probabilities of the detector results, where the
conditioning is on the successful tunneling events. With this
definition, we recover the weak value of the full dwell-time
operator as the tunneling time, plus a detector-dependent
disturbance term. This disturbance depends on the choice of
postselection basis, and we find it can be made negligibly
small by choosing to measure the spin in a basis nearly
orthogonal to the magnetic field direction. In the simplest case
of a square barrier, the tunneling time is simply the in-plane
portion of the Larmor time. Defining the tunneling time based
on the dwell-time operator is just one of the ways and there
are other possibilities, but this gives a natural way to define
the tunneling time operationally. Moreover, the strength of
this line of research into tunneling time is that the results
are immediately applicable to experiments, once the CVs are
calibrated and assigned to the experimental outcomes.
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APPENDIX A: THE DWELL-TIME OPERATOR

By definition, the dwell-time operator is

T̂D =
∫ ∞

−∞
dτeiĤ τ/h̄

∫ d/2

−d/2
dx|x〉〈x|e−iĤ τ/h̄ (A1)

=
∫ ∞

−∞
dτeiĤ τ/h̄ χ̂d e−iĤ τ/h̄.

For simplicity, we defined the projector onto the region
[−d/2,d/2],

χ̂d =
∫ d/2

−d/2
dx|x〉〈x|. (A2)

Since the time integration of the dwell-time operator goes
from negative infinity to infinity, the commutation of the
time operator and the Hamiltonian [T̂D,Ĥ ] = 0 can be clearly
shown [20],

T̂De−iĤ τ̄ /h̄ =
∫ ∞

−∞
dτeiĤ τ/h̄ χ̂d e−iĤ (τ+τ̄ )/h̄

=
∫ ∞

−∞
dτeiĤ (τ−τ̄ )/h̄ χ̂d e−iĤ τ/h̄

= e−iĤ τ̄ /h̄ T̂D. (A3)
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Therefore, Eq. (A1) can be written in the scattering basis of
the Hamiltonian,

T̂D =
∫ ∞

0
dk

∑
i,i ′=r,l

Ci,i ′(k)|ki〉〈ki ′ |, (A4)

which is the momentum-resolved dwell-time operator. If we
prepare the state of the system |�〉 = α|kl〉 + β|kr〉, the
average of the momentum-resolved dwell-time operator in this
state is

〈�|T̂d (k)|�〉 = |α|2Cl,l + |β|2Cr,r + αβ∗Cr,l + α∗βCl,r .

The diagonal element Cl,l (Cr,r ) is the dwell time for the
initially left (right) moving state. The off-diagonal elements
Cr,l appear for an initially prepared left moving scattering
state and has a transition to the right moving scattering state.
Therefore, this expression shows the explicit meaning of the
averaged dwell time for a coherent superposition of left and
right moving states.

We can easily find the eigenvalues and the corresponding
(un-normalized) eigenstates T̂d (k)|λ±〉 = λ±|λ±〉,

λ±(k) = 1

2

{
Cr,r (k) + Cl,l(k) ±

√
[Cr,r (k) − Cl,l(k)]2 + 4|Cr,l(k)|2

}
,

|λ+(k)〉 =
({

Cl,l(k) − Cr,r (k) +
√

[Cl,l(k) − Cr,r (k)]2 + 4|Cr,l(k)|2
}

|kl〉 + 2Cr,l(k)|kr〉
)

,

|λ−(k)〉 =
(

2C∗
r,l(k)|kl〉 −

{
Cl,l(k) − Cr,r (k) +

√
[Cl,l(k) − Cr,r (k)]2 + 4|Cr,l(k)|2

}
|kr〉

)
.

The eigenvalues for a box potential barrier are worked in
Ref. [20]. When we consider the higher moments of the dwell-
time operator, 〈T̂ n

D〉, it is easy to compute in the eigensystem.

APPENDIX B: ORTHONORMALITY OF THE
SCATTERING STATES

Consider the left and right incoming Hamiltonian eigen-
states, k > 0,

φl(x,k) = 1√
2π

{
eikx + rle−ikx, x < −a,

teikx, x > a,
(B1)

φr (x,k) = 1√
2π

{
te−ikx, x < −a,

e−ikx + rreikx, x > a,

where the transmission and reflection amplitudes are k depen-
dent. We want to show that these are orthonormal.

1. Inner product of the same scattering states

To prove the left scattering states are orthonormal, let us
start by calculating the inner product,

〈φl|φ′
l〉 =

∫ ∞

−∞
dx φl(x,k)∗φl(x,k′)

= 1

2π

∫ −a

−∞
dx(e−ikx + rl∗eikx)(eik′x + rl′e−ik′x)

+ 1

2π

∫ ∞

a

dx t∗t ′e−i(k−k′)x

+
∫ a

−a

dx φ∗
l (x,k)φl(x,k′)

= g1 + g2 + g3 + g4 +
∫ a

−a

dx φ∗
l (x,k)φl(x,k′),

where we consider k′ nearby k and k′ = k + ε for ε → 0 and
we substitute λ → ∞ instead of ∞ in the integration limits.

Then the functions, g1, g2, g3, and g4, are defined as

g1 ≡ lim
ε→0

lim
λ→∞

e−iελ − e−iεa

−2πiε
,

g2 ≡ lim
ε→0

lim
λ→∞

rl∗ e−i(2k+ε)λ − e−i(2k+ε)a

−2πi(2k + ε)
,

g3 ≡ lim
ε→0

lim
λ→∞

rl′ e
i(2k+ε)λ − ei(2k+ε)a

2πi(2k + ε)
,

g4 ≡ lim
ε→0

lim
λ→∞

(rl∗rl′ + t∗t ′)
eiελ − eiεa

2πiε
.

For small ε, the amplitudes t ′ and rl′ can be expanded around
k to first order in ε,

t ′ � t + ε ∂kt,

rl′ � rl + ε ∂kr
l.

The sum g2 + g3 becomes

g2 + g3 = 1

4πik
(rl∗e−2ika − rle2ika)

in this limit. Since the amplitudes satisfy |t |2 + |r|2 = 1, the
sum g1 + g4 is given by

g1 + g4 = i

2π
(rl∗∂kr

l + t∗∂kr)

+ lim
ε→0

lim
λ→∞

(
eiελ − εiεa

2πiε
+ c.c.

)
.

Now the first part of the second term of the above equation can
be rewritten as

lim
ε→0

lim
λ→∞

eiελ − εiεa

2πiε

= lim
ε→0

lim
λ→∞

e
i
2 (ελ+εa) e

i
2 (ελ−εa) − e− i

2 (ελ−εa)

2πiε
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= lim
ε→0

lim
λ→∞

sin[ ε
2 (λ − a)]

πε

= lim
ε→0

lim
λ→∞

λ − a

2π
sinc

[ ε

2π
(λ − a)

]
= lim

ε→0

1

2
δ(ε).

Therefore, the inner product is

〈φl|φ′
l〉 = − 1

4πik
(rl∗e−2ika + rle2ika) + i

2π
(rl∗∂kr

l + t∗∂kr)

+ δ(k − k′) +
∫ a

−a

dx φ∗
l (x,k)φl(x,k′). (B2)

To finish the proof that 〈φl|φ′
l〉 = δ(k − k′), let us consider

the Schrödinger equation,

Hφ = (T + V )φ = Eφ,

(H − E)φ = (T + V − E)φ = 0, (B3)

where H is Hamiltonian, T is kinetic energy, and V is potential
energy. The first derivative with respect to E is [39]

∂E [(H − E)φ] = (H − E)∂Eφ − φ = 0.

For a local potential and for the same coordinates in the two
eigenfunctions, this equation gives

φ∗
l T [∂Eφl] − [∂Eφl] [T φl]

∗

= φ∗
l [φl − (V − E)∂Eφl] − [∂Eφl] [T φl]

∗

= φ∗
l φl − φ∗

l [V − E] [∂Eφl] + [∂Eφl] [V − E] φ∗
l

= φ∗
l φl.

This equation is true only when x1 = x2 and k1 = k2 for
φ∗

l (x1,k1)φl(x2,k2), since V (x1) �= V (x2) in general. Now we
find

φ∗
l φl = φ∗

l T (∂Eφl) − (∂Eφl)T φ∗
l

= φ∗
l

(
− h̄2

2m
∂2
x

)
∂Eφl − (∂Eφl)

(
− h̄2

2m
∂2
x

)
φ∗

l

= − h̄2

2m

[
φ∗

l ∂
2
x (∂Eφl) − (∂Eφl)(∂

2
xφ∗

l )
]

= − h̄2

2m
∂x

[
φ∗

l (∂x∂Eφl) − (∂Eφl)(∂xφ
∗
l )

]
.

Integration from −a to a gives∫ a

−a

dx φ∗
l φl = − h̄2

2m

[
φ∗

l (∂x∂Eφl) − (∂Eφl)(∂xφ
∗
l )

]a

−a
.

By substituting ∂E = m

h̄2k
∂k and Eq. (B1) we find∫ a

−a

dx φ∗
l φl

= 1

4πik
(rl∗e−2ika + rle2ika) − i

2π
(rl∗∂kr

l + t∗∂kr).

This shows our desired result is true, 〈φl|φ′
l〉 = δ(k − k′).

2. Inner product of two different states

Similarly to Sec. A 1 of this appendix, we find the inner
product of two different states is given by

〈φl|φ′
r〉 =

∫ ∞

−∞
dx φl(x,k)∗φr (x,k′)

= 1

2π

∫ −a

−∞
dx(e−ikx + rl∗eikx)(t

′
e−ik′x)

+ 1

2π

∫ ∞

a

dx t∗e−ikx(e−ik′x + rr ′
eik′x)

+ 1

2π

∫ a

−a

dx φ∗
l (x,k)φr (x,k′)

= f1 + f2 + f3 +
∫ a

−a

dx φ∗
l (x,k)φr (x,k′).

In the same way as the previous paragraph, the functions f1,
f2, and f3, are defined as

f1 ≡ lim
ε→0

lim
λ→∞

t
′ ei(2k+ε)λ − ei(2k+ε)a

2πi(2k + ε)
,

f2 ≡ lim
ε→0

lim
λ→∞

t∗
e−i(2k+ε)λ − e−i(2k+ε)a

−2πi(2k + ε)
,

f3 ≡ lim
ε→0

lim
λ→∞

(t
′
rl∗ + t∗rr ′

)
eiελ − eiεa

2πiε
.

For small ε, the amplitudes t
′
and rr ′

can be expanded around
k up to first order in ε,

f1 � lim
ε→0

lim
λ→∞

(t + ε∂kt)
ei(2k+ε)λ − ei(2k+ε)a

2πi(2k + ε)
,

f2 = lim
ε→0

lim
λ→∞

t∗
e−i(2k+ε)λ − e−i(2k+ε)a

−2πi(2k + ε)
,

f3 � lim
ε→0

lim
λ→∞

[
(t + ε∂kt)r

l∗ + t∗(rr + ε∂kr
r )

] eiελ − eεa

2πiε

= lim
ε→0

lim
λ→∞

[
(tr l∗ + t∗rr )

eiελ − eiεa

2πiε

+(rl∗∂kt
r + t∗∂kr

r )
eiελ − eεa

2πi

]

= lim
ε→0

lim
λ→∞

(rl∗∂kt + t∗∂kr
r )

eiελ − eεa

2πi
,

where we use a unitary condition of the S matrix that imposes
the condition tr l∗ + t∗rr = 0 on the scattering amplitude. The
very rapidly fluctuating part ei(2k+ε)∞ and eiε∞ (since ∞ comes
before ε) averages to zero and can be dropped. Moreover, for
ε → 0, the functions f1, f2, and f3 become

f1 = −t
e2ika

4πik
,

f2 = t∗
e−2ika

4πik
,

f3 = i

2π
(rl∗∂kt + t∗∂kr

r ),

and consequently the inner product becomes

〈φl|φr〉 = i

2π
(rl∗∂kt + t∗∂kr

r ) − i

4πk
(t∗e−2ika − te2ika)

+
∫ a

−a

dx φ∗
l (x,k)φr (x,k).
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To satisfy orthogonality, we must have the condition∫ a

−a

dx φ∗
l (x,k)φr (x,k) = − i

2π
(rl∗∂kt + t∗∂kr

r )

+ i

4πk
(t∗e−2ika − te2ika). (B4)

To prove Eq. (B4), let us consider as before the Schrödinger
equation,

Hφ = (T + V )φ = Eφ,

(H − E)φ = (T + V − E)φ = 0,

and the first derivative with respect to E [39],

∂E [(H − E)φ] = (H − E)∂Eφ − φ = 0.

For a local potential and for the same coordinates eigenfunc-
tions, as before, this equation gives

φ∗
l T [∂Eφr ] − [∂Eφr ][T φl]

∗

= φ∗
l [φr − (V − E)∂Eφr ] − [∂Eφr ][T φl]

∗

= φ∗
l φr − φ∗

l [V − E][∂Eφr ] + [∂Eφr ][V − E]φ∗
l = φ∗

l φr .

Now we find

φ∗
l φr = φ∗

l T (∂Eφr ) − (∂Eφr )T φ∗
l

= φ∗
l

(
− h̄2

2m
∂2
x

)
∂Eφr − (∂Eφr )

(
− h̄2

2m
∂2
x

)
φ∗

l

= − h̄2

2m

[
φ∗

l ∂
2
x (∂Eφr ) − (∂Eφr )(∂2

xφ∗
l )

]
= − h̄2

2m
∂x

[
φ∗

l (∂x∂Eφr ) − (∂Eφr )(∂xφ
∗
l )

]
.

Integration from −a to a gives∫ a

−a

dx φ∗
l φr = − h̄2

2m
[φ∗

l (∂x∂Eφr ) − (∂Eφr )(∂xφ
∗
l )]a−a.

By substituting ∂E = m

h̄2k
∂k and Eq. (B1) we find∫ a

−a

dx φ∗
l φr = − i

2π
(rl∗∂kt + t∗∂kr

r )

+ i

4πk
(t∗e−2ika − te2ika),

which is exactly same as Eq. (B4). Therefore, the two
eigenstates are orthogonal.
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